Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791266

ABSTRACT

Sympathetic nervous system (SNS) hyperactivity is mediated by elevated catecholamine (CA) secretion from the adrenal medulla, as well as enhanced norepinephrine (NE) release from peripheral sympathetic nerve terminals. Adrenal CA production from chromaffin cells is tightly regulated by sympatho-inhibitory α2-adrenergic (auto)receptors (ARs), which inhibit both epinephrine (Epi) and NE secretion via coupling to Gi/o proteins. α2-AR function is, in turn, regulated by G protein-coupled receptor (GPCR)-kinases (GRKs), especially GRK2, which phosphorylate and desensitize them, i.e., uncouple them from G proteins. On the other hand, the short-chain free fatty acid (SCFA) receptor (FFAR)-3, also known as GPR41, promotes NE release from sympathetic neurons via the Gi/o-derived free Gßγ-activated phospholipase C (PLC)-ß/Ca2+ signaling pathway. However, whether it exerts a similar effect in adrenal chromaffin cells is not known at present. In the present study, we examined the interplay of the sympatho-inhibitory α2A-AR and the sympatho-stimulatory FFAR3 in the regulation of CA secretion from rat adrenal chromaffin (pheochromocytoma) PC12 cells. We show that FFAR3 promotes CA secretion, similarly to what GRK2-dependent α2A-AR desensitization does. In addition, FFAR3 activation enhances the effect of the physiologic stimulus (acetylcholine) on CA secretion. Importantly, GRK2 blockade to restore α2A-AR function or the ketone body beta-hydroxybutyrate (BHB or 3-hydroxybutyrate), via FFAR3 antagonism, partially suppress CA production, when applied individually. When combined, however, CA secretion from PC12 cells is profoundly suppressed. Finally, propionate-activated FFAR3 induces leptin and adiponectin secretion from PC12 cells, two important adipokines known to be involved in tissue inflammation, and this effect of FFAR3 is fully blocked by the ketone BHB. In conclusion, SCFAs can promote CA and adipokine secretion from adrenal chromaffin cells via FFAR3 activation, but the metabolite/ketone body BHB can effectively inhibit this action.


Subject(s)
Catecholamines , Receptors, Adrenergic, alpha-2 , Receptors, G-Protein-Coupled , Animals , PC12 Cells , Rats , Receptors, G-Protein-Coupled/metabolism , Catecholamines/metabolism , Receptors, Adrenergic, alpha-2/metabolism , Adipokines/metabolism , Chromaffin Cells/metabolism , Signal Transduction , Norepinephrine/metabolism , Norepinephrine/pharmacology
2.
Biochem Biophys Res Commun ; 645: 17-23, 2023 02 19.
Article in English | MEDLINE | ID: mdl-36657294

ABSTRACT

Adrenal medullary chromaffin (AMC) cells in the perinatal period and carotid body glomus cells after birth respond to hypoxia with catecholamine secretion. The hypoxia detection mechanism in such O2-sensitive cells is still not well defined. One hypothesis is that a decrease in cellular ATP may be involved in the hypoxia detection. This idea is based on ATP dependence of TASK channel activity that regulates the resting membrane potential and is suppressed by hypoxia in glomus cells. Mitochondrial ATPase inhibitor factor-1 (IF1), a physiological regulator of ATP synthase, helps prevent ATP hydrolysis under hypoxic conditions. In cells where IF1 expression is high, exposure to hypoxia is expected to have no effect on TASK channel activity. This possibility was electrophysiologically and immunocytochemically explored. Single channel recordings revealed that 36-pS TASK3-like channels contribute to the resting membrane potential in young rat adrenal cortical (AC) cells. TASK3-like channel activity in a cell-attached patch was not affected by bath application of mitochondrial inhibitors. Consistent with this finding, IF1-like immunoreactive material was well expressed in rat AC cells. In further support of our hypothesis, IF1-like immunoreactive material was well expressed in adult rat AMC cells that are known to be hypoxia-insensitive and minimally expressed in newborn AMC cells that are hypoxia-sensitive. These results provide evidence for the functional relevance of IF1 expression in excitability in O2-sensitive cells in response to mitochondrial inhibition.


Subject(s)
Chromaffin Cells , Pregnancy , Female , Rats , Animals , Cell Hypoxia , Chromaffin Cells/metabolism , Mitochondria/metabolism , Hypoxia/metabolism , Adenosine Triphosphate/metabolism
3.
J Neurochem ; 158(2): 153-168, 2021 07.
Article in English | MEDLINE | ID: mdl-33704788

ABSTRACT

γ-Aminobutyric acid (GABA) is thought to play a paracrine role in adrenal medullary chromaffin (AMC) cells. Comparative physiological and immunocytochemical approaches were used to address the issue of how the paracrine function of GABA in AMC cells is established. GABAA receptor Cl- channel activities in AMC cells of rats and mice, where corticosterone is the major glucocorticoid, were much smaller than those in AMC cells of guinea-pigs and cattle, where cortisol is the major. The extent of enhancement of GABAA receptor α3 subunit expression in rat pheochromocytoma (PC12) cells by cortisol was larger than that by corticosterone in parallel with their glucocorticoid activities. Thus, the species difference in GABAA receptor expression may be ascribed to a difference in glucocorticoid activity between corticosterone and cortisol. GABAA receptor Cl- channel activity in mouse AMC cells was enhanced by allopregnanolone, as noted with that in guinea-pig AMC cells, and the enzymes involved in allopregnanolone production were immunohistochemically detected in the zona fasciculata in both mice and guinea pigs. The expression of glutamic acid decarboxylase 67 (GAD67), one of the GABA synthesizing enzymes, increased after birth, whereas GABAA receptors already developed at birth. Stimulation of pituitary adenylate cyclase-activating polypeptide (PACAP) receptors, but not nicotinic or muscarinic receptors, in PC12 cells, resulted in an increase in GAD67 expression in a protein-kinase A-dependent manner. The results indicate that glucocorticoid and PACAP are mainly responsible for the expressions of GABAA receptors and GAD67 involved in GABA signaling in AMC cells, respectively.


Subject(s)
Adrenal Medulla/physiology , Chromaffin Cells/physiology , Paracrine Communication/physiology , gamma-Aminobutyric Acid/physiology , Adrenal Medulla/cytology , Animals , Cattle , Chloride Channels/metabolism , Cricetinae , Glutamate Decarboxylase/metabolism , Guinea Pigs , Hydrocortisone/metabolism , Immunohistochemistry , Male , Mesocricetus , Mice , Mice, Inbred C57BL , PC12 Cells , Pregnanolone/pharmacology , Rats , Receptors, GABA-A/metabolism , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/drug effects , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
4.
J Neurochem ; 154(2): 158-176, 2020 07.
Article in English | MEDLINE | ID: mdl-31967330

ABSTRACT

Adrenal chromaffin cells release neurotransmitters in response to stress and may be involved in conditions such as post-traumatic stress and anxiety disorders. Neurotransmitter release is triggered, in part, by activation of nicotinic acetylcholine receptors (nAChRs). However, despite decades of use as a model system for studying exocytosis, the nAChR subtypes involved have not been pharmacologically identified. Quantitative real-time PCR of rat adrenal medulla revealed an abundance of mRNAs for α3, α7, ß2, and ß4 subunits. Whole-cell patch-clamp electrophysiology of chromaffin cells and subtype-selective ligands were used to probe for nAChRs derived from the mRNAs found in adrenal medulla. A novel conopeptide antagonist, PeIA-5469, was created that is highly selective for α3ß2 over other nAChR subtypes heterologously expressed in Xenopus laevis oocytes. Experiments using PeIA-5469 and the α3ß4-selective α-conotoxin TxID revealed that rat adrenal medulla contain two populations of chromaffin cells that express either α3ß4 nAChRs alone or α3ß4 together with the α3ß2ß4 subtype. Conclusions were derived from observations that acetylcholine-gated currents in some cells were sensitive to inhibition by PeIA-5469 and TxID, while in other cells, currents were sensitive only to TxID. Expression of functional α7 nAChRs was determined using three α7-selective ligands: the agonist PNU282987, the positive allosteric modulator PNU120596, and the antagonist α-conotoxin [V11L,V16D]ArIB. The results of these studies identify for the first time the expression of α3ß2ß4 nAChRs as well as functional α7 nAChRs by rat adrenal chromaffin cells.


Subject(s)
Adrenal Medulla/metabolism , Chromaffin Cells/metabolism , Nicotinic Antagonists/pharmacology , Receptors, Nicotinic/biosynthesis , Animals , Cells, Cultured , Conotoxins/pharmacology , Male , Rats , Rats, Sprague-Dawley , Xenopus laevis , alpha7 Nicotinic Acetylcholine Receptor/antagonists & inhibitors , alpha7 Nicotinic Acetylcholine Receptor/biosynthesis
5.
Pharmacol Res ; 140: 56-66, 2019 02.
Article in English | MEDLINE | ID: mdl-29894763

ABSTRACT

Adrenal chromaffin cells comprise the neuroendocrine arm of the sympathetic nervous system and secrete catecholamines to coordinate the appropriate stress response. Deletion of the serotonin (5-HT) transporter (SERT) gene in mice (SERT-/- mice) or pharmacological block of SERT function in rodents and humans augments this sympathoadrenal stress response (epinephrine secretion). The prevailing assumption is that loss of CNS SERT alters central drive to the peripheral sympathetic nervous system. Adrenal chromaffin cells also prominently express SERT where it might coordinate accumulation of 5-HT for reuse in the autocrine control of stress-evoked catecholamine secretion. To help test this hypothesis, we have generated a novel mouse model with selective excision of SERT in the peripheral sympathetic nervous system (SERTΔTH), generated by crossing floxed SERT mice with tyrosine hydroxylase Cre driver mice. SERT expression, assessed by western blot, was abolished in the adrenal gland but not perturbed in the CNS of SERTΔTH mice. SERT-mediated [3H] 5-HT uptake was unaltered in midbrain, hindbrain, and spinal cord synaptosomes, confirming transporter function was intact in the CNS. Endogenous midbrain and whole blood 5-HT homeostasis was unperturbed in SERTΔTH mice, contrasting with the depleted 5-HT content in SERT-/- mice. Selective SERT excision reduced adrenal gland 5-HT content by ≈ 50% in SERTΔTH mice but had no effect on adrenal catecholamine content. This novel model confirms that SERT expressed in adrenal chromaffin cells is essential for maintaining wild-type levels of 5-HT and provides a powerful tool to help dissect the role of SERT in the sympathetic stress response.


Subject(s)
Adrenal Glands/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Animals , Antidepressive Agents , Female , Male , Mesencephalon/metabolism , Mice, Transgenic , Models, Animal , Rhombencephalon/metabolism , Serotonin/metabolism , Spinal Cord/metabolism , Tyrosine 3-Monooxygenase
6.
Pflugers Arch ; 470(1): 29-38, 2018 01.
Article in English | MEDLINE | ID: mdl-28762161

ABSTRACT

Adrenal medullary chromaffin cells in mammals are innervated by sympathetic preganglionic nerve fibers, as are sympathetic ganglion neurons. Acetylcholine in the ganglion neurons is well established as mediating fast and slow excitatory postsynaptic potentials through nicotinic and muscarinic acetylcholine receptors (AChRs), respectively. The role of muscarinic AChRs during neuronal transmission in chromaffin cells varies among different mammals. Furthermore, the ion channel mechanisms associated with the muscarinic AChR-mediated increase in excitability of chromaffin cells are complicated and different from the excitation of ganglion neurons, which has been ascribed to the inhibition of M-type K+ channels. In this review, we focus on muscarinic receptor-mediated excitation in rodent and guinea pig chromaffin cells, in particular, on the role of muscarinic receptors in neuronal transmission, the muscarinic receptor subtypes involved in excitation and secretion, and the muscarinic regulation of ion channels including TWIK-related acid-sensitive K+ channels. Finally, we discuss prospectively the future of muscarinic receptor research in adrenal chromaffin cells.


Subject(s)
Adrenal Medulla/cytology , Chromaffin Cells/metabolism , Potassium Channels/metabolism , Receptors, Muscarinic/metabolism , TRPC Cation Channels/metabolism , Action Potentials , Adrenal Medulla/metabolism , Animals , Chromaffin Cells/physiology , Humans , Receptors, Muscarinic/genetics
7.
J Neurochem ; 143(2): 171-182, 2017 10.
Article in English | MEDLINE | ID: mdl-28815595

ABSTRACT

Adrenal chromaffin cells (ACCs) are the neuroendocrine arm of the sympathetic nervous system and key mediators of the physiological stress response. Acetylcholine (ACh) released from preganglionic splanchnic nerves activates nicotinic acetylcholine receptors (nAChRs) on chromaffin cells causing membrane depolarization, opening voltage-gated Ca2+ channels (VGCC), and exocytosis of catecholamines and neuropeptides. The serotonin transporter is expressed in ACCs and interacts with 5-HT1A receptors to control secretion. In addition to blocking the serotonin transporter, some selective serotonin reuptake inhibitors (SSRIs) are also agonists at sigma-1 receptors which function as intracellular chaperone proteins and can translocate to the plasma membrane to modulate ion channels. Therefore, we investigated whether SSRIs and other sigma-1 receptor ligands can modulate stimulus-secretion coupling in ACCs. Escitalopram and fluvoxamine (100 nM to 1 µM) reversibly inhibited nAChR currents. The sigma-1 receptor antagonists NE-100 and BD-1047 also blocked nAChR currents (≈ 50% block at 100 nM) as did PRE-084, a sigma-1 receptor agonist. Block of nAChR currents by fluvoxamine and NE-100 was not additive suggesting a common site of action. VGCC currents were unaffected by the drugs. Neither the increase in cytosolic [Ca2+ ] nor the resulting catecholamine secretion evoked by direct membrane depolarization to bypass nAChRs was altered by fluvoxamine or NE-100. However, both Ca2+ entry and catecholamine secretion evoked by the cholinergic agonist carbachol were significantly reduced by fluvoxamine or NE-100. Together, our data suggest that sigma-1 receptors do not acutely regulate catecholamine secretion. Rather, SSRIs and other sigma-1 receptor ligands inhibit secretion evoked by cholinergic stimulation because of direct block of Ca2+ entry via nAChRs.


Subject(s)
Adrenal Medulla/metabolism , Catecholamines/metabolism , Chromaffin Cells/metabolism , Nicotinic Antagonists/pharmacology , Receptors, Nicotinic/physiology , Receptors, sigma/physiology , Adrenal Medulla/cytology , Adrenal Medulla/drug effects , Animals , Anisoles/pharmacology , Catecholamines/antagonists & inhibitors , Cattle , Cells, Cultured , Chromaffin Cells/drug effects , Dose-Response Relationship, Drug , Ligands , Male , Mice , Mice, Inbred C57BL , Propylamines/pharmacology , Receptors, sigma/agonists , Sigma-1 Receptor
8.
Pharmaceutics ; 16(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38931817

ABSTRACT

Glucagon-like peptide-1 (GLP-1) is a multifunctional incretin hormone with various physiological effects beyond its well-characterized effect of stimulating glucose-dependent insulin secretion in the pancreas. An emerging role for GLP-1 and its receptor, GLP-1R, in brain neuroprotection and in the suppression of inflammation, has been documented in recent years. GLP-1R is a G protein-coupled receptor (GPCR) that couples to Gs proteins that stimulate the production of the second messenger cyclic 3',5'-adenosine monophosphate (cAMP). cAMP, acting through its two main effectors, protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac), exerts several anti-inflammatory (and some pro-inflammatory) effects in cells, depending on the cell type. The present review discusses the cAMP-dependent molecular signaling pathways elicited by the GLP-1R in cardiomyocytes, cardiac fibroblasts, central neurons, and even in adrenal chromaffin cells, with a particular focus on those that lead to anti-inflammatory effects by the GLP-1R. Fully elucidating the role cAMP plays in GLP-1R's anti-inflammatory properties can lead to new and more precise targets for drug development and/or provide the foundation for novel therapeutic combinations of the GLP-1R agonist medications currently on the market with other classes of drugs for additive anti-inflammatory effect.

9.
Elife ; 112022 Oct 10.
Article in English | MEDLINE | ID: mdl-36214779

ABSTRACT

Munc13 proteins are priming factors for SNARE-dependent exocytosis, which are activated by diacylglycerol (DAG)-binding to their C1-domain. Several Munc13 paralogs exist, but their differential roles are not well understood. We studied the interdependence of phorbolesters (DAG mimics) with Munc13-1 and ubMunc13-2 in mouse adrenal chromaffin cells. Although expression of either Munc13-1 or ubMunc13-2 stimulated secretion, phorbolester was only stimulatory for secretion when ubMunc13-2 expression dominated, but inhibitory when Munc13-1 dominated. Accordingly, phorbolester stimulated secretion in wildtype cells, or cells overexpressing ubMunc13-2, but inhibited secretion in Munc13-2/Unc13b knockout (KO) cells or in cells overexpressing Munc13-1. Phorbolester was more stimulatory in the Munc13-1/Unc13a KO than in WT littermates, showing that endogenous Munc13-1 limits the effects of phorbolester. Imaging showed that ubMunc13-2 traffics to the plasma membrane with a time-course matching Ca2+-dependent secretion, and trafficking is independent of Synaptotagmin-7 (Syt7). However, in the absence of Syt7, phorbolester became inhibitory for both Munc13-1 and ubMunc13-2-driven secretion, indicating that stimulatory phorbolester x Munc13-2 interaction depends on functional pairing with Syt7. Overall, DAG/phorbolester, ubMunc13-2 and Syt7 form a stimulatory triad for dense-core vesicle priming.


Subject(s)
Diglycerides , Phorbol Esters , Animals , Mice , Dense Core Vesicles , Exocytosis , SNARE Proteins/metabolism , Synaptotagmins
10.
Elife ; 62017 10 25.
Article in English | MEDLINE | ID: mdl-29068313

ABSTRACT

Phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] is essential for exocytosis. Classical ways of manipulating PI(4,5)P2 levels are slower than its metabolism, making it difficult to distinguish effects of PI(4,5)P2 from those of its metabolites. We developed a membrane-permeant, photoactivatable PI(4,5)P2, which is loaded into cells in an inactive form and activated by light, allowing sub-second increases in PI(4,5)P2 levels. By combining this compound with electrophysiological measurements in mouse adrenal chromaffin cells, we show that PI(4,5)P2 uncaging potentiates exocytosis and identify synaptotagmin-1 (the Ca2+ sensor for exocytosis) and Munc13-2 (a vesicle priming protein) as the relevant effector proteins. PI(4,5)P2 activation of exocytosis did not depend on the PI(4,5)P2-binding CAPS-proteins, suggesting that PI(4,5)P2 uncaging may bypass CAPS-function. Finally, PI(4,5)P2 uncaging triggered the rapid fusion of a subset of readily-releasable vesicles, revealing a rapid role of PI(4,5)P2 in fusion triggering. Thus, optical uncaging of signaling lipids can uncover their rapid effects on cellular processes and identify lipid effectors.


Subject(s)
Exocytosis , Phosphatidylinositol 4,5-Diphosphate/metabolism , Animals , Carrier Proteins/metabolism , Cell Line , Chromaffin Cells/metabolism , Cytological Techniques/methods , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Mice , Nerve Tissue Proteins/metabolism , Synaptotagmin I/metabolism
11.
ACS Chem Neurosci ; 8(5): 943-954, 2017 05 17.
Article in English | MEDLINE | ID: mdl-28406285

ABSTRACT

Serotonin (5-HT) is an important neurotransmitter in the central nervous system where it modulates circuits involved in mood, cognition, movement, arousal, and autonomic function. The 5-HT transporter (SERT; SLC6A4) is a key regulator of 5-HT signaling, and genetic variations in SERT are associated with various disorders including depression, anxiety, and autism. This review focuses on the role of SERT in the sympathetic nervous system. Autonomic/sympathetic dysfunction is evident in patients with depression, anxiety, and other diseases linked to serotonergic signaling. Experimentally, loss of SERT function (SERT knockout mice or chronic pharmacological block) has been reported to augment the sympathetic stress response. Alterations to serotonergic signaling in the CNS and thus central drive to the peripheral sympathetic nervous system are presumed to underlie this augmentation. Although less widely recognized, SERT is robustly expressed in chromaffin cells of the adrenal medulla, the neuroendocrine arm of the sympathetic nervous system. Adrenal chromaffin cells do not synthesize 5-HT but accumulate small amounts by SERT-mediated uptake. Recent evidence demonstrated that 5-HT1A receptors inhibit catecholamine secretion from adrenal chromaffin cells via an atypical mechanism that does not involve modulation of cellular excitability or voltage-gated Ca2+ channels. This raises the possibility that the adrenal medulla is a previously unrecognized peripheral hub for serotonergic control of the sympathetic stress response. As a framework for future investigation, a model is proposed in which stress-evoked adrenal catecholamine secretion is fine-tuned by SERT-modulated autocrine 5-HT signaling.


Subject(s)
Adrenal Medulla/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Serotonin/metabolism , Stress, Physiological/physiology , Sympathetic Nervous System/metabolism , Animals , Arousal/physiology , Chromaffin Cells/metabolism , Humans , Synaptic Transmission/physiology
12.
Front Cell Neurosci ; 10: 100, 2016.
Article in English | MEDLINE | ID: mdl-27147972

ABSTRACT

Gamma-aminobutyric acid (GABA) is produced not only in the brain, but also in endocrine cells by the two isoforms of glutamic acid decarboxylase (GAD), GAD65 and GAD67. In rat adrenal medullary chromaffin cells only GAD67 is expressed, and GABA is stored in large dense core vesicles (LDCVs), but not synaptic-like microvesicles (SLMVs). The α3ß2/3γ2 complex represents the majority of GABAA receptors expressed in rat and guinea pig chromaffin cells, whereas PC12 cells, an immortalized rat chromaffin cell line, express the α1 subunit as well as the α3. The expression of α3, but not α1, in PC12 cells is enhanced by glucocorticoid activity, which may be mediated by both the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR). GABA has two actions mediated by GABAA receptors in chromaffin cells: it induces catecholamine secretion by itself and produces an inhibition of synaptically evoked secretion by a shunt effect. Allopregnanolone, a neuroactive steroid which is secreted from the adrenal cortex, produces a marked facilitation of GABAA receptor channel activity. Since there are no GABAergic nerve fibers in the adrenal medulla, GABA may function as a para/autocrine factor in the chromaffin cells. This function of GABA may be facilitated by expression of the immature isoforms of GAD and GABAA receptors and the lack of expression of plasma membrane GABA transporters (GATs). In this review, we will consider how the para/autocrine function of GABA is achieved, focusing on the structural and molecular mechanisms for GABA signaling.

13.
Neuropharmacology ; 110(Pt A): 438-448, 2016 11.
Article in English | MEDLINE | ID: mdl-27544824

ABSTRACT

Adrenal chromaffin cells (ACCs), the neuroendocrine arm of the sympathetic nervous system, secrete catecholamines to mediate the physiological response to stress. Although ACCs do not synthesize 5-HT, they express the serotonin transporter (SERT). Genetic variations in SERT are linked to several CNS disorders but the role(s) of SERT/5-HT in ACCs has remained unclear. Adrenal glands from wild-type mice contained 5-HT at ≈ 750 fold lower abundance than adrenaline, and in SERT(-/-) mice this was reduced by ≈80% with no change in catecholamines. Carbon fibre amperometry showed that SERT modulated the ability of 5-HT1A receptors to inhibit exocytosis. 5-HT reduced the number of amperometric spikes (vesicular fusion events) evoked by KCl in SERT(-/-) cells and wild-type cells treated with escitalopram, a SERT antagonist. The 5-HT1A receptor antagonist WAY100635 blocked the inhibition by 5-HT which was mimicked by the 5-HT1A agonist 8-OH-DPAT but not the 5-HT1B agonist CP93129. There was no effect on voltage-gated Ca(2+) channels, K(+) channels, or intracellular [Ca(2+)] handling, showing the 5-HT receptors recruit an atypical inhibitory mechanism. Spike charge and kinetics were not altered by 5-HT receptors but were reduced in SERT(-/-) cells compared to wild-type cells. Our data reveal a novel role for SERT and suggest that adrenal chromaffin cells might be a previously unrecognized hub for serotonergic control of the sympathetic stress response.


Subject(s)
Adrenal Glands/metabolism , Chromaffin Cells/metabolism , Receptors, Serotonin/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Adrenal Glands/drug effects , Animals , Calcium/metabolism , Calcium Channels, N-Type/metabolism , Cations, Divalent/metabolism , Cells, Cultured , Chromaffin Cells/drug effects , Exocytosis/drug effects , Exocytosis/physiology , Male , Membrane Potentials/drug effects , Membrane Potentials/physiology , Mice, Inbred C57BL , Mice, Knockout , Potassium Channels, Voltage-Gated/metabolism , Serotonin/metabolism , Serotonin Agents/pharmacology , Serotonin Plasma Membrane Transport Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL