Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.457
Filter
1.
Cell ; 186(17): 3558-3576.e17, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37562403

ABSTRACT

The most extreme environments are the most vulnerable to transformation under a rapidly changing climate. These ecosystems harbor some of the most specialized species, which will likely suffer the highest extinction rates. We document the steepest temperature increase (2010-2021) on record at altitudes of above 4,000 m, triggering a decline of the relictual and highly adapted moss Takakia lepidozioides. Its de-novo-sequenced genome with 27,467 protein-coding genes includes distinct adaptations to abiotic stresses and comprises the largest number of fast-evolving genes under positive selection. The uplift of the study site in the last 65 million years has resulted in life-threatening UV-B radiation and drastically reduced temperatures, and we detected several of the molecular adaptations of Takakia to these environmental changes. Surprisingly, specific morphological features likely occurred earlier than 165 mya in much warmer environments. Following nearly 400 million years of evolution and resilience, this species is now facing extinction.


Subject(s)
Bryophyta , Climate Change , Ecosystem , Acclimatization , Adaptation, Physiological , Tibet , Bryophyta/physiology
2.
Trends Biochem Sci ; 49(8): 663-666, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908926

ABSTRACT

Phosphatidic acid (PA) is involved in biotic and abiotic stress responses in plants. Here, we summarize quantitative lipidomics and real-time imaging used in PA studies and highlight recent studies of diacylglycerol (DAG) kinase (DGK) 5, an enzyme involved in PA biosynthesis, facilitating fine-tuning PA production for optimal stress responses in plants.


Subject(s)
Phosphatidic Acids , Plants , Stress, Physiological , Phosphatidic Acids/metabolism , Plants/metabolism , Diacylglycerol Kinase/metabolism
3.
Plant Cell ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536783

ABSTRACT

Autophagy is one of the major highly inducible degradation processes in response to plant developmental and environmental signals. In response to different stimuli, cellular materials, including proteins and organelles, can be sequestered into a double membrane autophagosome structure either selectively or non-selectively. The formation of an autophagosome as well as its delivery into the vacuole involves complex and dynamic membrane processes. The identification and characterization of the conserved autophagy-related (ATG) proteins and their related regulators have greatly advanced our understanding of the molecular mechanism underlying autophagosome biogenesis and function in plant cells. Autophagosome biogenesis is tightly regulated by the coordination of multiple ATG and non-ATG proteins, and selective cargo recruitment. This review updates our current knowledge of autophagosome biogenesis, with special emphasis on the core molecular machinery that drives autophagosome formation, and autophagosome-organelle interactions under abiotic stress conditions.

4.
Proc Natl Acad Sci U S A ; 121(32): e2303439121, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39093948

ABSTRACT

Plants release a wealth of metabolites into the rhizosphere that can shape the composition and activity of microbial communities in response to environmental stress. The connection between rhizodeposition and rhizosphere microbiome succession has been suggested, particularly under environmental stress conditions, yet definitive evidence is scarce. In this study, we investigated the relationship between rhizosphere chemistry, microbiome dynamics, and abiotic stress in the bioenergy crop switchgrass grown in a marginal soil under nutrient-limited, moisture-limited, and nitrogen (N)-replete, phosphorus (P)-replete, and NP-replete conditions. We combined 16S rRNA amplicon sequencing and LC-MS/MS-based metabolomics to link rhizosphere microbial communities and metabolites. We identified significant changes in rhizosphere metabolite profiles in response to abiotic stress and linked them to changes in microbial communities using network analysis. N-limitation amplified the abundance of aromatic acids, pentoses, and their derivatives in the rhizosphere, and their enhanced availability was linked to the abundance of bacterial lineages from Acidobacteria, Verrucomicrobia, Planctomycetes, and Alphaproteobacteria. Conversely, N-amended conditions increased the availability of N-rich rhizosphere compounds, which coincided with proliferation of Actinobacteria. Treatments with contrasting N availability differed greatly in the abundance of potential keystone metabolites; serotonin and ectoine were particularly abundant in N-replete soils, while chlorogenic, cinnamic, and glucuronic acids were enriched in N-limited soils. Serotonin, the keystone metabolite we identified with the largest number of links to microbial taxa, significantly affected root architecture and growth of rhizosphere microorganisms, highlighting its potential to shape microbial community and mediate rhizosphere plant-microbe interactions.


Subject(s)
Metabolome , Microbiota , Rhizosphere , Soil Microbiology , Microbiota/physiology , Nitrogen/metabolism , RNA, Ribosomal, 16S/genetics , Nutrients/metabolism , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Soil/chemistry , Phosphorus/metabolism , Plant Roots/microbiology , Plant Roots/metabolism , Panicum/metabolism , Panicum/microbiology
5.
Proc Natl Acad Sci U S A ; 121(7): e2316825121, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38319968

ABSTRACT

Climate change is a global concern for all life on our planet, including humans and plants. Plants' growth and development are significantly affected by abiotic stresses, including adverse temperature, inadequate or excess water availability, nutrient deficiency, and salinity. The circadian clock is a master regulator of numerous developmental and metabolic processes in plants. In an effort to identify new clock-related genes and outputs through bioinformatic analysis, we have revealed that CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) play a crucial role in regulating a wide range of abiotic stress responses and target ABSCISIC ACID RESPONSIVE ELEMENTS-BINDING FACTOR3 (ABF3), a key transcription factor in the plant hormone Abscisic acid (ABA)-signaling pathway. Specifically, we found that CCA1 and LHY regulate the expression of ABF3 under diel conditions, as well as seed germination under salinity. Conversely, ABF3 controls the expression of core clock genes and orchestrates the circadian period in a stress-responsive manner. ABF3 delivers the stress signal to the central oscillator by binding to the promoter of CCA1 and LHY. Overall, our study uncovers the reciprocal regulation between ABF3 and CCA1/LHY and molecular mechanisms underlying the interaction between the circadian clock and abiotic stress. This finding may aid in developing molecular and genetic solutions for plants to survive and thrive in the face of climate change.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Circadian Clocks , Humans , Circadian Clocks/genetics , DNA-Binding Proteins/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Abscisic Acid/metabolism , Circadian Rhythm/genetics , Gene Expression Regulation, Plant , Stress, Physiological , Transcription Factors/metabolism
6.
Proc Natl Acad Sci U S A ; 120(3): e2209781120, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36623191

ABSTRACT

Plasticity of the root system architecture (RSA) is essential in enabling plants to cope with various environmental stresses and is mainly controlled by the phytohormone auxin. Lateral root development is a major determinant of RSA. Abiotic stresses reduce auxin signaling output, inhibiting lateral root development; however, how abiotic stress translates into a lower auxin signaling output is not fully understood. Here, we show that the nucleo-cytoplasmic distribution of the negative regulators of auxin signaling AUXIN/INDOLE-3-ACETIC ACID INDUCIBLE 12 (AUX/IAA12 or IAA12) and IAA19 determines lateral root development under various abiotic stress conditions. The cytoplasmic localization of IAA12 and IAA19 in the root elongation zone enforces auxin signaling output, allowing lateral root development. Among components of the nuclear pore complex, we show that CONSTITUTIVE EXPRESSOR OF PATHOGENESIS-RELATED GENES 5 (CPR5) selectively mediates the cytoplasmic translocation of IAA12/19. Under abiotic stress conditions, CPR5 expression is strongly decreased, resulting in the accumulation of nucleus-localized IAA12/19 in the root elongation zone and the suppression of lateral root development, which is reiterated in the cpr5 mutant. This study reveals a regulatory mechanism for auxin signaling whereby the spatial distribution of AUX/IAA regulators is critical for lateral root development, especially in fluctuating environmental conditions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Stress, Physiological , Plant Roots/metabolism , Gene Expression Regulation, Plant , Repressor Proteins/metabolism , Membrane Proteins/metabolism
7.
Plant J ; 117(6): 1728-1745, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38050346

ABSTRACT

Global warming, climate change, and industrial pollution are altering our environment subjecting plants, microbiomes, and ecosystems to an increasing number and complexity of abiotic stress conditions, concurrently or sequentially. These conditions, termed, "multifactorial stress combination" (MFSC), can cause a significant decline in plant growth and survival. However, the impacts of MFSC on reproductive tissues and yield of major crop plants are largely unknown. We subjected soybean (Glycine max) plants to a MFSC of up to five different stresses (water deficit, salinity, low phosphate, acidity, and cadmium), in an increasing level of complexity, and conducted integrative transcriptomic-phenotypic analysis of their reproductive and vegetative tissues. We reveal that MFSC has a negative cumulative effect on soybean yield, that each set of MFSC condition elicits a unique transcriptomic response (that is different between flowers and leaves), and that selected genes expressed in leaves or flowers of soybean are linked to the effects of MFSC on different vegetative, physiological, and/or reproductive parameters. Our study identified networks and pathways associated with reactive oxygen species, ascorbic acid and aldarate, and iron/copper signaling/metabolism as promising targets for future biotechnological efforts to augment the resilience of reproductive tissues of major crop plants to MFSC. In addition, we provide unique phenotypic and transcriptomic datasets for dissecting the mechanistic effects of MFSC on the vegetative, physiological, and reproductive processes of a crop plant.


Subject(s)
Ecosystem , Edible Grain , Edible Grain/genetics , Gene Expression Profiling , Transcriptome , Stress, Physiological/genetics
8.
Plant J ; 118(5): 1241-1257, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38289828

ABSTRACT

RNA-Sequencing is widely used to investigate changes in gene expression at the transcription level in plants. Most plant RNA-Seq analysis pipelines base the normalization approaches on the assumption that total transcript levels do not vary between samples. However, this assumption has not been demonstrated. In fact, many common experimental treatments and genetic alterations affect transcription efficiency or RNA stability, resulting in unequal transcript abundance. The addition of synthetic RNA controls is a simple correction that controls for variation in total mRNA levels. However, adding spike-ins appropriately is challenging with complex plant tissue, and carefully considering how they are added is essential to their successful use. We demonstrate that adding external RNA spike-ins as a normalization control produces differences in RNA-Seq analysis compared to traditional normalization methods, even between two times of day in untreated plants. We illustrate the use of RNA spike-ins with 3' RNA-Seq and present a normalization pipeline that accounts for differences in total transcriptional levels. We evaluate the effect of normalization methods on identifying differentially expressed genes in the context of identifying the effect of the time of day on gene expression and response to chilling stress in sorghum.


Subject(s)
Gene Expression Regulation, Plant , RNA, Plant , RNA, Plant/genetics , Sequence Analysis, RNA/methods , Gene Expression Profiling/methods , RNA, Messenger/genetics , RNA, Messenger/metabolism , Arabidopsis/genetics
9.
Plant J ; 117(6): 1893-1913, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38289877

ABSTRACT

Shade avoidance syndrome (SAS) is triggered by a low ratio of red (R) to far-red (FR) light (R/FR ratio), which is caused by neighbor detection and/or canopy shade. In order to compete for the limited light, plants elongate hypocotyls and petioles by deactivating phytochrome B (phyB), a major R light photoreceptor, thus releasing its inhibition of the growth-promoting transcription factors PHYTOCHROME-INTERACTING FACTORs. Under natural conditions, plants must cope with abiotic stresses such as drought, soil salinity, and extreme temperatures, and biotic stresses such as pathogens and pests. Plants have evolved sophisticated mechanisms to simultaneously deal with multiple environmental stresses. In this review, we will summarize recent major advances in our understanding of how plants coordinately respond to shade and environmental stresses, and will also discuss the important questions for future research. A deep understanding of how plants synergistically respond to shade together with abiotic and biotic stresses will facilitate the design and breeding of new crop varieties with enhanced tolerance to high-density planting and environmental stresses.


Subject(s)
Arabidopsis Proteins , Phytochrome , Light , Plant Breeding , Plants , Stress, Physiological
10.
Plant J ; 117(6): 1676-1701, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37483133

ABSTRACT

The demand for agricultural production is becoming more challenging as climate change increases global temperature and the frequency of extreme weather events. This study examines the phenotypic variation of 149 accessions of Brachypodium distachyon under drought, heat, and the combination of stresses. Heat alone causes the largest amounts of tissue damage while the combination of stresses causes the largest decrease in biomass compared to other treatments. Notably, Bd21-0, the reference line for B. distachyon, did not have robust growth under stress conditions, especially the heat and combined drought and heat treatments. The climate of origin was significantly associated with B. distachyon responses to the assessed stress conditions. Additionally, a GWAS found loci associated with changes in plant height and the amount of damaged tissue under stress. Some of these SNPs were closely located to genes known to be involved in responses to abiotic stresses and point to potential causative loci in plant stress response. However, SNPs found to be significantly associated with a response to heat or drought individually are not also significantly associated with the combination of stresses. This, with the phenotypic data, suggests that the effects of these abiotic stresses are not simply additive, and the responses to the combined stresses differ from drought and heat alone.


Subject(s)
Brachypodium , Brachypodium/metabolism , Biodiversity , Temperature , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
11.
Plant J ; 119(2): 942-959, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38743860

ABSTRACT

Proline metabolism plays a crucial role in both environmental stress responses and plant growth. However, the specific mechanism by which proline contributes to abiotic stress processes remains to be elucidated. In this study, we utilized atrzf1 (Arabidopsis thaliana ring zinc finger 1) as a parental line for T-DNA tagging mutagenesis and identified a suppressor mutant of atrzf1, designated proline content alterative 31 (pca31). The pca31 mutant suppressed the insensitivity of atrzf1 to dehydration stress during early seedling growth. Using Thermal Asymmetric Interlaced-PCR, we found that the T-DNA of pca31 was inserted into the promoter region of the At2g22620 gene, which encodes the cell wall enzyme rhamnogalacturonan lyase 1 (RGL1). Enzymatic assays indicated that RGL1 exhibited rhamnogalacturonan lyase activity, influencing cell wall pectin composition. The decrease in RGL1 gene expression suppressed the transcriptomic perturbation of the atrzf1 mutant. Silencing of the RGL1 gene in atrzf1 resulted in a sensitive phenotype similar to pca31 under osmotic stress conditions. Treatment with mannitol, salt, hydrogen peroxide, and abscisic acid induced RGL1 expression. Furthermore, we uncovered that RGL1 plays a role in modulating root growth and vascular tissue development. Molecular, physiological, and genetic experiments revealed that the positive modulation of RGL1 during abiotic stress was linked to the AtRZF1 pathway. Taken together, these findings establish that pca31 acts as a suppressor of atrzf1 in abiotic stress responses through proline and cell wall metabolisms.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Pectins , Proline , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/physiology , Proline/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Pectins/metabolism , Polysaccharide-Lyases/genetics , Polysaccharide-Lyases/metabolism , Cell Wall/metabolism , Dehydration , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Plants, Genetically Modified , Stress, Physiological
12.
Mol Biol Evol ; 41(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38723179

ABSTRACT

Despite traditional beliefs of orthologous genes maintaining similar functions across species, growing evidence points to their potential for functional divergence. C-repeat binding factors/dehydration-responsive element binding protein 1s (CBFs/DREB1s) are critical in cold acclimation, with their overexpression enhancing stress tolerance but often constraining plant growth. In contrast, a recent study unveiled a distinctive role of rice OsDREB1C in elevating nitrogen use efficiency (NUE), photosynthesis, and grain yield, implying functional divergence within the CBF/DREB1 orthologs across species. Here, we delve into divergent molecular mechanisms of OsDREB1C and AtCBF2/3/1 by exploring their evolutionary trajectories across rice and Arabidopsis genomes, regulatomes, and transcriptomes. Evolutionary scrutiny shows discrete clades for OsDREB1C and AtCBF2/3/1, with the Poaceae-specific DREB1C clade mediated by a transposon event. Genome-wide binding profiles highlight OsDREB1C's preference for GCCGAC compared to AtCBF2/3/1's preference for A/GCCGAC, a distinction determined by R12 in the OsDREB1C AP2/ERF domain. Cross-species multiomic analyses reveal shared gene orthogroups (OGs) and underscore numerous specific OGs uniquely bound and regulated by OsDREB1C, implicated in NUE, photosynthesis, and early flowering, or by AtCBF2/3/1, engaged in hormone and stress responses. This divergence arises from gene gains/losses (∼16.7% to 25.6%) and expression reprogramming (∼62.3% to 66.2%) of OsDREB1C- and AtCBF2/3/1-regulated OGs during the extensive evolution following the rice-Arabidopsis split. Our findings illustrate the regulatory evolution of OsDREB1C and AtCBF2/3/1 at a genomic scale, providing insights on the functional divergence of orthologous transcription factors following gene duplications across species.


Subject(s)
Arabidopsis , Oryza , Transcription Factors , Oryza/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Arabidopsis/genetics , Evolution, Molecular , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
13.
Methods ; 228: 65-79, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38768931

ABSTRACT

This study proposed an intelligent model for predicting abiotic stress-responsive microRNAs in plants. MicroRNAs (miRNAs) are short RNA molecules regulates the stress in genes. Experimental methods are costly and time-consuming, as compare to in-silico prediction. Addressing this gap, the study seeks to develop an efficient computational model for plant stress response prediction. The two benchmark datasets for MiRNA and Pre-MiRNA dataset have been acquired in this study. Four ensemble approaches such as bagging, boosting, stacking, and blending have been employed. Classifiers such as Random Forest (RF), Extra Trees (ET), Ada Boost (ADB), Light Gradient Boosting Machine (LGBM), and Support Vector Machine (SVM). Stacking and Blending employed all stated classifiers as base learners and Logistic Regression (LR) as Meta Classifier. There have been a total of four types of testing used, including independent set, self-consistency, cross-validation with 5 and 10 folds, and jackknife. This study has utilized evaluation metrics such as accuracy score, specificity, sensitivity, Mathew's correlation coefficient (MCC), and AUC. Our proposed methodology has outperformed existing state of the art study in both datasets based on independent set testing. The SVM-based approach has exhibited accuracy score of 0.659 for the MiRNA dataset, which is better than the previous study. The ET classifier has surpassed the accuracy of Pre-MiRNA dataset as compared to the existing benchmark study, achieving an impressive score of 0.67. The proposed method can be used in future research to predict abiotic stresses in plants.


Subject(s)
MicroRNAs , Stress, Physiological , Support Vector Machine , MicroRNAs/genetics , Stress, Physiological/genetics , RNA, Plant/genetics , Computational Biology/methods , Plants/genetics , Algorithms , Gene Expression Regulation, Plant/genetics
14.
Mol Cell Proteomics ; 22(11): 100638, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37704098

ABSTRACT

A major limitation when undertaking quantitative proteomic time-course experimentation is the tradeoff between depth-of-analysis and speed-of-analysis. In high complexity and high dynamic range sample types, such as plant extracts, balance between resolution and time is especially apparent. To address this, we evaluate multiple compensation voltage (CV) high field asymmetric waveform ion mobility spectrometry (FAIMSpro) settings using the latest label-free single-shot Orbitrap-based DIA acquisition workflows for their ability to deeply quantify the Arabidopsis thaliana seedling proteome. Using a BoxCarDIA acquisition workflow with a -30 -50 -70 CV FAIMSpro setting, we were able to consistently quantify >5000 Arabidopsis seedling proteins over a 21-min gradient, facilitating the analysis of ∼42 samples per day. Utilizing this acquisition approach, we then quantified proteome-level changes occurring in Arabidopsis seedling shoots and roots over 24 h of salt and osmotic stress, to identify early and late stress response proteins and reveal stress response overlaps. Here, we successfully quantify >6400 shoot and >8500 root protein groups, respectively, quantifying nearly ∼9700 unique protein groups in total across the study. Collectively, we pioneer a short gradient, multi-CV FAIMSpro BoxCarDIA acquisition workflow that represents an exciting new analysis approach for undertaking quantitative proteomic time-course experimentation in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Proteome/metabolism , Proteomics/methods , Arabidopsis Proteins/metabolism , Salt Stress , Seedlings/metabolism
15.
Plant J ; 114(3): 463-481, 2023 05.
Article in English | MEDLINE | ID: mdl-36880270

ABSTRACT

Plant responses to environmental change are mediated via changes in cellular metabolomes. However, <5% of signals obtained from liquid chromatography tandem mass spectrometry (LC-MS/MS) can be identified, limiting our understanding of how metabolomes change under biotic/abiotic stress. To address this challenge, we performed untargeted LC-MS/MS of leaves, roots, and other organs of Brachypodium distachyon (Poaceae) under 17 organ-condition combinations, including copper deficiency, heat stress, low phosphate, and arbuscular mycorrhizal symbiosis. We found that both leaf and root metabolomes were significantly affected by the growth medium. Leaf metabolomes were more diverse than root metabolomes, but the latter were more specialized and more responsive to environmental change. We found that 1 week of copper deficiency shielded the root, but not the leaf metabolome, from perturbation due to heat stress. Machine learning (ML)-based analysis annotated approximately 81% of the fragmented peaks versus approximately 6% using spectral matches alone. We performed one of the most extensive validations of ML-based peak annotations in plants using thousands of authentic standards, and analyzed approximately 37% of the annotated peaks based on these assessments. Analyzing responsiveness of each predicted metabolite class to environmental change revealed significant perturbations of glycerophospholipids, sphingolipids, and flavonoids. Co-accumulation analysis further identified condition-specific biomarkers. To make these results accessible, we developed a visualization platform on the Bio-Analytic Resource for Plant Biology website (https://bar.utoronto.ca/efp_brachypodium_metabolites/cgi-bin/efpWeb.cgi), where perturbed metabolite classes can be readily visualized. Overall, our study illustrates how emerging chemoinformatic methods can be applied to reveal novel insights into the dynamic plant metabolome and stress adaptation.


Subject(s)
Brachypodium , Brachypodium/metabolism , Chromatography, Liquid , Information Theory , Copper/metabolism , Tandem Mass Spectrometry , Metabolomics/methods , Metabolome
16.
Plant J ; 116(3): 921-941, 2023 11.
Article in English | MEDLINE | ID: mdl-37609706

ABSTRACT

Schrenkiella parvula, a leading extremophyte model in Brassicaceae, can grow and complete its lifecycle under multiple environmental stresses, including high salinity. Yet, the key physiological and structural traits underlying its stress-adapted lifestyle are unknown along with trade-offs when surviving salt stress at the expense of growth and reproduction. We aimed to identify the influential adaptive trait responses that lead to stress-resilient and uncompromised growth across developmental stages when treated with salt at levels known to inhibit growth in Arabidopsis and most crops. Its resilient growth was promoted by traits that synergistically allowed primary root growth in seedlings, the expansion of xylem vessels across the root-shoot continuum, and a high capacity to maintain tissue water levels by developing thicker succulent leaves while enabling photosynthesis during salt stress. A successful transition from vegetative to reproductive phase was initiated by salt-induced early flowering, resulting in viable seeds. Self-fertilization in salt-induced early flowering was dependent upon filament elongation in flowers otherwise aborted in the absence of salt during comparable plant ages. The maintenance of leaf water status promoting growth, and early flowering to ensure reproductive success in a changing environment, were among the most influential traits that contributed to the extremophytic lifestyle of S. parvula.


Subject(s)
Arabidopsis , Brassicaceae , Brassicaceae/physiology , Arabidopsis/physiology , Flowers , Salt Stress , Stress, Physiological , Water
17.
Plant J ; 116(4): 1118-1135, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37248640

ABSTRACT

Field-grown crops rarely experience growth conditions in which yield can be maximized. Environmental stresses occur in combination, with advancements in crop tolerance further complicated by its polygenic nature. Strategic targeting of causal genes is required to meet future crop production needs. Here, we employed a systems biology approach in wheat (Triticum aestivum L.) to investigate physio-metabolic adjustments and transcriptome reprogramming involved in acclimations to heat, drought, salinity and all combinations therein. A significant shift in magnitude and complexity of plant response was evident across stress scenarios based on the agronomic losses, increased proline concentrations and 8.7-fold increase in unique differentially expressed transcripts (DETs) observed under the triple stress condition. Transcriptome data from all stress treatments were assembled into an online, open access eFP browser for visualizing gene expression during abiotic stress. Weighted gene co-expression network analysis revealed 152 hub genes of which 32% contained the ethylene-responsive element binding factor-associated amphiphilic repression (EAR) transcriptional repression motif. Cross-referencing against the 31 DETs common to all stress treatments isolated TaWRKY33 as a leading candidate for greater plant tolerance to combinatorial stresses. Integration of our findings with available literature on gene functional characterization allowed us to further suggest flexible gene combinations for future adaptive gene stacking in wheat. Our approach demonstrates the strength of robust multi-omics-based data resources for gene discovery in complex environmental conditions. Accessibility of such datasets will promote cross-validation of candidate genes across studies and aid in accelerating causal gene validation for crop resiliency.


Subject(s)
Multiomics , Triticum , Triticum/physiology , Stress, Physiological/genetics , Transcriptome/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
18.
BMC Genomics ; 25(1): 670, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965476

ABSTRACT

BACKGROUND: The TCP (teosinte branched1/cincinnata/proliferating cell factor) family plays a prominent role in plant development and stress responses. However, TCP family genes have thus far not been identified in castor bean, and therefore an understanding of the expression and functional aspects of castor bean TCP genes is lacking. To identify the potential biological functions of castor bean (RcTCP) TCP members, the composition of RcTCP family members, their basic physicochemical properties, subcellular localizations, interacting proteins, miRNA target sites, and gene expression patterns under stress were assessed. RESULTS: The presence of 20 RcTCP genes on the nine chromosomes of castor bean was identified, all of which possess TCP domains. Phylogenetic analysis indicated a close relationship between RcTCP genes and Arabidopsis AtTCP genes, suggesting potential functional similarity. Subcellular localization experiments confirmed that RcTC01/02/03/10/16/18 are all localized in the nucleus. Protein interaction analysis revealed that the interaction quantity of RcTCP03/06/11 proteins is the highest, indicating a cascade response in the functional genes. Furthermore, it was found that the promoter region of RcTCP genes contains a large number of stress-responsive elements and hormone-induced elements, indicating a potential link between RcTCP genes and stress response functions. qRT-PCR showed that all RcTCP genes exhibit a distinct tissue-specific expression pattern and their expression is induced by abiotic stress (including low temperature, abscisic acid, drought, and high salt). Among them, RcTCP01/03/04/08/09/10/14/15/18/19 genes may be excellent stress-responsive genes. CONCLUSION: We discovered that RcTCP genes play a crucial role in various activities, including growth and development, the stress response, and transcription. This study provides a basis for studying the function of RcTCP gene in castor.


Subject(s)
Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins , Ricinus communis , Stress, Physiological , Stress, Physiological/genetics , Ricinus communis/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic , Transcription Factors/genetics , Transcription Factors/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Profiling
19.
BMC Genomics ; 25(1): 532, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816796

ABSTRACT

Rye (Secale cereale L.) is one of the major cereal crop species in the Triticeae family and is known to be most tolerant to diverse abiotic stresses, such as cold, heat, osmotic, and salt stress. The EPIDERMAL PATTERNING FACTOR (EPF) and EPF-LIKE (EPFL) families of small secreted peptides act to regulate many aspects of plant growth and development; however, their functions are not widely characterized in rye. In this study, we identified 12 ScEPF/EPFL genes, which can be divided into six groups and are evenly distributed on six rye chromosomes. Further examination of the gene structure and protein conservation motifs of EPF/EPFL family members demonstrated the high conservation of the ScEPF/EPFL sequence. Interactions between ScEPF/EPFL proteins and promoters containing hormone- and stress-responsive cis-acting elements suggest that the regulation of ScEPF/EPFL expression is complex. Expression profiling analyses revealed that ScEPF/EPFL genes exhibited tissue-specific expression patterns. Notably, ScEPFL1,ScEPFL7, ScEPFL9, and ScEPFL10 displayed significantly higher expression levels in spikelets compared to other tissues. Moreover, fluorescence quantification experiments demonstrated that these genes exhibited distinct expression patterns in response to various stress conditions, suggesting that each gene plays a unique role in stress signaling pathways. Our research findings provide a solid basis for further investigation into the functions of ScEPF/EPFLs. Furthermore, these genes can serve as potential candidates for breeding stress-resistant rye varieties and improving production yields.


Subject(s)
Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins , Secale , Secale/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling , Chromosomes, Plant/genetics , Stress, Physiological/genetics , Genome, Plant , Promoter Regions, Genetic , Chromosome Mapping
20.
BMC Genomics ; 25(1): 468, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745142

ABSTRACT

BACKGROUND: Plant-specific TIFY proteins are widely found in terrestrial plants and play important roles in plant adversity responses. Although the genome of loquat at the chromosome level has been published, studies on the TIFY family in loquat are lacking. Therefore, the EjTIFY gene family was bioinformatically analyzed by constructing a phylogenetic tree, chromosomal localization, gene structure, and adversity expression profiling in this study. RESULTS: Twenty-six EjTIFY genes were identified and categorized into four subfamilies (ZML, JAZ, PPD, and TIFY) based on their structural domains. Twenty-four EjTIFY genes were irregularly distributed on 11 of the 17 chromosomes, and the remaining two genes were distributed in fragments. We identified 15 covariate TIFY gene pairs in the loquat genome, 13 of which were involved in large-scale interchromosomal segmental duplication events, and two of which were involved in tandem duplication events. Many abiotic stress cis-elements were widely present in the promoter region. Analysis of the Ka/Ks ratio showed that the paralogous homologs of the EjTIFY family were mainly subjected to purifying selection. Analysis of the RNA-seq data revealed that a total of five differentially expressed genes (DEGs) were expressed in the shoots under gibberellin treatment, whereas only one gene was significantly differentially expressed in the leaves; under both low-temperature and high-temperature stresses, there were significantly differentially expressed genes, and the EjJAZ15 gene was significantly upregulated under both low- and high-temperature stress. RNA-seq and qRT-PCR expression analysis under salt stress conditions revealed that EjJAZ2, EjJAZ4, and EjJAZ9 responded to salt stress in loquat plants, which promoted resistance to salt stress through the JA pathway. The response model of the TIFY genes in the jasmonic acid pathway under salt stress in loquat was systematically summarized. CONCLUSIONS: These results provide a theoretical basis for exploring the characteristics and functions of additional EjTIFY genes in the future. This study also provides a theoretical basis for further research on breeding for salt stress resistance in loquat. RT-qPCR analysis revealed that the expression of one of the three EjTIFY genes increased and the expression of two decreased under salt stress conditions, suggesting that EjTIFY exhibited different expression patterns under salt stress conditions.


Subject(s)
Eriobotrya , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins , Stress, Physiological , Eriobotrya/genetics , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling , Genome, Plant , Chromosomes, Plant/genetics
SELECTION OF CITATIONS
SEARCH DETAIL