Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Curr Opin Struct Biol ; 77: 102467, 2022 12.
Article in English | MEDLINE | ID: mdl-36306674

ABSTRACT

Infections caused by enveloped viruses require fusion with cellular membranes for viral genome entry. Viral entry occurs following an interaction of viral and cellular membranes allowing the formation of fusion pores, by which the virus accesses the cytoplasm. Here, we focus on interferon-induced transmembrane protein 3 (IFITM3) and its antiviral activity. IFITM3 is predicted to block or stall viral fusion at an intermediate state, causing viral propagation to fail. After introducing IFITM3, we describe the generalized lipid membrane fusion pathway and how it can be stalled, particularly with respect to IFITM3, and current questions regarding IFITM3's topology, with specific emphasis on IFITM3's amphipathic α-helix (AAH) 59V-68M, which is necessary for the antiviral activity. We report new hydrophobicity and hydrophobic moment calculations for this peptide and a variety of active site peptides from known membrane-remodeling proteins. Finally, we discuss the effects of posttranslational modifications and localization, how IFITM3's AAH may block viral fusion, and possible ramifications of membrane composition.


Subject(s)
Antiviral Agents , RNA-Binding Proteins , Antiviral Agents/pharmacology , RNA-Binding Proteins/metabolism , Membrane Proteins/metabolism , Virus Internalization , Interferons/metabolism
2.
Viruses ; 12(12)2020 12 18.
Article in English | MEDLINE | ID: mdl-33353144

ABSTRACT

Positive-strand RNA viruses universally remodel host intracellular membranes to form membrane-bound viral replication complexes, where viral offspring RNAs are synthesized. In the majority of cases, viral replication proteins are targeted to and play critical roles in the modulation of the designated organelle membranes. Many viral replication proteins do not have transmembrane domains, but contain single or multiple amphipathic alpha-helices. It has been conventionally recognized that these helices serve as an anchor for viral replication protein to be associated with membranes. We report here that a peptide representing the amphipathic α-helix at the N-terminus of the poliovirus 2C protein not only binds to liposomes, but also remodels spherical liposomes into tubules. The membrane remodeling ability of this amphipathic alpha-helix is similar to that recognized in other amphipathic alpha-helices from cellular proteins involved in membrane remodeling, such as BAR domain proteins. Mutations affecting the hydrophobic face of the amphipathic alpha-helix severely compromised membrane remodeling of vesicles with physiologically relevant phospholipid composition. These mutations also affected the ability of poliovirus to form plaques indicative of reduced viral replication, further underscoring the importance of membrane remodeling by the amphipathic alpha-helix in possible relation to the formation of viral replication complexes.


Subject(s)
Carrier Proteins/chemistry , Protein Conformation, alpha-Helical , Viral Nonstructural Proteins/chemistry , Amino Acid Sequence , Carrier Proteins/metabolism , Humans , Multiprotein Complexes , Poliomyelitis/virology , Poliovirus/physiology , Protein Binding , Protein Structure, Secondary , Structure-Activity Relationship , Viral Nonstructural Proteins/metabolism , Virus Replication
3.
Peptides ; 103: 72-83, 2018 05.
Article in English | MEDLINE | ID: mdl-29596881

ABSTRACT

The peptides ocellatin-LB1, -LB2 and -F1 have previously been isolated from anurans of the Leptodactylus genus and the sequences are identical from residue 1-22, which correspond to ocellatin-LB1 sequence (GVVDILKGAAKDIAGHLASKVM-NH2), whereas ocellatin-LB2 carries an extra N and ocellatin-F1 extra NKL residues at their C-termini. These peptides showed different spectra of activities and biophysical investigations indicated a direct correlation between membrane-disruptive properties and antimicrobial activities, i.e. ocellatin-F1 > ocellatin-LB1 > ocellatin-LB2. To better characterize their membrane interactions, we report here the detailed three-dimensional NMR structures of these peptides in TFE-d2:H2O (60:40) and in the presence of zwitterionic DPC-d38 and anionic SDS-d25 micellar solutions. Although the three peptides showed significant helical contents in the three mimetic environments, structural differences were noticed. When the structures of the three peptides in the presence of DPC-d38 micelles are compared to each other, a more pronounced curvature is observed for ocellatin-F1 and the bent helix, with the concave face composed mostly of hydrophobic residues, is consistent with the micellar curvature and the amphipathic nature of the molecule. Interestingly, an almost linear helical segment was observed for ocellatin-F1 in the presence of SDS-d25 micelles and the conformational differences in the two micellar environments are possibly related to the presence of the extra Lys residue near the peptide C-terminus, which increases the affinity of ocellatin-F1 to anionic membranes in comparison with ocellatin-LB1 and -LB2, as proved by isothermal titration calorimetry. To our knowledge, this work reports for the first time the three-dimensional structures of ocellatin peptides.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Peptides/chemistry , Peptides/isolation & purification , Animals , Anura
4.
J Mass Spectrom ; 50(1): 117-26, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25601683

ABSTRACT

Huntington's disease is a genetic neurodegenerative disorder caused by an expansion in a polyglutamine domain near the N-terminus of the huntingtin (htt) protein that results in the formation of protein aggregates. Here, htt aggregate structure has been examined using hydrogen-deuterium exchange techniques coupled with tandem mass spectrometry. The focus of the study is on the 17-residue N-terminal flanking region of the peptide that has been shown to alter htt aggregation kinetics and morphology. A top-down sequencing strategy employing electron transfer dissociation is utilized to determine the location of accessible and protected hydrogens. In these experiments, peptides aggregate in a deuterium-rich solvent at neutral pH and are subsequently subjected to deuterium-hydrogen back-exchange followed by rapid quenching, disaggregation, and tandem mass spectrometry analysis. Electrospray ionization of the peptide solution produces the [M + 5H](5+) to [M + 10H](10+) charge states and reveals the presence of multiple peptide sequences differing by single glutamine residues. The [M + 7H](7+) to [M + 9](9+) charge states corresponding to the full peptide are used in the electron transfer dissociation analyses. Evidence for protected residues is observed in the 17-residue N-terminal tract and specifically points to lysine residues as potentially playing a significant role in htt aggregation.


Subject(s)
Deuterium Exchange Measurement/methods , Lysine/chemistry , Nerve Tissue Proteins/chemistry , Huntingtin Protein , Hydrogen-Ion Concentration , Microscopy, Atomic Force , Protein Structure, Secondary , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL