Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
Exp Cell Res ; 438(1): 114052, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38636651

ABSTRACT

Trained immunity is mechanistically defined as the metabolically and epigenetically mediated long-term functional adaptation of the innate immune system, characterized by a heightened response to a secondary stimulation. Given appropriate activation, trained immunity represents an attractive anti-infective therapeutic target. Nevertheless, excessive immune response and subsequent inflammatory cascades may contribute to pathological tissue damage, indicating that the negative impacts of trained immunity appear to be significant. In this study, we show that innate immune responses such as the production of extracellular traps, pro-inflammatory cytokines, and autophagy-related proteins were markedly augmented in trained BMDMs. Furthermore, heat-killed C. albicans priming promotes the activation of the AIM2 inflammasome, and AIM2-/- mice exhibit impaired memory response induced by heat-killed C. albicans. Therefore, we establish that the AIM2 inflammasome is involved in trained immunity and emerges as a promising therapeutic target for potentially deleterious effects. Dihydroartemisinin can inhibit the memory response induced by heat-killed C. albicans through modulation of mTOR signaling and the AIM2 inflammasome. The findings suggest that dihydroartemisinin can reduce the induction of trained immunity by heat-killed C. albicans in C57BL/6 mice. Dihydroartemisinin is one such therapeutic intervention that has the potential to treat of diseases characterized by excessive trained immunity.


Subject(s)
Artemisinins , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Trained Immunity , Animals , Mice , Artemisinins/pharmacology , Candida albicans/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Inflammasomes/metabolism , Inflammasomes/drug effects , Mice, Inbred C57BL , Mice, Knockout , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Trained Immunity/drug effects
2.
BMC Microbiol ; 24(1): 157, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710998

ABSTRACT

BACKGROUND: Clostridium perfringens, a common environmental bacterium, is responsible for a variety of serious illnesses including food poisoning, digestive disorders, and soft tissue infections. Mastitis in lactating cattle and sudden death losses in baby calves are major problems for producers raising calves on dairy farms. The pathogenicity of this bacterium is largely mediated by its production of various toxins. RESULTS: The study revealed that Among the examined lactating animals with a history of mastitis, diarrheal baby calves, and acute sudden death cases in calves, C. perfringens was isolated in 23.5% (93/395) of the total tested samples. Eighteen isolates were obtained from mastitic milk, 59 from rectal swabs, and 16 from the intestinal contents of dead calves. Most of the recovered C. perfringens isolates (95.6%) were identified as type A by molecular toxinotyping, except for four isolates from sudden death cases (type C). Notably, C. perfringens was recovered in 100% of sudden death cases compared with 32.9% of rectal swabs and 9% of milk samples. This study analyzed the phylogeny of C. perfringens using the plc region and identified the plc region in five Egyptian bovine isolates (milk and fecal origins). Importantly, this finding expands the known data on C. perfringens phospholipase C beyond reference strains in GenBank from various animal and environmental sources. CONCLUSION: Phylogenetic analyses of nucleotide sequence data differentiated between strains of different origins. The plc sequences of Egyptian C. perfringens strains acquired in the present study differed from those reported globally and constituted a distinct genetic ancestor.


Subject(s)
Clostridium Infections , Clostridium perfringens , Enteritis , Genetic Variation , Mastitis, Bovine , Milk , Phylogeny , Animals , Clostridium perfringens/genetics , Clostridium perfringens/isolation & purification , Clostridium perfringens/classification , Clostridium perfringens/pathogenicity , Cattle , Egypt , Female , Clostridium Infections/microbiology , Clostridium Infections/veterinary , Milk/microbiology , Enteritis/microbiology , Enteritis/veterinary , Mastitis, Bovine/microbiology , Cattle Diseases/microbiology , Feces/microbiology , Type C Phospholipases/genetics , Dairying , Farms , Bacterial Toxins/genetics
3.
Anaerobe ; 90: 102914, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39368695

ABSTRACT

OBJECTIVES: Although Clostridium perfringens sporulation is a key event in the pathogenesis of food-borne illness, the molecules and underlying mechanisms responsible for regulating sporulation are incompletely understood. The present study sought to identify amino acids that affect sporulation in C. perfringens strain SM101. METHODS: A C. perfringens strain was cultured in the chemically defined medium deficient in an amino acid. The bacterial growth was determined by spectrophotometrically measuring culture turbidity and by calculating colony-forming unit. Morphological characteristics were assessed by phase-contrast microscopy with fluorescent staining and by electron microscopy. RESULTS: The amino acids Arg, Cys, Gly, His, Ile, Leu, Met, Phe, Thr, Trp, Tyr, and Val were important for sporulation, and furthermore, Ser reduced sporulation. The mechanism underlying Ser-induced prevention of sporulation was assessed morphologically. The numbers of bacterial cells in sporulation stage II were significantly higher in the presence than in the absence of Ser. In the presence of Ser, almost all cells were in stage II-III, characterized by polar septation-early engulfment, and did not proceed to late engulfment. CONCLUSIONS: These results suggest that Ser accelerated the early stage of sporulation of C. perfringens strain SM101, but disturbed the engulfment process, resulting in reduction of sporulation. To the best of our knowledge, this is the first study reporting that an amino acid affects engulfment during the C. perfringens sporulation process.

4.
Int J Mol Sci ; 25(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38928277

ABSTRACT

Absent in melanoma 2 (AIM2), a key component of the IFI20X/IFI16 (PYHIN) protein family, is characterized as a DNA sensor to detect cytosolic bacteria and DNA viruses. However, little is known about its immunological role during pathogenic Clostridium perfringens (C. perfringens) infection, an extracellular bacterial pathogen. In a pathogenic C. perfringens gas gangrene model, Aim2-/- mice are more susceptible to pathogenic C. perfringens soft tissue infection, revealing the importance of AIM2 in host protection. Notably, Aim2 deficiency leads to a defect in bacterial killing and clearance. Our in vivo and in vitro findings further establish that inflammasome signaling is impaired in the absence of Aim2 in response to pathogenic C. perfringens. Mechanistically, inflammasome signaling downstream of active AIM2 promotes pathogen control. Importantly, pathogenic C. perfringens-derived genomic DNA triggers inflammasome signaling activation in an AIM2-dependent manner. Thus, these observations uncover a central role for AIM2 in host defense and triggering innate immunity to combat pathogenic C. perfringens infections.


Subject(s)
Clostridium perfringens , DNA-Binding Proteins , Inflammasomes , Signal Transduction , Inflammasomes/metabolism , Inflammasomes/immunology , Animals , Clostridium perfringens/immunology , Clostridium perfringens/pathogenicity , Mice , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Mice, Knockout , Immunity, Innate , Mice, Inbred C57BL , Gas Gangrene/immunology , Gas Gangrene/microbiology , Disease Models, Animal , Clostridium Infections/immunology , Clostridium Infections/microbiology , Clostridium Infections/metabolism , Humans
5.
Trop Anim Health Prod ; 56(6): 205, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001933

ABSTRACT

This study aimed to establish an accurate epidemiological surveillance tool for the detection of different C. perfringens types from 76 diseased and 34 healthy animals in Dakhalia Governorate, Egypt. A total of 110 intestinal content samples were randomly collected from camels, sheep, and cattle. C. perfringens was isolated and biochemically identified by the VITEK2 system. Toxinotyping and genotyping of C. perfringens isolates were specified by a multiscreen ELISA and real-time qPCR (rt-qPCR). The occurrence of C. perfringens was highest among camels (20% in healthy and 25% in diseased) and was lowest in cattle (23.1% and 14.7%). The cpa toxin was detected in all isolates by rt-qPCR and in 7 isolates by ELISA, ext toxin was detected in 7 isolates by rt-qPCR and in 6 isolates by ELISA, and cpb toxin was detected in 2 isolates by both rt-qPCR and ELISA. Four types of C. perfringens were identified by rt-qPCR, type A (65.2%), B (4.3%), C (4.3%), and D (26.1%), and three types by ELISA, type D (17.4%), A (8.7%) and C (4.3%). Our study indicated the prevalence of infection in Dakahlia by C. perfringens type A and D, particularly camels, and recommends adopting an appropriate vaccination strategy among the studied animals.


Subject(s)
Bacterial Toxins , Camelus , Cattle Diseases , Clostridium Infections , Clostridium perfringens , Enzyme-Linked Immunosorbent Assay , Sheep Diseases , Animals , Egypt/epidemiology , Clostridium perfringens/isolation & purification , Cattle , Cross-Sectional Studies , Clostridium Infections/veterinary , Clostridium Infections/epidemiology , Clostridium Infections/microbiology , Enzyme-Linked Immunosorbent Assay/veterinary , Sheep , Cattle Diseases/microbiology , Cattle Diseases/epidemiology , Cattle Diseases/diagnosis , Bacterial Toxins/analysis , Sheep Diseases/microbiology , Sheep Diseases/epidemiology , Sheep Diseases/diagnosis , Real-Time Polymerase Chain Reaction/veterinary , Prevalence , Intestines/microbiology , Genotype
6.
Curr Issues Mol Biol ; 45(4): 3193-3207, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37185732

ABSTRACT

Clostridium perfringens (C. perfringens) type C is one of the common bacteria in piglet diarrhea, which seriously affects the swine industry's development. The spleen plays crucial roles in the resistance and elimination of pathogenic microorganisms, and miRNAs play important roles in regulating piglet diarrhea caused by pathogens. However, the mechanism by which miRNAs in the spleen are involved in regulating C. perfringens type C causing diarrhea in piglets remains unclear. The expression profiles of the spleen miRNAs of 7-day-old piglets challenged by C. perfringens type C were studied using small RNA-sequencing in control (SC), susceptible (SS), and resistant (SR) groups. Eight-eight differentially expressed miRNAs were screened. The KEGG pathway analysis of target genes revealed that the miRNAs were involved in the MAPK, p53, and ECM-receptor interaction signaling pathways. NFATC4 was determined to be a direct target of miR-532-3p and miR-133b using a dual-luciferase reporter assay. Thus, miR-133b and miR-532-3p targeted to NFATC4 were likely involved to piglet resistance to C. perfringens type C. This paper provides the valuable resources to deeply understand the genetic basis of C. perfringens type C resistance in piglets and a solid foundation to identify novel markers of C. perfringens type C resistance.

7.
BMC Microbiol ; 23(1): 79, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36949384

ABSTRACT

BACKGROUND: Clostridium perfringens (C. perfringens) is an important pathogen in livestock animals and humans causing a wide array of systemic and enteric diseases. The current study was performed to investigate the inhibitory activity of myricetin (MYR), polyvinyl alcohol (PVA), and zinc oxide (ZnO) nanocomposite against growth and α-hemolysin of C. perfringens isolated from beef meat and chicken sources. RESULTS: The overall occurrence of C. perfringens was 29.8%. The prevalence of C. perfringens was higher in chicken (38.3%) than in beef meat products (10%). The antimicrobial susceptibility testing revealed that C. perfringens isolates exhibited high resistance levels for metronidazole (93%), bacitracin (89%), penicillin G (84%), and lincomycin (76%). Of note, 1% of C. perfringens isolates were pandrug-resistant (PDR), 4% were extensive drug-resistant (XDR), while 91% were multidrug-resistant. The results of broth microdilution technique revealed that all tested C. perfringens isolates were susceptible to MYR-loaded ZnO/PVA with minimum inhibitory concentrations (MICs) ranged from 0.125 to 2 µg/mL. Moreover, the MYR either alone or combined with the nanocomposite had no cytotoxic activities on chicken red blood cells (cRBCs). Transcriptional modifications of MYR, ZnO, ZnO/PVA, and ZnO/PVA/MYR nanocomposite were determined, and the results showed significant down-regulation of α-hemolysin fold change to 0.5, 0.7, 0.6, and 0.28, respectively compared to the untreated bacteria. CONCLUSION: This is an in vitro study reporting the antimicrobial potential of MYR-coated ZnO nanocomposite as an effective therapeutic candidate against C. perfringens. An in vivo approach is the next step to provide evidence for applying these alternatives in the treatment and prevention of C. perfringens-associated diseases.


Subject(s)
Anti-Infective Agents , Clostridium Infections , Zinc Oxide , Humans , Animals , Cattle , Clostridium perfringens/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Zinc Oxide/pharmacology , Clostridium Infections/microbiology , Hemolysin Proteins , Anti-Infective Agents/pharmacology , Chickens
8.
Microb Pathog ; 183: 106279, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37549798

ABSTRACT

Clostridium perfringens, a common foodborne pathogen, exhibit high-stress resistance. The prevailing reliance on antibiotics in the farming industry for its prevention and control has led to increasing concerns over antibiotic residue and bacterial resistance. Bacteriophages that possess specific lytic activity against C. perfringens are of significant interest. Here, a novel C. perfringens phage, named vB_CP_qdyz_P5, was isolated and characterized. The phage displayed high stability at temperatures below 70 °C and pH levels ranging from 4 to 12. Genome analysis revealed that vB_CP_qdyz_P5 has a double-stand DNA of 18,888 bp with a G + C composition of 28.8%. Among the 27 identified opening reading frames (ORFs), eight were found to be functional genes. BLASTn analysis showed that vB_CP_qdyz_P5 is closely related to phage DCp1, with a genome homology coverage of 83%. Phylogenetic analysis indicated that vB_CP_qdyz_P5 may be a novel phage of the family Guelinviridae, Susfortunavirus. This study provides important preliminary information for further research on the potential use of vB_CP_qdyz_P5 in protecting against C. perfringens and maintaining intestinal health.


Subject(s)
Bacteriophages , Bacteriophages/genetics , Clostridium perfringens/genetics , Phylogeny , Genome, Viral , DNA , Anti-Bacterial Agents
9.
Anaerobe ; 82: 102753, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37308057

ABSTRACT

OBJECTIVES: Clostridium perfringens epsilon-toxin is considered to be a crucial agent in enterotoxemia in domestic animals. Epsilon-toxin enters host cells via endocytosis and results in the formation of late endosome/lysosome-derived vacuoles. In the present study, we found that acid sphingomyelinase promotes the internalization of epsilon-toxin in MDCK cells. METHODS: We measured the extracellular release of acid sphingomyelinase (ASMase) by epsilon-toxin. We examined the role of ASMase in epsilon-toxin-induced cytotoxicity using selective inhibitors and knockdown of ASMase. Production of ceramide after toxin treatment was determined by immunofluorescence technique. RESULTS: Blocking agents of ASMase and exocytosis of lysosomes inhibited this epsilon-toxin-induced vacuole formation. Lysosomal ASMase was liberated to extracellular space during treatment of the cells with epsilon-toxin in the presence of Ca2+. RNAi-mediated attenuation of ASMase blocked epsilon-toxin-induced vacuolation. Moreover, incubation of MDCK cells with epsilon-toxin led to production of ceramide. The ceramide colocalized with lipid raft-binding cholera toxin subunit B (CTB) in the cell membrane, indicating that conversion of lipid raft associated sphingomyelin to ceramide by ASMase facilitates lesion of MDCK cells and internalization of epsilon-toxin. CONCLUSIONS: Based on the present results, ASMase is required for efficient internalization of epsilon-toxin.


Subject(s)
Bacterial Toxins , Sphingomyelin Phosphodiesterase , Animals , Dogs , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelin Phosphodiesterase/metabolism , Bacterial Toxins/genetics , Bacterial Toxins/toxicity , Madin Darby Canine Kidney Cells , Ceramides/metabolism , Clostridium perfringens/metabolism
10.
Int J Mol Sci ; 24(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36835606

ABSTRACT

Clostridium perfringens (C. perfringens) is one of the foremost pathogens responsible for diarrhea in foals. As antibiotic resistance increases, phages that specifically lyse bacteria are of great interest to us with regard to C. perfringens. In this study, a novel C. perfringens phage DCp1 was isolated from the sewage of a donkey farm. Phage DCp1 had a non-contractile short tail (40 nm in length) and a regular icosahedral head (46 nm in diameter). Whole-genome sequencing indicated that phage DCp1 had a linear double-stranded DNA genome with a total length of 18,555 bp and a G + C content of 28.2%. A total of 25 ORFs were identified in the genome, 6 of which had been assigned to functional genes, others were annotated to encode hypothetical proteins. The genome of phage DCp1 lacked any tRNA, virulence gene, drug resistance gene, or lysogenic gene. Phylogenetic analysis indicated that phage DCp1 belonged to the family Guelinviridae, Susfortunavirus. Biofilm assay showed that phage DCp1 was effective in inhibiting the formation of C. perfringens D22 biofilms. Phage DCp1 could completely degrade the biofilm after 5 h of interaction. The current study provides some basic information for further research on phage DCp1 and its application.


Subject(s)
Bacteriophages , Animals , Horses/genetics , Bacteriophages/genetics , Clostridium perfringens , Phylogeny , Genome, Viral , Genomics , Biofilms
11.
BMC Genomics ; 23(1): 226, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35321661

ABSTRACT

BACKGROUND: BEC-producing Clostridium perfringens is a causative agent of foodborne gastroenteritis. It was first reported in 2014, and since then, several isolates have been identified in Japan and the United Kingdom. The novel binary ADP-ribosylating toxin BEC, which consists of two components (BECa and BECb), is encoded on a plasmid that is similar to pCP13 and harbours a conjugation locus, called Pcp, encoding homologous proteins of the type 4 secretion system. Despite the high in vitro conjugation frequency of pCP13, its dissemination and that of related plasmids, including bec-harbouring plasmids, in the natural environment have not been characterised. This lack of knowledge has limited our understanding of the genomic epidemiology of bec-harbouring C. perfringens strains. RESULTS: In this study, we determined the complete genome sequences of five bec-harbouring C. perfringens strains isolated from 2009 to 2019. Each isolate contains a ~ 3.36 Mbp chromosome and 1-3 plasmids of either the pCW3-like family, pCP13-like family, or an unknown family, and the bec-encoding region in all five isolates was located on a ~ 54 kbp pCP13-like plasmid. Phylogenetic and SNP analyses of these complete genome sequences and the 211 assembled C. perfringens genomes in GenBank showed that although these bec-harbouring strains were split into two phylogenetic clades, the sequences of the bec-encoding plasmids were nearly identical (>99.81%), with a significantly smaller SNP accumulation rate than that of their chromosomes. Given that the Pcp locus is conserved in these pCP13-like plasmids, we propose a mechanism in which the plasmids were disseminated by horizontal gene transfer. Data mining showed that strains carrying pCP13-like family plasmids were unexpectedly common (58/216 strains) and widely disseminated among the various C. perfringens clades. Although these plasmids possess a conserved Pcp locus, their 'accessory regions' can accommodate a wide variety of genes, including virulence-associated genes, such as becA/becB and cbp2. These results suggest that this family of plasmids can integrate various foreign genes and is transmissible among C. perfringens strains. CONCLUSION: This study demonstrates the potential significance of pCP13-like plasmids, including bec-encoding plasmids, for the characterisation and monitoring of the dissemination of pathogenic C. perfringens strains.


Subject(s)
Clostridium perfringens , Enterotoxins , Clostridium perfringens/genetics , Enterotoxins/genetics , Genome, Bacterial , Genomics , Phylogeny , Plasmids/genetics
12.
J Fish Dis ; 45(3): 471-477, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35007367

ABSTRACT

In November 2020 a mortality episode (30%) in juvenile Siberian and Russian sturgeons (Acipenser baerii, Brandt, and A. gueldenstaedtii, Brandt & Ratzeburg) and GUBA hybrid sturgeons (A. gueldenstaedtii × A. baerii) occurred in a hatchery in Northern Italy, associated with severe coelomic distension and abnormal reverse surface swimming. The fish were reared in concrete tanks supplied by well water, fed at 0.4% of body weight (b.w.) per day. Thirty sturgeon specimens were collected for necropsy, histological, bacteriological and virological examination. Macroscopic findings included diffuse and severe bloating of gastrointestinal tracts due to foamy contents with thinning and stretching of the gastrointestinal walls. Histological analysis revealed variable degrees of sloughing and necrosis of the intestinal epithelium, and the presence of bacterial aggregates. Anaerobic Gram-positive bacteria were investigated, and Clostridium perfringens was isolated from the gut. Specific PCRs identified the toxinotype A and the ß2 toxin gene. The daily feed administration was increased to 1.5% b.w. and after 5 days, the mortality ceased. A new animal cohort from the same groups was examined after 12 weeks, showing neither gut alterations nor isolation of C. perfringens. The imbalance of intestinal microbiota, presumably caused by underfeeding, favoured C. perfringens overgrowth and severe gas formation. The diet increase possibly restored the normal microbiota.


Subject(s)
Fish Diseases , Gastrointestinal Microbiome , Animals , Clostridium perfringens , Diet/veterinary , Fishes
13.
Anaerobe ; 77: 102618, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35933078

ABSTRACT

BACKGROUND AND OBJECTIVES: Clostridium perfringens (C. perfringens), is a spore-forming and toxin-producing pathogenic Gram-positive rod-shaped bacterium with immense public health/zoonotic concern. Rodents are well-known reservoirs and vectors for a large number of zoonoses and strong links have been recognized between synanthropic rodents and foodborne disease outbreaks throughout the world. To date, no study has been conducted for studying the prevalence of C. perfringens in rodents and shrews. In this study, we investigated faecal samples from free-living rodents and shrews trapped in Meghalaya, a North-eastern hill state of India for the presence of virulent and antimicrobial-resistant C. perfringens. METHODS: A total of 122 animals comprising six species of rodents and one species of shrews were trapped: Mus musculus (n = 15), Mus booduga (n = 7), Rattus rattus (n = 9), Rattus norvegicus (n = 3), Bandicota indica (n = 30), Bandicota bengalensis (n = 32) and Suncus murinus (n = 26). The faecal swabs were collected and processed for the isolation of C. perfringens. Toxinotyping was done using PCR. Antimicrobial susceptibility testing and biofilm forming ability testing were done using Kirby Bauer disc diffusion method and crystal violet assay. RESULTS: C. perfringens was isolated from 27 of the 122 faecal swabs (22.1%), from six species of rodents and shrews. Five of the host species were rodents, Bandicota bengalensis (25%), Bandicota indica (16.7%), Rattus norvegicus (33.3%), Mus musculus (13.3%), Mus booduga (42.8%) and Suncus murinus (shrew) (29.6%). The common toxinotype was type A (59.2%) followed by Type A with beta2 toxin (33.3%), Type C (3.7%) and Type C with beta2 toxin (3.7%). None of the isolates harboured cpe, etx, iap, and NetB genes and therefore none was typed as either B, D, E, F, or G. Nine isolates (33.3%) turned out to be multi-drug resistant (MDR), displaying resistance to three or more categories of antibiotics tested. Twenty-three out of twenty-seven isolates (85.2%) were forming biofilms. CONCLUSION: Globally, this is the first study to report the prevalence of C. perfringens and its virulence profile and antimicrobial resistance in free-living rodents and shrews. The rodents and shrews can potentially contaminate the food and environment and can infect humans and livestock with multi-drug resistant/virulent Type A and Type C C. perfringens.


Subject(s)
Clostridium Infections , Shrews , Mice , Rats , Animals , Humans , Shrews/microbiology , Clostridium perfringens/genetics , Prevalence , Biofilms , Murinae , Clostridium Infections/epidemiology , Clostridium Infections/veterinary , Clostridium Infections/microbiology
14.
Anaerobe ; 69: 102324, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33508439

ABSTRACT

Clostridium perfringens (C. perfringens), a prolific toxin-producing anaerobe is an important foodborne pathogen with a huge public health concern. Rapid and on-site detection of C. perfringens is of specific importance in developing countries. In the present study, saltatory rolling circle amplification (SRCA) assay was developed for culture-independent, rapid and visual detection of C. perfringens and evaluated in meat with pork as a model. The specificity of the SRCA assay was ascertained by using 62 C. perfringens and 18 non- C. perfringens strains. The analytical sensitivity of the developed SRCA, conventional and real-time PCR assays were 80 fg, 800 fg and 800 fg DNA per tube, respectively. The limit of detection of the SRCA assay was 80 CFU/g of pork in the absence of enrichment and 8 CFU/g after short enrichment of 6 h. The detection limits of 80 CFU/g and 8 CFU/g of pork were attained within 120 min and 8 h, respectively. Real-world or field relevancy of the developed assay was evaluated by screening 82 raw and processed pork samples. As the developed assay is simple, user-friendly, cost-effective and sophisticated-equipment free, it would be more suitable for on-site testing of C. perfringens in foods. To our information, this is the first report to apply SRCA for the detection of C. perfringens.


Subject(s)
Clostridium perfringens/isolation & purification , Food Microbiology/methods , Genome, Bacterial , Molecular Diagnostic Techniques/methods , Pork Meat/microbiology , Real-Time Polymerase Chain Reaction/methods , Animals , Species Specificity , Swine
15.
Avian Pathol ; 49(5): 423-427, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32208870

ABSTRACT

Necrotic enteritis (NE) is one of the most detrimental infectious diseases in the modern poultry industry, characterized by necrosis in the small intestine. It is commonly accepted that NetB-producing C. perfringens type G strains are responsible for the disease. However, based on both macroscopic and histopathological observations, two distinct types of NE are observed. To date, both a haemorrhagic form of NE and the type G-associated non-haemorrhagic disease entity are commonly referred to as NE and the results from scientific research are interchangeably used, without distinguishing between the disease entities. Therefore, we propose to rename the haemorrhagic disease entity to necro-haemorrhagic enteritis.


Subject(s)
Bacterial Toxins/metabolism , Chickens/microbiology , Clostridium Infections/veterinary , Clostridium perfringens/metabolism , Enteritis/veterinary , Enterotoxins/metabolism , Necrosis/veterinary , Poultry Diseases/pathology , Animals , Clostridium Infections/microbiology , Clostridium Infections/pathology , Enteritis/microbiology , Enteritis/pathology , Intestine, Small/microbiology , Intestine, Small/pathology , Necrosis/microbiology , Poultry Diseases/microbiology , Terminology as Topic
16.
J Infect Chemother ; 26(1): 92-94, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31409524

ABSTRACT

Clostridium bacteremia is a well-known cause of infection in patients with gastrointestinal lesions. However, the clinical characteristics of this infection in cancer patients are unclear. We retrospectively reviewed cases of blood cultures positive for Clostridium species between March 1, 2004 and May 30, 2018 at the Shizuoka Cancer Center Hospital. Medical records of 40 patients who met the study criteria were reviewed for age, gender, underlying disease, history of disease, blood culture results, laboratory test results, and radiographic data. The common sources of Clostridium species in these patients were hepatobiliary tract infection and liver abscess (13/40; 32.5%) and bacteremia/enteritis due to gastrointestinal tumor (13/40; 32.5%). All patients had malignancies, with the most common being colorectal cancer (n = 9) followed by pancreatic cancer (n = 8) and gastric cancer (n = 6). The most common species isolated was C. perfringens followed by C. ramnosum. Twenty-five patients (62.5%) had polymicrobial bacteremia with the following organisms isolated from concurrent blood cultures: Escherichia coli (n = 8) and Klebsiella spp. (n = 7). Of these bacteremia cases, 37 had digestive organ lesions such as gastrointestinal malignancy, peritoneal dissemination, or intestinal infiltration. Seventeen patients died, resulting in an overall mortality rate of 42.5% at 30 days. Common cases of Clostridium bacteremia were derived from gastrointestinal lesions, and because Clostridium bacteremia is observed regardless of species, it should be considered necessary to examine gastrointestinal lesions.


Subject(s)
Bacteremia , Clostridium Infections , Neoplasms , Adult , Aged , Aged, 80 and over , Bacteremia/complications , Bacteremia/diagnosis , Bacteremia/epidemiology , Bacteremia/microbiology , Clostridium , Clostridium Infections/complications , Clostridium Infections/diagnosis , Clostridium Infections/epidemiology , Clostridium Infections/microbiology , Female , Gastrointestinal Neoplasms , Humans , Male , Middle Aged , Neoplasms/complications , Neoplasms/epidemiology , Retrospective Studies
17.
Food Microbiol ; 85: 103285, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31500704

ABSTRACT

The objective of this study was to determine the kinetic parameters and apply Markov Chain Monte Carlo (MCMC) simulation to predict the growth of Clostridium perfringens from spores in cooked ground chicken meat during dynamic cooling. Inoculated samples were exposed to various cooling conditions to observe dynamic growth. A combination of 4 cooling profiles was used in one-step inverse analysis with the Baranyi model as the primary model and the cardinal parameters model as the secondary model. Six kinetic parameters of the Baranyi model and the cardinal parameters model, including Q0, Ymax, µopt, Tmin, Topt, and Tmax, were estimated. The estimated Tmin, Topt, and Tmax were 14.8, 42.9, and 50.5 °C, respectively, with a µopt of 5.25 h-1 and maximum cell density of 8.4 log CFU/g. Correlation analysis showed that both Q0 and Ymax are weakly correlated to other parameters, while the remaining parameters are mostly mildly to strongly correlated with each other. Although it may be difficult to estimate highly correlated parameters using a single temperature profile, one-step analysis with multiple different temperature profiles helped estimate them successfully. The estimated parameters were used as the prior information to construct the posterior distribution for Bayesian analysis. MCMC simulation was used to predict the bacterial growth using different dynamic temperature profiles for validation of the accuracy of the predictive models. The MCMC simulation results showed that the Bayesian analysis produced more accurate predictions of bacterial growth during cooling than the deterministic method. With Bayesian analysis, the root-mean-square-error (RMSE) of prediction was only 0.1 log CFU/g with all residual errors within ±0.25 log CFU/g. Therefore, Bayesian analysis is recommended for predicting the growth of C. perfringens in cooked meat during cooling.


Subject(s)
Clostridium perfringens/growth & development , Cooking , Food Handling , Meat Products/microbiology , Temperature , Animals , Bayes Theorem , Chickens , Colony Count, Microbial , Computer Simulation , Kinetics , Markov Chains , Models, Biological , Monte Carlo Method , Spores, Bacterial/growth & development
18.
Microb Pathog ; 136: 103699, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31472261

ABSTRACT

Clostridium perfringens (C. perfringens) type C is one of major pathogenic causing diarrhea and other intestinal inflammatory diseases in piglets, which seriously affects the healthy development of the swine industries. Studies have found that miRNAs play important roles in regulating piglet diarrhea challenged by pathogenic E. coli and Salmonella. However, little is known miRNAs in the ileum of diarrheic piglets caused by C. perfringens type C. Therefore, we studied the expression profiles of the ileum miRNAs of 7-day-old piglets infected with C. perfringens type C using small RNA-Seq, including control (IC), susceptible (IS) and resistant (IR) groups. As a result, 53 differentially expressed miRNAs were found. KEGG pathway analysis for target genes revealed that these miRNAs were involved in ErbB signaling pathway, MAPK signaling pathway, Jak-STAT signaling pathway and Wnt signaling pathway. The expression correlation analysis between miRNAs and target genes revealed that the expression of miR-7134-5p had negative correlation with target NFATC4, miR-500 had negative correlation with target ELK1, HSPA2 and IL7R, and miR-92b-3p had negative correlation with target CLCF1 in ileum of IR vs IS group, suggesting that miR-7134-5p targeting to NFATC4, miR-500 targeting to ELK1, HSPA2 and IL7R, and miR-92b-3p targeting to CLCF1 were probably involved in piglet resisting C. perfringens type C. The results will provide value resources for better understanding of the genetic basis of C. perfringens type C resistance in piglet and lays a new foundation for identifying novel markers of C. perfringens type C resistance.


Subject(s)
Clostridium Infections/veterinary , Clostridium perfringens/growth & development , Diarrhea/veterinary , Ileum/pathology , MicroRNAs/analysis , Swine Diseases/pathology , Animals , Animals, Newborn , Clostridium Infections/pathology , Diarrhea/pathology , Swine
19.
Anaerobe ; 57: 63-74, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30922886

ABSTRACT

The prevalence and lethality associated with C. perfringens alpha (CPA) and enterotoxin (CPE) toxaemia necessitate the need for rapid and definitive detection systems to initiate management measures. In the present study, a sandwich duplex immuno-capture PCR (SD-IPCR) was developed by employing IgY antibodies against a bivalent protein r-Cpae derived from CPA and CPE for antigen capture and reporter antibodies against truncated CPA or CPE conjugated to oligomers of distinguishable size for antigen revealing and signal amplification. The avian immunoglobulin's (IgY) were devoid of reactivity with S. aureus protein A (SpA), a commensal that often co-exists with C. perfringens. The assay was specific, had a detection limit (LOD) of 1 pg/ml for both CPA and CPE in PBS and improved the LOD by 104 folds compared to an analogous sandwich ELISA with same set of antibodies. In spiking studies, a ten-fold reduction in LOD was observed in case of intestinal tissue samples (10 pg/ml) however, no change in LOD was observed when SD-IPCR was applied on to faecal, serum or muscle tissue samples. Of the 136 natural samples examined, the SD-IPCR could detect CPA and CPE in 29.4% and 35.3% samples, while the sandwich ELISAs could detect the same in 25.7% and 25% samples respectively owing to the relatively lesser sensitivity. The LOD and specificity of the SD-IPCR demonstrates its applicability as an efficient and rapid platform for direct detection CPA and CPE from diverse samples matrices in clinical microbiological and meat testing laboratories.


Subject(s)
Bacterial Toxins/analysis , Calcium-Binding Proteins/analysis , Enterotoxins/analysis , Gas Gangrene/veterinary , Immunoassay/methods , Polymerase Chain Reaction/methods , Type C Phospholipases/analysis , Animals , Bacterial Toxins/genetics , Calcium-Binding Proteins/genetics , Cattle , Cattle Diseases/diagnosis , Clostridium perfringens , Enterotoxins/genetics , Gas Gangrene/diagnosis , Goat Diseases/diagnosis , Goats , Sensitivity and Specificity , Swine , Swine Diseases/diagnosis , Time Factors , Type C Phospholipases/genetics
20.
Anaerobe ; 59: 72-75, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31129336

ABSTRACT

The aim of this study was to evaluate the titers of neutralizing antibodies in cattle inoculated with multivalent commercial clostridial vaccines containing C. botulinum type C (BoNTC), C. botulinum type D (BoNTD), and C. perfringens epsilon (ETX) toxoids for a period of one year. Cattle (Bos taurus), aged 4-6 months and not previously immunized, were vaccinated under four different protocols at days 0 and 30 and followed over one year. Individual serum titration was performed by a serum neutralization test in mice or in MDCK cells. The number of animals with detectable neutralizing antibodies ranged from 40.6% to 78.1%, but only 12.5% of animals showed neutralizing antibodies against all tested antigens. Neutralizing antibodies were found only until 60 days for ETX, 120 days for BoNTC, and 180 days for BoNTD. The absence of detectable neutralizing antibodies against the three antigens before 360 days, suggests that cattle remained unprotected for a long period before the recommended booster vaccination.


Subject(s)
Bacterial Toxins/immunology , Botulinum Toxins/immunology , Immunity, Humoral , Toxoids/immunology , Animals , Antitoxins/blood , Cattle , Dogs , Madin Darby Canine Kidney Cells , Mice , Neutralization Tests , Time Factors , Toxoids/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL