Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Cereb Cortex ; 30(1): 371-381, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31204431

ABSTRACT

The communication through coherence hypothesis suggests that only coherently oscillating neuronal groups can interact effectively and predicts an intrinsic response modulation along the oscillatory rhythm. For the motor cortex (MC) at rest, the oscillatory cycle has been shown to determine the brain's responsiveness to external stimuli. For the active MC, however, the demonstration of such a phase-specific modulation of corticospinal excitability (CSE) along the rhythm cycle is still missing. Motor evoked potentials in response to transcranial magnetic stimulation (TMS) over the MC were used to probe the effect of cortical oscillations on CSE during several motor conditions. A brain-machine interface (BMI) with a robotic hand orthosis allowed investigating effects of cortical activity on CSE without the confounding effects of voluntary muscle activation. Only this BMI approach (and not active or passive hand opening alone) revealed a frequency- and phase-specific cortical modulation of CSE by sensorimotor beta-band activity that peaked once per oscillatory cycle and was independent of muscle activity. The active MC follows an intrinsic response modulation in accordance with the communication through coherence hypothesis. Furthermore, the BMI approach may facilitate and strengthen effective corticospinal communication in a therapeutic context, for example, when voluntary hand opening is no longer possible after stroke.


Subject(s)
Cortical Excitability , Evoked Potentials, Motor , Motor Cortex/physiology , Pyramidal Tracts/physiology , Adult , Brain-Computer Interfaces , Electroencephalography , Electromyography , Female , Humans , Male , Muscle, Skeletal/physiology , Transcranial Magnetic Stimulation , Young Adult
2.
Neuroimage ; 195: 190-202, 2019 07 15.
Article in English | MEDLINE | ID: mdl-30951847

ABSTRACT

Volitional modulation and neurofeedback of sensorimotor oscillatory activity is currently being evaluated as a strategy to facilitate motor restoration following stroke. Knowledge on the interplay between this regional brain self-regulation, distributed network entrainment and handedness is, however, limited. In a randomized cross-over design, twenty-one healthy subjects (twelve right-handers [RH], nine left-handers [LH]) performed kinesthetic motor imagery of left (48 trials) and right finger extension (48 trials). A brain-machine interface turned event-related desynchronization in the beta frequency-band (16-22 Hz) during motor imagery into passive hand opening by a robotic orthosis. Thereby, every participant subsequently activated either the dominant (DH) or non-dominant hemisphere (NDH) to control contralateral hand opening. The task-related cortical networks were studied with electroencephalography. The magnitude of the induced oscillatory modulation range in the sensorimotor cortex was independent of both handedness (RH, LH) and hemispheric specialization (DH, NDH). However, the regional beta-band modulation was associated with different alpha-band networks in RH and LH: RH presented a stronger inter-hemispheric connectivity, while LH revealed a stronger intra-hemispheric interaction. Notably, these distinct network entrainments were independent of hemispheric specialization. In healthy subjects, sensorimotor beta-band activity can be robustly modulated by motor imagery and proprioceptive feedback in both hemispheres independent of handedness. However, right and left handers show different oscillatory entrainment of cortical alpha-band networks during neurofeedback. This finding may inform neurofeedback interventions in future to align them more precisely with the underlying physiology.


Subject(s)
Functional Laterality/physiology , Imagination/physiology , Neurofeedback/methods , Sensorimotor Cortex/physiology , Adult , Brain-Computer Interfaces , Female , Humans , Male , Motor Activity/physiology , Neural Pathways/physiology , Stroke Rehabilitation/methods
3.
Neuroimage ; 125: 522-532, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26505298

ABSTRACT

Brain-robot interfaces (BRI) are studied as novel interventions to facilitate functional restoration in patients with severe and persistent motor deficits following stroke. They bridge the impaired connection in the sensorimotor loop by providing brain-state dependent proprioceptive feedback with orthotic devices attached to the hand or arm of the patients. The underlying neurophysiology of this BRI neuromodulation is still largely unknown. We investigated changes of corticospinal excitability with transcranial magnetic stimulation in thirteen right-handed healthy subjects who performed 40min of kinesthetic motor imagery receiving proprioceptive feedback with a robotic orthosis attached to the left hand contingent to event-related desynchronization of the right sensorimotor cortex in the ß-band (16-22Hz). Neural correlates of this BRI intervention were probed by acquiring the stimulus-response curve (SRC) of both motor evoked potential (MEP) peak-to-peak amplitudes and areas under the curve. In addition, a motor mapping was obtained. The specificity of the effects was studied by comparing two neighboring hand muscles, one BRI-trained and one control muscle. Robust changes of MEP amplitude but not MEP area occurred following the BRI intervention, but only in the BRI-trained muscle. The steep part of the SRC showed an MEP increase, while the plateau of the SRC showed an MEP decrease. MEP mapping revealed a distributed pattern with a decrease of excitability in the hand area of the primary motor cortex, which controlled the BRI, but an increase of excitability in the surrounding somatosensory and premotor cortex. In conclusion, the BRI intervention induced a complex pattern of modulated corticospinal excitability, which may boost subsequent motor learning during physiotherapy.


Subject(s)
Brain Mapping/methods , Brain-Computer Interfaces , Brain/physiology , Neuronal Plasticity/physiology , Pyramidal Tracts/physiology , Adult , Electroencephalography , Electroencephalography Phase Synchronization/physiology , Electromyography , Evoked Potentials, Motor/physiology , Feedback, Sensory/physiology , Female , Humans , Male , Robotics/methods , Transcranial Magnetic Stimulation , Young Adult
4.
Neuroimage ; 134: 142-152, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27046109

ABSTRACT

Self-regulation of sensorimotor oscillations is currently researched in neurorehabilitation, e.g. for priming subsequent physiotherapy in stroke patients, and may be modulated by neurofeedback or transcranial brain stimulation. It has still to be demonstrated, however, whether and under which training conditions such brain self-regulation could also result in motor gains. Thirty-two right-handed, healthy subjects participated in a three-day intervention during which they performed 462 trials of kinesthetic motor-imagery while a brain-robot interface (BRI) turned event-related ß-band desynchronization of the left sensorimotor cortex into the opening of the right hand by a robotic orthosis. Different training conditions were compared in a parallel-group design: (i) adaptive classifier thresholding and contingent feedback, (ii) adaptive classifier thresholding and non-contingent feedback, (iii) non-adaptive classifier thresholding and contingent feedback, and (iv) non-adaptive classifier thresholding and non-contingent feedback. We studied the task-related cortical physiology with electroencephalography and the behavioral performance in a subsequent isometric motor task. Contingent neurofeedback and adaptive classifier thresholding were critical for learning brain self-regulation which, in turn, led to behavioral gains after the intervention. The acquired skill for sustained sensorimotor ß-desynchronization correlated significantly with subsequent motor improvement. Operant learning of brain self-regulation with a BRI may offer a therapeutic perspective for severely affected stroke patients lacking residual hand function.


Subject(s)
Beta Rhythm/physiology , Movement/physiology , Neurofeedback/methods , Neurofeedback/physiology , Psychomotor Performance/physiology , Reinforcement, Psychology , Sensorimotor Cortex/physiology , Adult , Biological Clocks/physiology , Brain Mapping , Female , Humans , Male , Reproducibility of Results , Sensitivity and Specificity
5.
Neuroimage ; 108: 319-27, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25527239

ABSTRACT

According to electrophysiological studies motor imagery and motor execution are associated with perturbations of brain oscillations over spatially similar cortical areas. By contrast, neuroimaging and lesion studies suggest that at least partially distinct cortical networks are involved in motor imagery and execution. We sought to further disentangle this relationship by studying the role of brain-robot interfaces in the context of motor imagery and motor execution networks. Twenty right-handed subjects performed several behavioral tasks as indicators for imagery and execution of movements of the left hand, i.e. kinesthetic imagery, visual imagery, visuomotor integration and tonic contraction. In addition, subjects performed motor imagery supported by haptic/proprioceptive feedback from a brain-robot-interface. Principal component analysis was applied to assess the relationship of these indicators. The respective cortical resting state networks in the α-range were investigated by electroencephalography using the phase slope index. We detected two distinct abilities and cortical networks underlying motor control: a motor imagery network connecting the left parietal and motor areas with the right prefrontal cortex and a motor execution network characterized by transmission from the left to right motor areas. We found that a brain-robot-interface might offer a way to bridge the gap between these networks, opening thereby a backdoor to the motor execution system. This knowledge might promote patient screening and may lead to novel treatment strategies, e.g. for the rehabilitation of hemiparesis after stroke.


Subject(s)
Brain/physiology , Imagination/physiology , Motor Activity/physiology , Neural Pathways/physiology , Robotics , User-Computer Interface , Adult , Electroencephalography , Female , Humans , Male , Middle Aged , Principal Component Analysis , Signal Processing, Computer-Assisted , Young Adult
6.
Neuroimage ; 111: 1-11, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25665968

ABSTRACT

Neurofeedback of self-regulated brain activity in circumscribed cortical regions is used as a novel strategy to facilitate functional restoration following stroke. Basic knowledge about its impact on motor system oscillations and functional connectivity is however scarce. Specifically, a direct comparison between different feedback modalities and their neural signatures is missing. We assessed a neurofeedback training intervention of modulating ß-activity in circumscribed sensorimotor regions by kinesthetic motor imagery (MI). Right-handed healthy participants received two different feedback modalities contingent to their MI-associated brain activity in a cross-over design: (I) visual feedback with a brain-computer interface (BCI) and (II) proprioceptive feedback with a brain-robot interface (BRI) orthosis attached to the right hand. High-density electroencephalography was used to examine the reactivity of the cortical motor system during the training session of each task by studying both local oscillatory power entrainment and distributed functional connectivity. Both feedback modalities activated a distributed functional connectivity network of coherent oscillations. A significantly higher skill and lower variability of self-controlled sensorimotor ß-band modulation could, however, be achieved in the BRI condition. This gain in controlling regional motor oscillations was accompanied by functional coupling of remote ß-band and θ-band activity in bilateral fronto-central regions and left parieto-occipital regions, respectively. The functional coupling of coherent θ-band oscillations correlated moreover with the skill of regional ß-modulation thus revealing a motor learning related network. Our findings indicate that proprioceptive feedback is more suitable than visual feedback to entrain the motor network architecture during the interplay between motor imagery and feedback processing thus resulting in better volitional control of regional brain activity.


Subject(s)
Beta Rhythm/physiology , Feedback, Sensory/physiology , Motor Activity/physiology , Motor Cortex/physiology , Nerve Net/physiology , Proprioception/physiology , Theta Rhythm/physiology , Visual Perception/physiology , Adult , Brain-Computer Interfaces , Cross-Over Studies , Female , Humans , Imagination/physiology , Male , Young Adult
7.
Neuroimage Clin ; 37: 103289, 2023.
Article in English | MEDLINE | ID: mdl-36525745

ABSTRACT

Motor restoration after severe stroke is often limited. However, some of the severely impaired stroke patients may still have a rehabilitative potential. Biomarkers that identify these patients are sparse. Eighteen severely impaired chronic stroke patients with a lack of volitional finger extension participated in an EEG study. During sixty-six trials of kinesthetic motor imagery, a brain-machine interface turned event-related beta-band desynchronization of the ipsilesional sensorimotor cortex into opening of the paralyzed hand by a robotic orthosis. A subgroup of eight patients participated in a subsequent four-week rehabilitation training. Changes of the movement extent were captured with sensors which objectively quantified even discrete improvements of wrist movement. Albeit with the same motor impairment level, patients could be differentiated into two groups, i.e., with and without task-related increase of bilateral cortico-cortical phase synchronization between frontal/premotor and parietal areas. This fronto-parietal integration (FPI) was associated with a significantly higher volitional beta modulation range in the ipsilesional sensorimotor cortex. Following the four-week training, patients with FPI showed significantly higher improvement in wrist movement than those without FPI. Moreover, only the former group improved significantly in the upper extremity Fugl-Meyer-Assessment score. Neurofeedback-related long-range oscillatory coherence may differentiate severely impaired stroke patients with regard to their rehabilitative potential, a finding that needs to be confirmed in larger patient cohorts.


Subject(s)
Neurofeedback , Sensorimotor Cortex , Stroke Rehabilitation , Stroke , Humans , Stroke/complications , Imagery, Psychotherapy
8.
Article in English | MEDLINE | ID: mdl-32733860

ABSTRACT

Neurotechnology such as brain-machine interfaces (BMI) are currently being investigated as training devices for neurorehabilitation, when active movements are no longer possible. When the hand is paralyzed following a stroke for example, a robotic orthosis, functional electrical stimulation (FES) or their combination may provide movement assistance; i.e., the corresponding sensory and proprioceptive neurofeedback is given contingent to the movement intention or imagination, thereby closing the sensorimotor loop. Controlling these devices may be challenging or even frustrating. Direct comparisons between these two feedback modalities (robotics vs. FES) with regard to the workload they pose for the user are, however, missing. Twenty healthy subjects controlled a BMI by kinesthetic motor imagery of finger extension. Motor imagery-related sensorimotor desynchronization in the EEG beta frequency-band (17-21 Hz) was turned into passive opening of the contralateral hand by a robotic orthosis or FES in a randomized, cross-over block design. Mental demand, physical demand, temporal demand, performance, effort, and frustration level were captured with the NASA Task Load Index (NASA-TLX) questionnaire by comparing these workload components to each other (weights), evaluating them individually (ratings), and estimating the respective combinations (adjusted workload ratings). The findings were compared to the task-related aspects of active hand movement with EMG feedback. Furthermore, both feedback modalities were compared with regard to their BMI performance. Robotic and FES feedback had similar workloads when weighting and rating the different components. For both robotics and FES, mental demand was the most relevant component, and higher than during active movement with EMG feedback. The FES task led to significantly more physical (p = 0.0368) and less temporal demand (p = 0.0403) than the robotic task in the adjusted workload ratings. Notably, the FES task showed a physical demand 2.67 times closer to the EMG task, but a mental demand 6.79 times closer to the robotic task. On average, significantly more onsets were reached during the robotic as compared to the FES task (17.22 onsets, SD = 3.02 vs. 16.46, SD = 2.94 out of 20 opportunities; p = 0.016), even though there were no significant differences between the BMI classification accuracies of the conditions (p = 0.806; CI = -0.027 to -0.034). These findings may inform the design of neurorehabilitation interfaces toward human-centered hardware for a more natural bidirectional interaction and acceptance by the user.

10.
Brain Stimul ; 11(6): 1331-1335, 2018.
Article in English | MEDLINE | ID: mdl-30172725

ABSTRACT

BACKGROUND: Pairing cortical and peripheral input during motor imagery (MI)-related sensorimotor desynchronization (ERD) modulates corticospinal excitability at the cortical representation (hotspot) of the imagined movement. OBJECTIVE: To determine the effects of this associative stimulation protocol on the cortical motor map beyond the hotspot. METHODS: In healthy subjects, peripheral stimulation through passive hand opening by a robotic orthosis and single-pulse transcranial magnetic stimulation to the respective cortical motor representation were applied in a brain-machine interface environment. State-dependency was investigated by concurrent, delayed or non-specific stimulation with respect to ERD in the beta-band (16-22 Hz) during MI of finger extension. RESULTS: Concurrent stimulation led to increased excitability of an extended motor map. Delayed and non-specific stimulation led to heterogeneous changes, i.e., opposite patterns of increased excitability in either the center or the periphery of the motor map. CONCLUSION: These results could be instrumental in closed-loop, state-dependent stimulation in the context of neurorehabilitation.


Subject(s)
Brain-Computer Interfaces , Evoked Potentials, Motor/physiology , Imagination/physiology , Motor Cortex/physiology , Pyramidal Tracts/physiology , Transcranial Magnetic Stimulation/methods , Adult , Electroencephalography/methods , Female , Humans , Male , Movement/physiology , Young Adult
11.
Front Neurosci ; 11: 60, 2017.
Article in English | MEDLINE | ID: mdl-28232788

ABSTRACT

Motor imagery (MI) activates the sensorimotor system independent of actual movements and might be facilitated by neurofeedback. Knowledge on the interaction between feedback modality and the involved frequency bands during MI-related brain self-regulation is still scarce. Previous studies compared the cortical activity during the MI task with concurrent feedback (MI with feedback condition) to cortical activity during the relaxation task where no feedback was provided (relaxation without feedback condition). The observed differences might, therefore, be related to either the task or the feedback. A proper comparison would necessitate studying a relaxation condition with feedback and a MI task condition without feedback as well. Right-handed healthy subjects performed two tasks, i.e., MI and relaxation, in alternating order. Each of the tasks (MI vs. relaxation) was studied with and without feedback. The respective event-driven oscillatory activity, i.e., sensorimotor desynchronization (during MI) or synchronization (during relaxation), was rewarded with contingent feedback. Importantly, feedback onset was delayed to study the task-related cortical activity in the absence of feedback provision during the delay period. The reward modality was alternated every 15 trials between proprioceptive and visual feedback. Proprioceptive input was superior to visual input to increase the range of task-related spectral perturbations in the α- and ß-band, and was necessary to consistently achieve MI-related sensorimotor desynchronization (ERD) significantly below baseline. These effects occurred in task periods without feedback as well. The increased accuracy and duration of learned brain self-regulation achieved in the proprioceptive condition was specific to the ß-band. MI-related operant learning of brain self-regulation is facilitated by proprioceptive feedback and mediated in the sensorimotor ß-band.

12.
Front Neurosci ; 11: 111, 2017.
Article in English | MEDLINE | ID: mdl-28348511

ABSTRACT

Closed-loop neuroprosthetics aim to compensate for lost function, e.g., by controlling external devices such as prostheses or wheelchairs. Such assistive approaches seek to maximize speed and classification accuracy for high-dimensional control. More recent approaches use similar technology, but aim to restore lost motor function in the long term. To achieve this goal, restorative neuroprosthetics attempt to facilitate motor re-learning and to strengthen damaged and/or alternative neural connections on the basis of neurofeedback training within rehabilitative environments. Such a restorative approach requires reinforcement learning of self-modulated brain activity which is considered to be beneficial for functional rehabilitation, e.g., improvement of ß-power modulation over sensorimotor areas for post-stroke movement restoration. Patients with motor impairments, however, may also have a compromised ability for motor task-related regulation of the targeted brain activity. This would affect the estimation of feature weights and hence the classification accuracy of the feedback device. This, in turn, can frustrate the patients and compromise their motor learning. Furthermore, the feedback training may even become erroneous when unconstrained classifier adaptation-which is often used in assistive approaches-is also applied in this rehabilitation context. In conclusion, the conceptual switch from assistance toward restoration necessitates a methodological paradigm shift from classification accuracy toward instructional efficiency. Furthermore, a constrained feature space, a priori regularized feature weights, and difficulty adaptation present key elements of restorative brain interfaces. These factors need, therefore, to be addressed within a therapeutic framework to facilitate reinforcement learning of brain self-regulation for restorative purposes.

13.
Neuroimage Clin ; 14: 726-733, 2017.
Article in English | MEDLINE | ID: mdl-28409112

ABSTRACT

Motor recovery in severely impaired stroke patients is often very limited. To refine therapeutic interventions for regaining motor control in this patient group, the functionally relevant mechanisms of neuronal plasticity need to be detected. Cortico-muscular coherence (CMC) may provide physiological and topographic insights to achieve this goal. Synchronizing limb movements to motor-related brain activation is hypothesized to reestablish cortico-motor control indexed by CMC. In the present study, right-handed, chronic stroke patients with right-hemispheric lesions and left hand paralysis participated in a four-week training for their left upper extremity. A brain-robot interface turned event-related beta-band desynchronization of the lesioned sensorimotor cortex during kinesthetic motor-imagery into the opening of the paralyzed hand by a robotic orthosis. Simultaneous MEG/EMG recordings and individual models from MRIs were used for CMC detection and source reconstruction of cortico-muscular connectivity to the affected finger extensors before and after the training program. The upper extremity-FMA of the patients improved significantly from 16.23 ± 6.79 to 19.52 ± 7.91 (p = 0.0015). All patients showed significantly increased CMC in the beta frequency-band, with a distributed, bi-hemispheric pattern and considerable inter-individual variability. The location of CMC changes was not correlated to the severity of the motor impairment, the motor improvement or the lesion volume. Group analysis of the cortical overlap revealed a common feature in all patients following the intervention: a significantly increased level of ipsilesional premotor CMC that extended from the superior to the middle and inferior frontal gyrus, along with a confined area of increased CMC in the contralesional premotor cortex. In conclusion, functionally relevant modulations of CMC can be detected in patients with long-term, severe motor deficits after a brain-robot assisted rehabilitation training. Premotor beta-band CMC may serve as a biomarker and therapeutic target for novel treatment approaches in this patient group.


Subject(s)
Evoked Potentials, Motor/physiology , Hand , Motor Cortex/physiopathology , Neuronal Plasticity/physiology , Quadriplegia/etiology , Stroke/complications , Adult , Aged , Brain Mapping , Brain-Computer Interfaces , Electromyography , Female , Humans , Magnetic Resonance Imaging , Magnetoencephalography , Male , Middle Aged , Quadriplegia/diagnostic imaging , Quadriplegia/rehabilitation , Stroke/diagnostic imaging , Stroke/pathology , Stroke Rehabilitation , Treatment Outcome
14.
Clin Neurophysiol ; 127(9): 3033-3041, 2016 09.
Article in English | MEDLINE | ID: mdl-27472538

ABSTRACT

OBJECTIVE: The balance between action and reward during neurofeedback may influence reinforcement learning of brain self-regulation. METHODS: Eleven healthy volunteers participated in three runs of motor imagery-based brain-machine interface feedback where a robot passively opened the hand contingent to ß-band modulation. For each run, the ß-desynchronization threshold to initiate the hand robot movement increased in difficulty (low, moderate, and demanding). In this context, the incentive to learn was estimated by the change of reward per action, operationalized as the change in reward duration per movement onset. RESULTS: Variance analysis revealed a significant interaction between threshold difficulty and the relationship between reward duration and number of movement onsets (p<0.001), indicating a negative learning incentive for low difficulty, but a positive learning incentive for moderate and demanding runs. Exploration of different thresholds in the same data set indicated that the learning incentive peaked at higher thresholds than the threshold which resulted in maximum classification accuracy. CONCLUSION: Specificity is more important than sensitivity of neurofeedback for reinforcement learning of brain self-regulation. SIGNIFICANCE: Learning efficiency requires adequate challenge by neurofeedback interventions.


Subject(s)
Brain-Computer Interfaces/psychology , Brain/physiology , Learning/physiology , Neurofeedback/methods , Reinforcement, Psychology , Self-Control/psychology , Adult , Conditioning, Operant/physiology , Female , Humans , Male , Psychomotor Performance/physiology , Young Adult
15.
Clin Neurophysiol ; 127(9): 3156-3164, 2016 09.
Article in English | MEDLINE | ID: mdl-27474965

ABSTRACT

OBJECTIVE: Considering self-rated mental effort during neurofeedback may improve training of brain self-regulation. METHODS: Twenty-one healthy, right-handed subjects performed kinesthetic motor imagery of opening their left hand, while threshold-based classification of beta-band desynchronization resulted in proprioceptive robotic feedback. The experiment consisted of two blocks in a cross-over design. The participants rated their perceived mental effort nine times per block. In the adaptive block, the threshold was adjusted on the basis of these ratings whereas adjustments were carried out at random in the other block. Electroencephalography was used to examine the cortical activation patterns during the training sessions. RESULTS: The perceived mental effort was correlated with the difficulty threshold of neurofeedback training. Adaptive threshold-setting reduced mental effort and increased the classification accuracy and positive predictive value. This was paralleled by an inter-hemispheric cortical activation pattern in low frequency bands connecting the right frontal and left parietal areas. Optimal balance of mental effort was achieved at thresholds significantly higher than maximum classification accuracy. CONCLUSION: Rating of mental effort is a feasible approach for effective threshold-adaptation during neurofeedback training. SIGNIFICANCE: Closed-loop adaptation of the neurofeedback difficulty level facilitates reinforcement learning of brain self-regulation.


Subject(s)
Brain/physiology , Feedback, Sensory/physiology , Imagination/physiology , Learning/physiology , Neurofeedback/physiology , Self-Control/psychology , Adult , Brain Waves/physiology , Brain-Computer Interfaces/psychology , Cross-Over Studies , Female , Humans , Male , Neurofeedback/methods , Random Allocation , Reinforcement, Psychology , Young Adult
16.
Front Neurosci ; 10: 456, 2016.
Article in English | MEDLINE | ID: mdl-27790085

ABSTRACT

Brain-machine interfaces (BMI) may support motor impaired patients during activities of daily living by controlling external devices such as prostheses (assistive BMI). Moreover, BMIs are applied in conjunction with robotic orthoses for rehabilitation of lost motor function via neurofeedback training (restorative BMI). Using assistive BMI in a rehabilitation context does not automatically turn them into restorative devices. This perspective article suggests key features of restorative BMI and provides the supporting evidence: In summary, BMI may be referred to as restorative tools when demonstrating subsequently (i) operant learning and progressive evolution of specific brain states/dynamics, (ii) correlated modulations of functional networks related to the therapeutic goal, (iii) subsequent improvement in a specific task, and (iv) an explicit correlation between the modulated brain dynamics and the achieved behavioral gains. Such findings would provide the rationale for translating BMI-based interventions into clinical settings for reinforcement learning and motor rehabilitation following stroke.

17.
Front Neurosci ; 10: 367, 2016.
Article in English | MEDLINE | ID: mdl-27555805

ABSTRACT

Brain-machine interface-controlled (BMI) neurofeedback training aims to modulate cortical physiology and is applied during neurorehabilitation to increase the responsiveness of the brain to subsequent physiotherapy. In a parallel line of research, robotic exoskeletons are used in goal-oriented rehabilitation exercises for patients with severe motor impairment to extend their range of motion (ROM) and the intensity of training. Furthermore, neuromuscular electrical stimulation (NMES) is applied in neurologically impaired patients to restore muscle strength by closing the sensorimotor loop. In this proof-of-principle study, we explored an integrated approach for providing assistance as needed to amplify the task-related ROM and the movement-related brain modulation during rehabilitation exercises of severely impaired patients. For this purpose, we combined these three approaches (BMI, NMES, and exoskeleton) in an integrated neuroprosthesis and studied the feasibility of this device in seven severely affected chronic stroke patients who performed wrist flexion and extension exercises while receiving feedback via a virtual environment. They were assisted by a gravity-compensating, seven degree-of-freedom exoskeleton which was attached to the paretic arm. NMES was applied to the wrist extensor and flexor muscles during the exercises and was controlled by a hybrid BMI based on both sensorimotor cortical desynchronization (ERD) and electromyography (EMG) activity. The stimulation intensity was individualized for each targeted muscle and remained subthreshold, i.e., induced no overt support. The hybrid BMI controlled the stimulation significantly better than the offline analyzed ERD (p = 0.028) or EMG (p = 0.021) modality alone. Neuromuscular stimulation could be well integrated into the exoskeleton-based training and amplified both the task-related ROM (p = 0.009) and the movement-related brain modulation (p = 0.019). Combining a hybrid BMI with neuromuscular stimulation and antigravity assistance augments upper limb function and brain activity during rehabilitation exercises and may thus provide a novel restorative framework for severely affected stroke patients.

18.
Front Neurosci ; 9: 36, 2015.
Article in English | MEDLINE | ID: mdl-25729347

ABSTRACT

Restorative brain-computer interfaces (BCI) are increasingly used to provide feedback of neuronal states in a bid to normalize pathological brain activity and achieve behavioral gains. However, patients and healthy subjects alike often show a large variability, or even inability, of brain self-regulation for BCI control, known as BCI illiteracy. Although current co-adaptive algorithms are powerful for assistive BCIs, their inherent class switching clashes with the operant conditioning goal of restorative BCIs. Moreover, due to the treatment rationale, the classifier of restorative BCIs usually has a constrained feature space, thus limiting the possibility of classifier adaptation. In this context, we applied a Bayesian model of neurofeedback and reinforcement learning for different threshold selection strategies to study the impact of threshold adaptation of a linear classifier on optimizing restorative BCIs. For each feedback iteration, we first determined the thresholds that result in minimal action entropy and maximal instructional efficiency. We then used the resulting vector for the simulation of continuous threshold adaptation. We could thus show that threshold adaptation can improve reinforcement learning, particularly in cases of BCI illiteracy. Finally, on the basis of information-theory, we provided an explanation for the achieved benefits of adaptive threshold setting.

19.
Front Hum Neurosci ; 9: 564, 2015.
Article in English | MEDLINE | ID: mdl-26528168

ABSTRACT

While robot-assisted arm and hand training after stroke allows for intensive task-oriented practice, it has provided only limited additional benefit over dose-matched physiotherapy up to now. These rehabilitation devices are possibly too supportive during the exercises. Neurophysiological signals might be one way of avoiding slacking and providing robotic support only when the brain is particularly responsive to peripheral input. We tested the feasibility of three-dimensional robotic assistance for reaching movements with a multi-joint exoskeleton during motor imagery (MI)-related desynchronization of sensorimotor oscillations in the ß-band. We also registered task-related network changes of cortical functional connectivity by electroencephalography via the imaginary part of the coherence function. Healthy subjects and stroke survivors showed similar patterns-but different aptitudes-of controlling the robotic movement. All participants in this pilot study with nine healthy subjects and two stroke patients achieved their maximum performance during the early stages of the task. Robotic control was significantly higher and less variable when proprioceptive feedback was provided in addition to visual feedback, i.e., when the orthosis was actually attached to the subject's arm during the task. A distributed cortical network of task-related coherent activity in the θ-band showed significant differences between healthy subjects and stroke patients as well as between early and late periods of the task. Brain-robot interfaces (BRIs) may successfully link three-dimensional robotic training to the participants' efforts and allow for task-oriented practice of activities of daily living with a physiologically controlled multi-joint exoskeleton. Changes of cortical physiology during the task might also help to make subject-specific adjustments of task difficulty and guide adjunct interventions to facilitate motor learning for functional restoration, a proposal that warrants further investigation in a larger cohort of stroke patients.

20.
Front Hum Neurosci ; 9: 391, 2015.
Article in English | MEDLINE | ID: mdl-26190995

ABSTRACT

Neurofeedback training of Motor imagery (MI)-related brain-states with brain-computer/brain-machine interfaces (BCI/BMI) is currently being explored as an experimental intervention prior to standard physiotherapy to improve the motor outcome of stroke rehabilitation. The use of BCI/BMI technology increases the adherence to MI training more efficiently than interventions with sham or no feedback. Moreover, pilot studies suggest that such a priming intervention before physiotherapy might-like some brain stimulation techniques-increase the responsiveness of the brain to the subsequent physiotherapy, thereby improving the general clinical outcome. However, there is little evidence up to now that these BCI/BMI-based interventions have achieved operate conditioning of specific brain states that facilitate task-specific functional gains beyond the practice of primed physiotherapy. In this context, we argue that BCI/BMI technology provides a valuable neurofeedback tool for rehabilitation but needs to aim at physiological features relevant for the targeted behavioral gain. Moreover, this therapeutic intervention has to be informed by concepts of reinforcement learning to develop its full potential. Such a refined neurofeedback approach would need to address the following issues: (1) Defining a physiological feedback target specific to the intended behavioral gain, e.g., ß-band oscillations for cortico-muscular communication. This targeted brain state could well be different from the brain state optimal for the neurofeedback task, e.g., α-band oscillations for differentiating MI from rest; (2) Selecting a BCI/BMI classification and thresholding approach on the basis of learning principles, i.e., balancing challenge and reward of the neurofeedback task instead of maximizing the classification accuracy of the difficulty level device; and (3) Adjusting the difficulty level in the course of the training period to account for the cognitive load and the learning experience of the participant. Here, we propose a comprehensive neurofeedback strategy for motor restoration after stroke that addresses these aspects, and provide evidence for the feasibility of the suggested approach by demonstrating that dynamic threshold adaptation based on reinforcement learning may lead to frequency-specific operant conditioning of ß-band oscillations paralleled by task-specific motor improvement; a proposal that requires investigation in a larger cohort of stroke patients.

SELECTION OF CITATIONS
SEARCH DETAIL