Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Br J Nutr ; 119(7): 734-747, 2018 04.
Article in English | MEDLINE | ID: mdl-29569542

ABSTRACT

Mammalian neonates undergo rapid transitions from a sterile uterine environment with a continuous intravenous supply of nutrients to a microbe-rich environment with intermittent ingesting of colostrum/milk via the gut. Currently, little is known about the colostrum-induced alterations of intestinal mucosal proteins in piglets with intra-uterine growth restriction (IUGR). In this study, we sought to investigate the innate differences and effects of colostrum on alterations in small-intestinal proteomes of IUGR piglets. Two IUGR (approximately 0·9 kg) and two normal-birth weight (NBW; approximately 1·3 kg) piglets were obtained from each of six sows at birth. One half (n 12; 6 IUGR v. 6 NBW) of the selected newborn piglets were killed to obtain jejunum samples, and the other half (n 12; 6 IUGR v. 6 NBW) of the newborn piglets were allowed to suckle colostrum from their own mothers for 24 h before jejunum sample collection. On the basis of proteomic analysis, we identified thirty-one differentially expressed proteins in the jejunal mucosa between IUGR and normal neonates before or after colostrum consumption. The intestinal proteins altered by colostrum feeding play important roles in the following: (1) increasing intestinal integrity, transport of nutrients, energy metabolism, protein synthesis, immune response and, therefore, cell proliferation; and (2) decreasing oxidative stress, and therefore cell apoptosis, in IUGR neonates. However, colostrum only partially ameliorated the inferior status of the jejunal mucosa in IUGR neonates. These findings provide the first evidence in intestinal protein alterations of IUGR neonates in response to colostrum ingestion, and thus render new insights into the mechanisms responsible for impaired growth in IUGR neonates and into new nutritional intervention strategies.


Subject(s)
Colostrum , Fetal Growth Retardation/veterinary , Intestinal Mucosa/metabolism , Jejunum/metabolism , Swine Diseases/metabolism , Animal Nutritional Physiological Phenomena , Animals , Animals, Newborn , Blood Glucose , Energy Metabolism , Female , Fetal Growth Retardation/immunology , Fetal Growth Retardation/metabolism , Gene Expression Regulation/drug effects , Glucose/metabolism , Jejunum/drug effects , Pregnancy , Proteomics , Swine , Swine Diseases/immunology , Transcriptome
2.
JHEP Rep ; 3(4): 100315, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34345813

ABSTRACT

BACKGROUND & AIMS: Liver lobules are typically subdivided into 3 metabolic zones: zones 1, 2, and 3. However, the contribution of zonal differences in hepatocytes to liver regeneration, as well as to carcinogenic susceptibility, remains unclear. METHODS: We developed a new method for sustained genetic labelling of zone 3 hepatocytes and performed fate tracing to monitor these cells in multiple mouse liver tumour models. RESULTS: We first examined changes in the zonal distribution of the Wnt target gene Axin2 over time using Axin2-Cre ERT2 ;Rosa26-Lox-Stop-Lox-tdTomato mice (Axin2;tdTomato). We found that following tamoxifen administration at 3 weeks of age, approximately one-third of total hepatocytes that correspond to zone 3 were labelled in Axin2;tdTomato mice; the tdTomato+ cell distribution closely matched that of the zone 3 marker CYP2E1. Cell fate analysis revealed that zone 3 hepatocytes maintained their own lineage but rarely proliferated beyond their liver zonation during homoeostasis; this indicated that our protocol enabled persistent genetic labelling of zone 3 hepatocytes. Using this system, we found that zone 3 hepatocytes generally had high neoplastic potential, which was promoted by constitutive activation of Wnt/ß-catenin signalling in the pericentral area. However, the frequency of zone 3 hepatocyte-derived tumours varied depending on the regeneration pattern of the liver parenchyma in response to liver injury. Notably, Axin2-expressing hepatocytes undergoing chronic liver injury significantly contributed to liver regeneration and possessed high neoplastic potential. Additionally, we revealed that the metabolic phenotypes of liver tumours were acquired during tumorigenesis, irrespective of their spatial origin. CONCLUSIONS: Hepatocytes receiving Wnt/ß-catenin signalling from their microenvironment have high neoplastic potential, and Wnt/ß-catenin signalling is a potential drug target for the prevention of hepatocellular carcinoma. LAY SUMMARY: Lineage tracing revealed that zone 3 hepatocytes residing in the pericentral niche have high neoplastic potential. Under chronic liver injury, hepatocytes receiving Wnt/ß-catenin signalling broadly exist across all hepatic zones and significantly contribute to liver tumorigenesis as well as liver regeneration. Wnt/ß-catenin signalling is a potential drug target for the prevention of hepatocellular carcinoma.

SELECTION OF CITATIONS
SEARCH DETAIL