Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Int J Mol Sci ; 25(16)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39201293

ABSTRACT

An H-bond involves the sharing of a hydrogen atom between an electronegative atom to which it is covalently bound (the donor) and another electronegative atom serving as an acceptor. Such bonds represent a critically important geometrical force in biological macromolecules and, as such, have been characterized extensively. H-bond formation invariably leads to a weakening within the acceptor moiety due to the pulling exerted by the donor hydrogen. This phenomenon can be compared to a spring connecting two masses; pulling one mass stretches the spring, similarly affecting the bond between the two masses. Herein, we describe the opposite phenomenon when investigating the energetics of the C-H···O=C bond. This bond underpins the most prevalent protein transmembrane dimerization motif (GxxxG) in which a glycine Cα-H on one helix forms a hydrogen bond with a carbonyl in a nearby helix. We use isotope-edited FT-IR spectroscopy and corroborating computational approaches to demonstrate a surprising strengthening of the acceptor C=O bond upon binding with the glycine Cα-H. We show that electronic factors associated with the Cα-H bond strengthen the C=O oscillator by increasing the s-character of the σ-bond, lowering the hyperconjugative disruption of the π-bond. In addition, a reduction of the acceptor C=O bond's polarity is observed upon the formation of the C-H···O=C bond. Our findings challenge the conventional understanding of H-bond dynamics and provide new insights into the structural stability of inter-helical protein interactions.


Subject(s)
Hydrogen Bonding , Hydrogen/chemistry , Spectroscopy, Fourier Transform Infrared , Glycine/chemistry , Models, Molecular , Thermodynamics
2.
Acta Crystallogr C Struct Chem ; 79(Pt 4): 149-157, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36942910

ABSTRACT

The present study evaluates the potential combination of charge-transfer electron-donor-acceptor π-π complexation and C-H hydrogen bonding to form colored cocrystals. The crystal structures of the red 1:1 cocrystals formed from the isomeric pyridines 4- and 3-{2-[4-(dimethylamino)phenyl]ethynyl}pyridine with 1-[2-(3,5-dinitrophenyl)ethynyl]-2,3,5,6-tetrafluorobenzene, both C14H4F4N2O4·C15H14N2, are reported. Intermolecular interaction energy calculations confirm that π-stacking interactions dominate the intermolecular interactions within each crystal structure. The close contacts revealed by Hirshfeld surface calculations are predominantly C-H interactions with N, O, and F atoms.

3.
Front Chem ; 10: 1056286, 2022.
Article in English | MEDLINE | ID: mdl-36561143

ABSTRACT

This work explores the conformational preferences and the structure-property correlations of poly(butylene 2,5-furandicarboxylate) (PBF), a longer chain analogue of the most well-known biobased polyester from the furan family, poly(ethylene 2,5-furandicarboxylate) (PEF). A thorough computational spectroscopic study-including infrared, Raman and inelastic neutron scattering spectroscopy, combined with discrete and periodic density functional theory calculations-allowed the identification of dominant structural motifs in the amorphous and crystalline regions. Discrete calculations and vibrational spectroscopy of semi-crystalline and amorphous samples strongly support the predominance of gauche, trans, gauche conformations of the butylene glycol fragment in both the crystalline and amorphous domains. In what concerns the furandicarboxylate fragment, amorphous domains are dominated by syn,syn conformations, while in the crystalline domains the anti,anti forms prevail. A possible crystalline structure-built from these conformational preferences and including a network of C-H···O hydrogen bond contacts-was optimized using periodic density functional theory. This proposed crystal structure avoids the unrealistic structural features of the previously proposed X-ray structure, provides an excellent description of the inelastic neutron scattering spectrum of the semi-crystalline form, and allows the correlation between microscopic structure and macroscopic properties of the polymer.

SELECTION OF CITATIONS
SEARCH DETAIL