Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.667
Filter
1.
Annu Rev Pharmacol Toxicol ; 63: 517-540, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36202091

ABSTRACT

Early human life is considered a critical window of susceptibility to external exposures. Infants are exposed to a multitude of environmental factors, collectively referred to as the exposome. The chemical exposome can be summarized as the sum of all xenobiotics that humans are exposed to throughout a lifetime. We review different exposure classes and routes that impact fetal and infant metabolism and the potential toxicological role of mixture effects. We also discuss the progress in human biomonitoring and present possiblemodels for studying maternal-fetal transfer. Data gaps on prenatal and infant exposure to xenobiotic mixtures are identified and include natural biotoxins, in addition to commonly reported synthetic toxicants, to obtain a more holistic assessment of the chemical exposome. We highlight the lack of large-scale studies covering a broad range of xenobiotics. Several recommendations to advance our understanding of the early-life chemical exposome and the subsequent impact on health outcomes are proposed.


Subject(s)
Environmental Exposure , Exposome , Pregnancy , Infant , Female , Humans , Child, Preschool , Environmental Exposure/adverse effects , Xenobiotics/toxicity , Fetal Development
2.
Proc Natl Acad Sci U S A ; 120(20): e2211288120, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37155860

ABSTRACT

Effective conservation of ecological communities requires accurate and up-to-date information about whether species are persisting or declining to extinction. The persistence of an ecological community is supported by its underlying network of species interactions. While the persistence of the network supporting the whole community is the most relevant scale for conservation, in practice, only small subsets of these networks can be monitored. There is therefore an urgent need to establish links between the small snapshots of data conservationists can collect, and the "big picture" conclusions about ecosystem health demanded by policymakers, scientists, and societies. Here, we show that the persistence of small subnetworks (motifs) in isolation-that is, their persistence when considered separately from the larger network of which they are a part-is a reliable probabilistic indicator of the persistence of the network as a whole. Our methods show that it is easier to detect if an ecological community is not persistent than if it is persistent, allowing for rapid detection of extinction risk in endangered systems. Our results also justify the common practice of predicting ecological persistence from incomplete surveys by simulating the population dynamics of sampled subnetworks. Empirically, we show that our theoretical predictions are supported by data on invaded networks in restored and unrestored areas, even in the presence of environmental variability. Our work suggests that coordinated action to aggregate information from incomplete sampling can provide a means to rapidly assess the persistence of entire ecological networks and the expected success of restoration strategies.


Subject(s)
Biota , Ecosystem , Population Dynamics
3.
Proc Natl Acad Sci U S A ; 119(15): e2201937119, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35377784

ABSTRACT

The awareness of individuals' biological status is critical for creating interactive and adaptive environments that can actively assist the users to achieve optimal outcomes. Accordingly, specialized human­machine interfaces­equipped with bioperception and interpretation capabilities­are required. To this end, we devised a multimodal cryptographic bio-human­machine interface (CB-HMI), which seamlessly translates the user's touch-based entries into encrypted biochemical, biophysical, and biometric indices. As its central component, the CB-HMI features thin hydrogel-coated chemical sensors and inference algorithms to noninvasively and inconspicuously acquire biochemical indices such as circulating molecules that partition onto the skin (here, ethanol and acetaminophen). Additionally, the CB-HMI hosts physical sensors and associated algorithms to simultaneously acquire the user's heart rate, blood oxygen level, and fingerprint minutiae pattern. Supported by human subject studies, we demonstrated the CB-HMI's capability in terms of acquiring physiologically relevant readouts of target bioindices, as well as user-identifying and biometrically encrypting/decrypting these indices in situ (leveraging the fingerprint feature). By upgrading the common surrounding objects with the CB-HMI, we created interactive solutions for driving safety and medication use. Specifically, we demonstrated a vehicle-activation system and a medication-dispensing system, where the integrated CB-HMI uniquely enabled user bioauthentication (on the basis of the user's biological state and identity) prior to rendering the intended services. Harnessing the levels of bioperception achieved by the CB-HMI and other intelligent HMIs, we can equip our surroundings with a comprehensive and deep awareness of individuals' psychophysiological state and needs.


Subject(s)
Automobile Driving , Touch Perception , User-Computer Interface , Humans , Touch
4.
BMC Genomics ; 25(1): 842, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39251911

ABSTRACT

BACKGROUND: DNA metabarcoding applies high-throughput sequencing approaches to generate numerous DNA barcodes from mixed sample pools for mass species identification and community characterisation. To date, however, most metabarcoding studies employ second-generation sequencing platforms like Illumina, which are limited by short read lengths and longer turnaround times. While third-generation platforms such as the MinION (Oxford Nanopore Technologies) can sequence longer reads and even in real-time, application of these platforms for metabarcoding has remained limited possibly due to the relatively high read error rates as well as the paucity of specialised software for processing such reads. RESULTS: We show that this is no longer the case by performing nanopore-based, cytochrome c oxidase subunit I (COI) metabarcoding on 34 zooplankton bulk samples, and benchmarking the results against conventional Illumina MiSeq sequencing. Nanopore R10.3 sequencing chemistry and super accurate (SUP) basecalling model reduced raw read error rates to ~ 4%, and consensus calling with amplicon_sorter (without further error correction) generated metabarcodes that were ≤ 1% erroneous. Although Illumina recovered a higher number of molecular operational taxonomic units (MOTUs) than nanopore sequencing (589 vs. 471), we found no significant differences in the zooplankton communities inferred between the sequencing platforms. Importantly, 406 of 444 (91.4%) shared MOTUs between Illumina and nanopore were also found to be free of indel errors, and 85% of the zooplankton richness could be recovered after just 12-15 h of sequencing. CONCLUSION: Our results demonstrate that nanopore sequencing can generate metabarcodes with Illumina-like accuracy, and we are the first study to show that nanopore metabarcodes are almost always indel-free. We also show that nanopore metabarcoding is viable for characterising species-rich communities rapidly, and that the same ecological conclusions can be obtained regardless of the sequencing platform used. Collectively, our study inspires confidence in nanopore sequencing and paves the way for greater utilisation of nanopore technology in various metabarcoding applications.


Subject(s)
DNA Barcoding, Taxonomic , High-Throughput Nucleotide Sequencing , Nanopores , DNA Barcoding, Taxonomic/methods , Animals , High-Throughput Nucleotide Sequencing/methods , INDEL Mutation , Nanopore Sequencing/methods , Electron Transport Complex IV/genetics , Zooplankton/genetics , Zooplankton/classification , Sequence Analysis, DNA/methods
5.
Proc Biol Sci ; 291(2030): 20241595, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39226929

ABSTRACT

Ecoacoustics-or acoustic ecology-aids in monitoring elusive and protected species in several ecological contexts. For example, passive acoustic monitoring (PAM), which involves autonomous acoustic sensors, is widely used to detect various taxonomic groups in terrestrial and aquatic ecosystems, from birds and bats to fish and cetaceans. Here, we illustrate the potential of ecoacoustics to monitor soil biodiversity (specifically fauna)-a crucial endeavour given that 59% of species live in soil yet 75% of soils are affected by degradation. We describe the sources of sound in the soil (e.g. biological, geological and anthropogenic) and the ability of acoustic technology to detect and differentiate between these sounds, highlighting opportunities and current gaps in knowledge. We also propose a roadmap for the future development of optimized hardware, analytical pipelines and experimental approaches. Soil ecoacoustics is an emerging field with considerable potential to improve soil biodiversity monitoring and 'soil health' diagnostics. Indeed, early studies suggest soil ecoacoustics can be successfully applied in various ecosystems (e.g. grasslands, temperate, tropical and arid forests) and land uses (e.g. agriculture, viticulture, natural and restored ecosystems). Given the low cost, minimal intrusiveness, and effectiveness in supporting soil biodiversity assessments and biosecurity risks, we advocate for the advancement of soil ecoacoustics for future land management applications.


Subject(s)
Acoustics , Biodiversity , Soil , Soil/chemistry , Animals , Environmental Monitoring/methods , Ecosystem , Conservation of Natural Resources/methods
6.
Mass Spectrom Rev ; 42(6): 2466-2486, 2023.
Article in English | MEDLINE | ID: mdl-36062854

ABSTRACT

Compared with the rapid advances in genomics leading to broad understanding of human disease, the linkage between chemical exposome and diseases is still under investigation. High-resolution mass spectrometry (HRMS) is expected to accelerate the process via relatively accurate and precise biomonitoring of human exposome. This review covers recent advancements in biomonitoring of exposed environmental chemicals (chemical exposome) using HRMS described in the 124 articles that resulted from a systematic literature search on Medline and Web of Science databases. The analytical strategic aspects, including the selection of specimens, sample preparation, instrumentation, untargeted versus targeted analysis, and workflows for MS-based biomonitoring to explore the environmental chemical space of human exposome, are deliberated. Applications of HRMS in human exposome investigation are presented by biomonitoring (1) exposed chemical compounds and their biotransformation products; (2) DNA/protein adducts; and (3) endogenous compound perturbations. Challenges and future perspectives are also discussed.

7.
Mol Ecol ; 33(11): e17355, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38624076

ABSTRACT

Molecular tools are an indispensable part of ecology and biodiversity sciences and implemented across all biomes. About a decade ago, the use and implementation of environmental DNA (eDNA) to detect biodiversity signals extracted from environmental samples opened new avenues of research. Initial eDNA research focused on understanding population dynamics of target species. Its scope thereafter broadened, uncovering previously unrecorded biodiversity via metabarcoding in both well-studied and understudied ecosystems across all taxonomic groups. The application of eDNA rapidly became an established part of biodiversity research, and a research field by its own. Here, we revisit key expectations made in a land-mark special issue on eDNA in Molecular Ecology in 2012 to frame the development in six key areas: (1) sample collection, (2) primer development, (3) biomonitoring, (4) quantification, (5) behaviour of DNA in the environment and (6) reference database development. We pinpoint the success of eDNA, yet also discuss shortfalls and expectations not met, highlighting areas of research priority and identify the unexpected developments. In parallel, our retrospective couples a screening of the peer-reviewed literature with a survey of eDNA users including academics, end-users and commercial providers, in which we address the priority areas to focus research efforts to advance the field of eDNA. With the rapid and ever-increasing pace of new technical advances, the future of eDNA looks bright, yet successful applications and best practices must become more interdisciplinary to reach its full potential. Our retrospect gives the tools and expectations towards concretely moving the field forward.


Subject(s)
Biodiversity , DNA, Environmental , DNA Barcoding, Taxonomic/history , DNA Barcoding, Taxonomic/methods , DNA, Environmental/genetics , Ecology , Ecosystem , Environmental Monitoring/history , Environmental Monitoring/methods , History, 21st Century
8.
Glob Chang Biol ; 30(1): e17045, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38014477

ABSTRACT

Understanding the drivers and consequences of global environmental change is crucial to inform predictions of effects on ecosystems. We used the mammal community of Bialowieza Forest, the last lowland near-primeval forest in temperate Europe, as a sentinel of global change. We analyzed changes in stable carbon (δ13 C) and nitrogen (δ15 N) isotope values of hair in 687 specimens from 50 mammal species across seven decades (1946-2011). We classified mammals into four taxonomic-dietary groups (herbivores, carnivores, insectivores, and bats). We found a significant negative trend in hair δ15 N for the mammal community, particularly strong for herbivores. This trend is consistent with temporal patterns in nitrogen deposition from (15 N depleted) industrial fertilizers and fossil fuel emissions. It is also in line with global-scale declines in δ15 N reported in forests and other unfertilized, non-urban terrestrial ecosystems and with local decreases in N foliar concentrations. The global depletion of 13 C content in atmospheric CO2 due to fossil fuel burning (Suess effect) was detected in all groups. After correcting for this effect, the hair δ13 C trend became non-significant for both community and groups, except for bats, which showed a strong decline in δ13 C. This could be related to an increase in the relative abundance of freshwater insects taken by bats or increased use of methane-derived carbon in food webs used by bats. This work is the first broad-scale and long-term mammal isotope ecology study in a near-primeval forest in temperate Europe. Mammal communities from natural forests represent a unique benchmark in global change research; investigating their isotopic temporal variation can help identify patterns and early detections of ecosystem changes and provide more comprehensive and integrative assessments than single species approaches.


Subject(s)
Chiroptera , Ecosystem , Animals , Forests , Nitrogen/analysis , Carbon , Mammals , Isotopes , Fossil Fuels
9.
BMC Med Res Methodol ; 24(1): 53, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418949

ABSTRACT

BACKGROUND: Public health initiatives, including human biomonitoring, have been impacted by unique challenges since the onset of the COVID-19 pandemic, compounding a decades-long trend of declining public participation. To combat low public participation rates, public health professionals often employ extensive engagement approaches including in-person interactions related to enrollment and sampling, success of which is an essential component of a statistically defensible study. The onset of the COVID-19 pandemic challenged public health programs to diversify engagement and sampling approaches, limiting direct interactions for the health and safety of the population. This study explores biomonitoring recruitment strategies through non-contact mechanisms and evaluate the application feasibility for population-based studies. METHODS: The Iowa Biomonitoring Program at the State Hygienic Laboratory developed a human biomonitoring study that utilized a multifaceted, distance-based approach. Traditional techniques, such as mailed recruitment invitations and phone-based discussions, were coupled with internet-based surveys and self-collected, shipped urine and water samples. Participation rates were evaluated by employing different mailing methods, and the demographics of enrolled participants were examined. RESULTS: This non-human contact approach achieved a nearly 14% participation rate among a rural population, well above our target rates. Our improved mailing strategy for targeting initially unresponsive participants yielded a significantly increase in the participation rates. The respondents were predominantly individuals with educational attainment of at least high school level. Among all the eligible participants, 83% submitted self-collected samples, a rate comparable to the National Health and Nutrition Examination Survey which involved in-person interviews. CONCLUSIONS: The practice of engaging a rural population during the COVID-19 pandemic by transitioning from face-to-face interactions to a combination of mailing and internet-based approaches resulted in higher-than-expected participant recruitment and sample collection rates. Given the declining trend in the response rates for population-based survey studies, our results suggest conducting human biomonitoring without direct human interaction is feasible, which provides further opportunity to improve response rates and the relevance and reach of public health initiatives.


Subject(s)
Biological Monitoring , COVID-19 , Humans , Public Health , Nutrition Surveys , Pandemics , COVID-19/epidemiology
10.
J Toxicol Environ Health B Crit Rev ; 27(5-6): 212-232, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-38845364

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants of significant public health concern, with several that are highly toxic to humans, including some proven or suspected carcinogens. To account for the high variability of PAH mixtures encountered in occupational settings, adjusting urinary 1-hydroxypyrene (1-OHP) levels by the total airborne pyrene (PyrT)/benzo[a]pyrene (BaP) ratio is essential for human biomonitoring (HBM). Given the complexity and cost of systematically monitoring atmospheric levels, alternative approaches to simultaneous airborne and HBM are required. The aim of this review was to catalog airborne PyrT/BaP ratios measured during different industrial activities and recommend 1-OHP-dedicated biological guidance values (BGV). A literature search was conducted. Seventy-one studies were included, with 5619 samples pertaining to 15 industrial sectors, 79 emission processes, and 213 occupational activities. This review summarized more than 40 years of data from almost 20 countries and highlighted the diversity and evolution of PAH emissions. PyrT/BaP ratios were highly variable, ranging from 0.8 in coke production to nearly 40 in tire and rubber production. A single PyrT/BaP value cannot apply to all occupational contexts, raising the question of the relevance of defining a single biological limit value for 1-OHP in industrial sectors where the PyrT/BaP ratio variability is high. Based upon the inventory, a practical approach is proposed for systematic PAH exposure and risk assessment, with a simple frame to follow based upon specific 1-OHP BGVs depending upon the occupational context and setup of a free PAH HBM interactive tool.


Subject(s)
Air Pollutants , Benzo(a)pyrene , Biological Monitoring , Pyrenes , Pyrenes/analysis , Pyrenes/urine , Humans , Benzo(a)pyrene/analysis , Biological Monitoring/methods , Air Pollutants/analysis , Environmental Monitoring/methods , Occupational Exposure/analysis , Industry
11.
Environ Sci Technol ; 58(23): 10001-10014, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38788169

ABSTRACT

In line with the "healthy aging" principle, we aim to assess the exposure map and health risks of environmental chemicals in the elderly. Blood samples from 918 elderly individuals in Wuhan, China, were analyzed using the combined gas/liquid-mass spectrometry technology to detect levels of 118 environmental chemicals. Cluster analysis identified exposure profiles, while risk indexes and bioanalytical equivalence percentages were calculated using EPA's ToxCast database. The detection rates for 87 compounds exceeded 70%. DEHP, DiBP, naphthalene, phenanthrene, DnBP, pyrene, anthracene, permethrin, fluoranthene, and PFOS showed the highest concentrations. Fat-soluble pollutants varied across lifestyles. In cluster 2, which was characterized by higher concentrations of fat-soluble substances, the proportion of smokers or drinkers was higher than that of nonsmokers or nondrinkers. Pesticides emerged as the most active environmental chemicals in peroxisome proliferator-activated receptor gamma antagonist, thyroid hormone receptor (TR) antagonist, TR agonist, and androgen receptor (AR) agonist activity assays. Additionally, PAEs and polycyclic aromatic hydrocarbons played significant roles as active contaminants for the corresponding targets of AR antagonists and estrogen receptor alpha. We proposed a list of priority pollutants linked to endocrine-disrupting toxic effects in the elderly, which may provide the groundwork for further research into environmental etiology.


Subject(s)
Environmental Pollutants , Humans , China , Aged , Male , Biological Monitoring , Female , Risk Assessment , Environmental Exposure , Environmental Monitoring , Databases, Factual
12.
Environ Sci Technol ; 58(33): 14618-14628, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39118541

ABSTRACT

Bivalves are often employed for biomonitoring contaminants in marine environments; however, in these large-scale programs, unavoidably, using multiple species presents a significant challenge. Interspecies differences in contaminant bioaccumulation can complicate data interpretation, and direct comparisons among species may result in misleading conclusions. Here, we propose a robust framework based on toxicokinetic measurements that accounts for interspecies differences in bioaccumulation. Specifically, via a recently developed double stable isotope tracer technique, we determined the toxicokinetics of cadmium (Cd)─a metal known for its high concentrations in bivalves and significant interspecies bioaccumulation variability─in six widespread bivalve species including mussels (Perna viridis, Mytilus unguiculatus, Mytilus galloprovincialis) and oysters (Magallana gigas, Magallana hongkongensis, Magallana angulata). Results show that oysters generally have higher Cd uptake rate constants (ku: 1.18-3.09 L g-1 d-1) and lower elimination rate constants (ke: 0.008-0.017 d-1) than mussels (ku: 0.21-0.64 L g-1 d-1; ke: 0.018-0.037 d-1). The interspecies differences in tissue Cd concentrations are predominantly due to Cd uptake rather than elimination. Utilizing toxicokinetic parameters to back-calculate Cd concentrations in seawater, we found that the ranking of Cd contamination levels at the six sites markedly differs from those based on tissue Cd concentrations. We propose that this approach will be useful for interpreting data from past and future biomonitoring programs.


Subject(s)
Bivalvia , Cadmium , Toxicokinetics , Water Pollutants, Chemical , Animals , Cadmium/metabolism , Cadmium/pharmacokinetics , Cadmium/toxicity , Bivalvia/metabolism , Environmental Monitoring/methods , Mytilus/metabolism , Biological Monitoring , Species Specificity
13.
Environ Sci Technol ; 58(6): 2693-2703, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38285630

ABSTRACT

Inconsistent results have been reported regarding the association between low-to-moderate arsenic (As) exposure and diabetes. The effect of liver dysfunction on As-induced diabetes remains unclear. The cross-sectional study included 10,574 adults from 2017-2018 China National Human Biomonitoring. Urinary total As (TAs) levels were analyzed as markers of As exposure. Generalized linear mixed models and restricted cubic splines models were used to examine the relationships among TAs levels, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) concentrations, and diabetes prevalence. Mediating analysis was performed to assess whether liver dysfunction mediated the association between TAs and diabetes. Overall, the OR (95% CI) of diabetes in participants in the second, third, and fourth quartiles of TAs were 1.08 (0.88, 1.33), 1.17 (0.94, 1.45), and 1.52 (1.22, 1.90), respectively, in the fully adjusted models compared with those in the lowest quartile. Serum ALT was positively associated with TAs and diabetes. Additionally, mediation analyses showed that ALT mediated 4.32% of the association between TAs and diabetes in the overall population and 8.86% in the population without alcohol consumption in the past year. This study suggested that alleviating the hepatotoxicity of As could have implications for both diabetes and liver disease.


Subject(s)
Arsenic , Diabetes Mellitus , Liver Diseases , Adult , Humans , Cross-Sectional Studies , Biological Monitoring , Liver Diseases/epidemiology , Diabetes Mellitus/epidemiology , China/epidemiology , Liver
14.
Environ Sci Technol ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38334298

ABSTRACT

To identify U.S. lead exposure risk hotspots, we expanded upon geospatial statistical methods from a published Michigan case study. The evaluation of identified hotspots using five lead indices, based on housing age and sociodemographic data, showed moderate-to-substantial agreement with state-identified higher-risk locations from nine public health department reports (45-78%) and with hotspots of children's blood lead data from Michigan and Ohio (e.g., Cohen's kappa scores of 0.49-0.63). Applying geospatial cluster analysis and 80th-100th percentile methods to the lead indices, the number of U.S. census tracts ranged from ∼8% (intersection of indices) to ∼41% (combination of indices). Analyses of the number of children <6 years old living in those census tracts revealed the states (e.g., Illinois, Michigan, New Jersey, New York, Ohio, Pennsylvania, Massachusetts, California, Texas) and counties with highest potential lead exposure risk. Results support use of available lead indices as surrogates to identify locations in the absence of consistent, complete blood lead level (BLL) data across the United States. Ground-truthing with local knowledge, additional BLL data, and environmental data is needed to improve identification and analysis of lead exposure and BLL hotspots for interventions. While the science evolves, these screening results can inform "deeper dive" analyses for targeting lead actions.

15.
Environ Sci Technol ; 58(8): 3580-3594, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38354120

ABSTRACT

Mycotoxins are a heterogeneous group of toxins produced by fungi that can grow in staple crops (e.g., maize, cereals), resulting in health risks due to widespread exposure from human consumption and inhalation. Dried blood spot (DBS), dried serum spot (DSS), and volumetric tip microsampling (VTS) assays were developed and validated for several important mycotoxins. This review summarizes studies that have developed these assays to monitor mycotoxin exposures in human biological samples and highlights future directions to facilitate minimally invasive sampling techniques as global public health tools. A systematic search of PubMed (MEDLINE), Embase (Elsevier), and CINAHL (EBSCO) was conducted. Key assay performance metrics were extracted to provide a critical review of the available methods. This search identified 11 published reports related to measuring mycotoxins (ochratoxins, aflatoxins, and fumonisins) using DBS/DSS and VTS assays. Multimycotoxin assays adapted for DBS/DSS and VTS have undergone sufficient laboratory validation for applications in large-scale population health and human biomonitoring studies. Future work should expand the number of mycotoxins that can be measured in multimycotoxin assays, continue to improve multimycotoxin assay sensitivities of several biomarkers with low detection rates, and validate multimycotoxin assays across diverse populations with varying exposure levels. Validated low-cost and ultrasensitive minimally invasive sampling methods should be deployed in human biomonitoring and public health surveillance studies to guide policy interventions to reduce inequities in global mycotoxin exposures.


Subject(s)
Mycotoxins , Humans , Global Health , Environmental Monitoring/methods
16.
Environ Sci Technol ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264360

ABSTRACT

Quaternary ammonium compounds (QACs) are high-production chemicals used as cleaning and disinfecting agents. Due to their ubiquitous presence in the environment and several toxic effects described, human exposure to these chemicals gained increasing attention in recent years. However, very limited data on the biotransformation of QACs is available, hampering exposure assessment. In this study, three QACs (dimethyl dodecyl ammonium, C10-DDAC; benzyldimethyl dodecylammonium, C12-BAC; cetyltrimethylammonium, C16-ATMAC) commonly detected in indoor microenvironments were incubated with human liver microsomes and cytosol (HLM/HLC) simulating Phase I and II metabolism. Thirty-one Phase I metabolites were annotated originating from 19 biotransformation reactions. Four metabolites of C10-DDAC were described for the first time. A detailed assessment of experimental fragmentation spectra allowed to characterize potential oxidation sites. For each annotated metabolite, drift-tube ion-mobility derived collision cross section (DTCCSN2) values were reported, serving as an additional identification parameter and allowing the characterization of changes in DTCCSN2 values following metabolism. Lastly, eight metabolites, including four metabolites of both C12-BAC and C10-DDAC, were confirmed in human urine samples showing high oxidation states through introduction of up to four oxygen atoms. This is the first report of higher oxidized C10-DDAC metabolites in human urine facilitating future biomonitoring studies on QACs.

17.
Environ Sci Technol ; 58(29): 12875-12887, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38980177

ABSTRACT

There has been widespread concern about the health hazards of per- and polyfluoroalkyl substances (PFAS), which may be the risk factor for hyperuricemia with evidence still insufficient in the general population in China. Here, we conducted a nationwide study involving 9,580 adults aged 18 years or older from 2017 to 2018, measured serum concentrations of uric acid and PFAS (PFOA, PFOS, 6:2 Cl-PFESA, PFNA, PFHxS) in participants, to assess the associations of individual PFAS with hyperuricemia, and estimated a joint effect of PFAS mixtures. We found positive associations of higher serum PFAS with elevated odds of hyperuricemia in Chinese adults, with the greatest contribution from PFOA (69.37%). The nonmonotonic dose-response (NMDR) relationships were observed for 6:2 Cl-PFESA and PFHxS with hyperuricemia. Participants with less marine fish consumption, overweight, and obesity may be the sensitive groups to the effects of PFAS on hyperuricemia. We highlight the potential health hazards of legacy long-chain PFAS (PFOA) once again because of the higher weights of joint effects. This study also provides more evidence about the NMDR relationships in PFAS with hyperuricemia and emphasizes a theoretical basis for public health planning to reduce the health hazards of PFAS in sensitive groups.


Subject(s)
Hyperuricemia , Hyperuricemia/epidemiology , Hyperuricemia/blood , Humans , Cross-Sectional Studies , Adult , Male , Female , Fluorocarbons/blood , Middle Aged , China/epidemiology , Uric Acid/blood
18.
Environ Sci Technol ; 58(23): 10028-10040, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38822757

ABSTRACT

Our understanding of connections between human and animal health has advanced substantially since the canary was introduced as a sentinel of toxic conditions in coal mines. Nonetheless, the development of wildlife sentinels for monitoring human exposure to toxins has been limited. Here, we capitalized on a three-decade long child blood lead monitoring program to demonstrate that the globally ubiquitous and human commensal house sparrow (Passer domesticus) can be used as a sentinel of human health risks in urban environments impacted by lead mining. We showed that sparrows are a viable proxy for the measurement of blood lead levels in children at a neighborhood scale (0.28 km2). In support of the generalizability of this approach, the blood lead relationship established in our focal mining city enabled us to accurately predict elevated blood lead levels in children from another mining city using only sparrows from the second location. Using lead concentrations and lead isotopic compositions from environmental and biological matrices, we identified shared sources and pathways of lead exposure in sparrows and children, with strong links to contamination from local mining emissions. Our findings showed how human commensal species can be used to identify and predict human health risks over time and space.


Subject(s)
Environmental Exposure , Lead , Sparrows , Animals , Lead/blood , Humans , Child , Mining , Environmental Monitoring , Sentinel Species , Environmental Pollutants
19.
Environ Sci Technol ; 58(21): 9061-9070, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38743562

ABSTRACT

Bottlenose dolphins (Tursiops truncatus) are keystone and sentinel species in the world's oceans. We studied correlations between per- and polyfluoroalkyl substances (PFAS) and their stress axis. We investigated associations between plasma biomarkers of 12 different PFAS variants and three cortisol pools (total, bound, and free) in wild T. truncatus from estuarine waters of Charleston, South Carolina (n = 115) and Indian River Lagoon, Florida (n = 178) from 2003 to 2006, 2010-2013, and 2015. All PFAS and total cortisol levels for these dolphins were previously reported; bound cortisol levels and free cortisol calculations have not been previously reported. We tested null hypotheses that levels of each PFAS were not correlated with those of each cortisol pool. Free cortisol levels were lower when PFOS, PFOA, and PFHxS biomarker levels were higher, but free cortisol levels were higher when PFTriA was higher. Bound cortisol levels were higher when there were higher PFDA, PFDoDA, PFDS, PFTeA, and PFUnDA biomarkers. Total cortisol was higher when PFOA was lower, but total cortisol was higher when PFDA, PFDoDA, PFTeA, and PFTriA were higher. Additional analyses indicated sex and age trends, as well as heterogeneity of effects from the covariates carbon chain length and PFAS class. Although this is a cross-sectional observational study and, therefore, could reflect cortisol impacts on PFAS toxicokinetics, these correlations are suggestive that PFAS impacts the stress axis in T. truncatus. However, if PFAS do impact the stress axis of dolphins, it is specific to the chemical structure, and could affect the individual pools of cortisol differently. It is critical to conduct long-term studies on these dolphins and to compare them to populations that have no or little expose to PFAS.


Subject(s)
Biomarkers , Bottle-Nosed Dolphin , Hydrocortisone , Water Pollutants, Chemical , Animals , Bottle-Nosed Dolphin/metabolism , Hydrocortisone/blood , Hydrocortisone/metabolism , Environmental Monitoring , Fluorocarbons , Stress, Physiological , Female , Male , South Carolina , Florida
20.
Environ Sci Technol ; 58(4): 1802-1812, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38217501

ABSTRACT

Humans interact with thousands of chemicals. This study aims to identify substances of emerging concern and in need of human health risk evaluations. Sixteen pooled human serum samples were constructed from 25 individual samples each from the National Institute of Environmental Health Sciences' Clinical Research Unit. Samples were analyzed using gas chromatography (GC) × GC/time-of-flight (TOF)-mass spectrometry (MS) in a suspect screening analysis, with follow-up confirmation analysis of 19 substances. A standard reference material blood sample was also analyzed through the confirmation process for comparison. The pools were stratified by sex (female and male) and by age (≤45 and >45). Publicly available information on potential exposure sources was aggregated to annotate presence in serum as either endogenous, food/nutrient, drug, commerce, or contaminant. Of the 544 unique substances tentatively identified by spectral matching, 472 were identified in females, while only 271 were identified in males. Surprisingly, 273 of the identified substances were found only in females. It is known that behavior and near-field environments can drive exposures, and this work demonstrates the existence of exposure sources uniquely relevant to females.


Subject(s)
Gas Chromatography-Mass Spectrometry , Hematologic Tests , Female , Humans , Male , Gas Chromatography-Mass Spectrometry/methods , Hematologic Tests/methods , Adult , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL