Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
J Biol Phys ; 46(1): 67-94, 2020 03.
Article in English | MEDLINE | ID: mdl-32185594

ABSTRACT

In this study, we model avascular tumour growth in epithelial tissue. This can help us to understand that how an avascular tumour interacts with its microenvironment and what type of physical changes can be observed within the tumour spheroid before angiogenesis. This understanding is likely to assist in the development of better diagnostics, improved therapies, and prognostics. In biological systems, most of the diffusive processes are through cellular membranes which are porous in nature. Due to its porous nature, diffusion in biological systems are heterogeneous. The fractional diffusion equation is well suited to model heterogeneous biological systems, though most of the early studies did not use this fact. They described tumour growth with simple diffusion-based model. We have developed a spherical model based on simple diffusion initially, and then the model is upgraded with fractional diffusion equations to express the anomalous nature of biological system. In this study, two types of fractional models are developed: one of fixed order and the other of variable order. The memory formalism technique is also included in these anomalous diffusion models. These three models are investigated from phenomenological point view by measuring some parameters for characterizing avascular tumour growth over time. Tumour microenvironment is very complex in nature due to several concurrent molecular mechanisms. Diffusion with memory (fixed as well as variable) formation may be an oversimplified technique, and does not reflect the detailed view of the tumour microenvironment. However, it is found that all the models offer realistic and insightful information of the tumour microenvironment at the macroscopic level, and approximate well the physical phenomena. Also, it is observed that the anomalous diffusion based models offer a closer description to clinical facts than the simple model. As the simulation parameters get modified due to different biochemical and biophysical processes, the robustness of the model is determined. It is found that the anomalous diffusion models are moderately sensitive to the parameters.


Subject(s)
Models, Biological , Neoplasms/pathology , Cell Proliferation , Diffusion
2.
Biosystems ; 206: 104450, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34098060

ABSTRACT

In this paper, we have developed a multi-scale, lattice-free, agent based model of avascular tumour growth in epithelial tissue. The model integrates different events to identify the underlying diversity within intracellular, cellular, and extracellular layer dynamics. The model considers every cell as an agent. A cellular agent may proliferate, spawns two identical daughter agents, or it may be transformed into other phenotypes during its life time depending on its internal proteins' activity as well as its external microenvironment. In this context, a simplified age-structured cell cycle model is adopted from the existing literature. The model considers that the intracellular events are regulated by p27 gene expression. In this model, p27 protein controls the overall tumour growth dynamics. Moreover, p27 is controlled by the external oxygen and nutrients that are modelled with the reaction-diffusion equations. The model also considers several biophysical forces which directly effect on the tumour growth dynamics. This modelling framework offers biologically realistic outcomes and also covers important criteria of the hallmarks of cancer which include oxygen and nutrient consumptions, micro-environmental heterogeneity, tumour cell proliferation by avoiding growth suppressor signals, replication of tumour cells at an abnormally faster rate, and resistance of apoptosis. The avascular tumour growth model is validated with immunohistochemistry and histopathology data. The outcome of the proposed model is very close to the range of the patient data, which concludes that the model is capable enough to mimic these complex biophysical phenomena.


Subject(s)
Cell Proliferation/physiology , Computer Simulation , Models, Biological , Neoplasms/pathology , Tumor Microenvironment/physiology , Humans , Neoplasms/metabolism
3.
Math Med Biol ; 36(2): 241-267, 2019 06 13.
Article in English | MEDLINE | ID: mdl-29947770

ABSTRACT

Tumorigenesis has been described as a multistep process, where each step is associated with a genetic alteration, in the direction to progressively transform a normal cell and its descendants into a malignant tumour. Into this work, we propose a mathematical model for cancer onset and development, considering three populations: normal, premalignant and cancer cells. The model takes into account three hallmarks of cancer: self-sufficiency on growth signals, insensibility to anti-growth signals and evading apoptosis. By using a nonlinear expression to describe the mutation from premalignant to cancer cells, the model includes genetic instability as an enabling characteristic of tumour progression. Mathematical analysis was performed in detail. Results indicate that apoptosis and tissue repair system are the first barriers against tumour progression. One of these mechanisms must be corrupted for cancer to develop from a single mutant cell. The results also show that the presence of aggressive cancer cells opens way to survival of less adapted premalignant cells. Numerical simulations were performed with parameter values based on experimental data of breast cancer, and the necessary time taken for cancer to reach a detectable size from a single mutant cell was estimated with respect to some parameters. We find that the rates of apoptosis and mutations have a large influence on the pace of tumour progression and on the time it takes to become clinically detectable.


Subject(s)
Carcinogenesis , Genomic Instability , Models, Theoretical , Mutation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL