Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Eur J Nucl Med Mol Imaging ; 51(9): 2547-2557, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38625402

ABSTRACT

PURPOSE: Cadherin-17 (CDH17) is a calcium-dependent cell adhesion protein that is overexpressed in several adenocarcinomas, including gastric, colorectal, and pancreatic adenocarcinoma. High levels of CDH17 have been linked to metastatic disease and poor prognoses in patients with these malignancies, fueling interest in the protein as a target for diagnostics and therapeutics. Herein, we report the synthesis, in vitro validation, and in vivo evaluation of a CDH17-targeted 89Zr-labeled immunoPET probe. METHODS: The CDH17-targeting mAb D2101 was modified with an isothiocyanate-bearing derivative of desferrioxamine (DFO) to produce a chelator-bearing immunoconjugate - DFO-D2101 - and flow cytometry and surface plasmon resonance (SPR) were used to interrogate its antigen-binding properties. The immunoconjugate was then radiolabeled with zirconium-89 (t1/2 ~ 3.3 days), and the serum stability and immunoreactive fraction of [89Zr]Zr-DFO-D2101 were determined. Finally, [89Zr]Zr-DFO-D2101's performance was evaluated in a trio of murine models of pancreatic ductal adenocarcinoma (PDAC): subcutaneous, orthotopic, and patient-derived xenografts (PDX). PET images were acquired over the course of 5 days, and terminal biodistribution data were collected after the final imaging time point. RESULTS: DFO-D2101 was produced with a degree of labeling of ~ 1.1 DFO/mAb. Flow cytometry with CDH17-expressing AsPC-1 cells demonstrated that the immunoconjugate binds to its target in a manner similar to its parent mAb, while SPR with recombinant CDH17 revealed that D2101 and DFO-D2101 exhibit nearly identical KD values: 8.2 × 10-9 and 6.7 × 10-9 M, respectively. [89Zr]Zr-DFO-D2101 was produced with a specific activity of 185 MBq/mg (5.0 mCi/mg), remained >80% stable in human serum over the course of 5 days, and boasted an immunoreactive fraction of >0.85. In all three murine models of PDAC, the radioimmunoconjugate yielded high contrast images, with high activity concentrations in tumor tissue and low uptake in non-target organs. Tumoral activity concentrations reached as high as >60 %ID/g in two of the cohorts bearing PDXs. CONCLUSION: Taken together, these data underscore that [89Zr]Zr-DFO-D2101 is a highly promising probe for the non-invasive visualization of CDH17 expression in PDAC. We contend that this radioimmunoconjugate could have a significant impact on the clinical management of patients with both PDAC and gastrointestinal adenocarcinoma, most likely as a theranostic imaging tool in support of CDH17-targeted therapies.


Subject(s)
Cadherins , Radioisotopes , Zirconium , Animals , Humans , Mice , Cadherins/metabolism , Cell Line, Tumor , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/metabolism , Deferoxamine/chemistry , Adenocarcinoma/diagnostic imaging , Immunoconjugates/pharmacokinetics , Antibodies, Monoclonal/pharmacokinetics , Tissue Distribution , Positron-Emission Tomography
2.
Biochim Biophys Acta Rev Cancer ; 1869(2): 321-332, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29673969

ABSTRACT

We propose a new cadherin family classification comprising epithelial cadherins (cadherin 17 [CDH17], cadherin 16, VE-cadherin, cadherin 6 and cadherin 20) containing RGD motifs within their sequences. Expression of some RGD cadherins is associated with aggressive forms of cancer during the late stages of metastasis, and CDH17 and VE-cadherin have emerged as critical actors in cancer metastasis. After binding to α2ß1 integrin, these cadherins promote integrin ß1 activation, and thereby cell adhesion, invasion and proliferation, in liver and lung metastasis. Activation of α2ß1 integrin provokes an affinity increase for type IV collagen, a major component of the basement membrane and a critical partner for cell anchoring in liver and other metastatic organs. Activation of α2ß1 integrin by RGD motifs breaks an old paradigm of integrin classification and supports an important role of this integrin in cancer metastasis. Recently, synthetic peptides containing the RGD motif of CDH17 elicited highly specific and selective antibodies that block the ability of CDH17 RGD to activate α2ß1 integrin. These monoclonal antibodies inhibit metastatic colonization in orthotopic mouse models of liver and lung metastasis for colorectal cancer and melanoma, respectively. Hopefully, blocking the cadherin RGD ligand capacity will give us control over the integrin activity in solid tumors metastasis, paving the way for development of new agents of cancer treatment.


Subject(s)
Cadherins/metabolism , Cell Movement , Integrin alpha2beta1/metabolism , Neoplasms/metabolism , Oligopeptides/metabolism , Receptors, Immunologic/metabolism , Receptors, Peptide/metabolism , Animals , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Binding Sites , Cadherins/antagonists & inhibitors , Cadherins/immunology , Cell Adhesion , Cell Movement/drug effects , Cell Proliferation , Humans , Integrin alpha2beta1/antagonists & inhibitors , Integrin alpha2beta1/immunology , Neoplasm Metastasis , Neoplasms/drug therapy , Neoplasms/pathology , Protein Binding , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/immunology , Receptors, Peptide/antagonists & inhibitors , Receptors, Peptide/immunology , Signal Transduction
3.
J Surg Oncol ; 123(5): 1253-1262, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33524213

ABSTRACT

BACKGROUND AND OBJECTIVES: In this retrospective study, we examined the CA17 tissue expression and analyzed its clinical significance in cholangiocarcinoma (CCA). MATERIALS AND METHODS: Immunohistochemistry was performed to assess CA17 expression on tissue microarrays in a training cohort enrolling 120 CCA patients and a validation cohort comprising 60 CCA patients. Image pro plus was applied to score the staining intensity and expression level of CA17 marker. Kaplan-Meier analysis, Cox's proportional hazards regression, and nomogram were applied to evaluate the prognostic significance of CA17. RESULTS: CA17 cancer biomarker over-expression was significantly observed in CCA compared to their non-tumor counterparts, and positively correlated with aggressive tumor phenotypes, like lymph node metastasis. Meanwhile, patients with high expression of CA17 correlated with worse postoperative overall survival (OS) and recurrence-free survival. Besides, multivariate analysis identified that CA17 expression was an independent prognostic factor for cholangiocarcinoma patients, which indicated that the CA17 could be more efficient than serum CA19-9 in predicting the OS of CCA patients. Notably, the nomogram integrating CA17 expression had better prognostic performance as compared with current TNM staging systems. CONCLUSION: CA17 was an independent adverse prognostic factor for CCA patients' survival, which may serve as a promising prognostic biomarker for CCA patients.


Subject(s)
Bile Duct Neoplasms/pathology , Biomarkers, Tumor/metabolism , Cadherins/metabolism , Cholangiocarcinoma/pathology , Neoplasm Recurrence, Local/pathology , Adult , Aged , Aged, 80 and over , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/surgery , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/surgery , Female , Follow-Up Studies , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/surgery , Prognosis , Retrospective Studies , Survival Rate
4.
J Pathol ; 246(3): 289-299, 2018 11.
Article in English | MEDLINE | ID: mdl-30047135

ABSTRACT

Cadherin-17 is an adhesion molecule expressed specifically in intestinal epithelial cells. It is frequently underexpressed in human colorectal cancer. The physiological function of cadherin-17 and its role in tumourigenesis have not yet been determined. We used the transcription activator-like effector nuclease technique to generate a Cdh17 knockout (KO) mouse model. Intestinal tissues were analysed with histological, immunohistochemical and ultrastructural methods. Colitis was induced by oral administration of dextran sulphate sodium (DSS), and, to study effects on intestinal tumourigenesis, mice were given azoxymethane (AOM) and DSS to induce colitis-associated cancer. Cdh17 KO mice were viable and fertile. The histology of their small and large intestines was similar to that of wild-type mice. The junctional architecture of the intestinal epithelium was preserved. The loss of cadherin-17 resulted in increased permeability and susceptibility to DSS-induced colitis. The AOM/DSS model demonstrated that Cdh17 KO enhanced tumour formation and progression in the intestine. Increased nuclear translocation of Yap1, but not of ß-catenin, was identified in the tumours of Cdh17 KO mice. In conclusion, cadherin-17 plays a crucial role in intestinal homeostasis by limiting the permeability of the intestinal epithelium. Cadherin-17 is also a tumour suppressor for intestinal epithelia. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Adenoma/metabolism , Cadherins/deficiency , Carcinoma/metabolism , Colitis/metabolism , Colorectal Neoplasms/metabolism , Intestinal Absorption , Intestinal Mucosa/metabolism , Tumor Suppressor Proteins/deficiency , Active Transport, Cell Nucleus , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adenoma/chemically induced , Adenoma/genetics , Adenoma/pathology , Animals , Azoxymethane , Cadherins/genetics , Carcinoma/chemically induced , Carcinoma/genetics , Carcinoma/pathology , Cell Cycle Proteins , Colitis/chemically induced , Colitis/genetics , Colitis/pathology , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Dextran Sulfate , Disease Models, Animal , Gene Deletion , Genetic Predisposition to Disease , Intestinal Mucosa/pathology , Mice, Inbred C57BL , Mice, Knockout , Permeability , Phenotype , Phosphoproteins/genetics , Phosphoproteins/metabolism , Signal Transduction , Tumor Suppressor Proteins/genetics , YAP-Signaling Proteins
5.
Int J Mol Sci ; 20(13)2019 Jul 09.
Article in English | MEDLINE | ID: mdl-31324051

ABSTRACT

Cell-cell adhesion molecules (cadherins) and cell-extracellular matrix adhesion proteins (integrins) play a critical role in the regulation of cancer invasion and metastasis. Although significant progress has been made in the characterization of multiple members of the cadherin superfamily, most of the published work continues to focus in the switch E-/N-cadherin and its role in the epithelial-mesenchymal transition. Here, we will discuss the structural and functional properties of a subset of cadherins (cadherin 17, cadherin 5 and cadherin 6) that have an RGD motif in the extracellular domains. This RGD motif is critical for the interaction with α2ß1 integrin and posterior integrin pathway activation in cancer metastatic cells. However, other signaling pathways seem to be affected by RGD cadherin interactions, as will be discussed. The range of solid tumors with overexpression or "de novo" expression of one or more of these three cadherins is very wide (gastrointestinal, gynaecological and melanoma, among others), underscoring the relevance of these cadherins in cancer metastasis. Finally, we will discuss different evidences that support the therapeutic use of these cadherins by blocking their capacity to work as integrin ligands in order to develop new cures for metastatic patients.


Subject(s)
Antigens, CD/metabolism , Cadherins/metabolism , Neoplasms/metabolism , Humans , Signal Transduction/physiology
6.
Tumour Biol ; 37(7): 8775-82, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26743780

ABSTRACT

We aim to explore the associations of fascin-1 and cadherin-17 in gastric cancer (GC) to the clinicopathologic features and prognosis of GC. Case group included 204 GC tissues while control group comprised 204 paired adjacent cancer tissues. Expressions of fascin-1 and cadherin-17 were measured with immunohistochemistry and western blot and then analyzed statistically in relation to clinicopathologic features and survival time. Survival curve was drawn by Kaplan-Meier method, and independent prognostic factors were identified with Cox proportional hazards regression model. Fascin-1 was positively expressed in 45.1 % of GC tissues and in 27.5 % of adjacent cancer tissues, respectively (P < 0.05); cadherin-17 was positively expressed in 51.5 % of GC tissues and in 33.8 % of adjacent cancer tissues (P < 0.05). Fascin-1 expression in GC tissues was related to tumor size (P = 0.001) and Lauren classification (P = 0.001). Cadherin-17 expression in GC tissues was related to tumor size (P < 0.001), Lauren classification (P = 0.009), clinical staging (P = 0.001), and distant metastasis (P = 0.002). Fascin-1 expression was positively correlated with cadherin-17 expression in GC tissues (r = 0.828, P < 0.01). Patients with positive expression of both fascin-1 and cadherin-17 had lower survival rates than those with negative expression (all P < 0.01). Cox regression analysis showed that fascin-1 expression, cadherin-17 expression, tumor size, and differentiation were independent risk factors for GC (all P < 0.05). Fascin-1 and cadherin-17 are related to clinicopathologic features of GC and are independent adverse prognostic factors for GC.


Subject(s)
Cadherins/metabolism , Carrier Proteins/metabolism , Microfilament Proteins/metabolism , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Adult , Aged , Cell Differentiation/physiology , Female , Humans , Immunohistochemistry/methods , Kaplan-Meier Estimate , Male , Middle Aged , Neoplasm Staging/methods , Prognosis , Survival Rate
7.
Histopathology ; 66(2): 225-33, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25307987

ABSTRACT

AIMS: Recently, we described a series of pancreatic neuroendocrine tumours (PanNETs) featuring prominent stromal fibrosis, which we called sclerosing PanNETs. The aim of this study was to examine the pathological, immunophenotypic and clinical differences between sclerosing and non-sclerosing PanNETs. METHODS AND RESULTS: One hundred and six PanNETs were identified, of which 15 (14%) were sclerosing NETs. Tissue microarrays containing 44 non-sclerosing and five sclerosing PanNETs, as well as sections from 10 additional sclerosing tumours, were immunohistochemically labelled for serotonin, CDX2, CDH17, and islet 1. Sclerosing PanNETs were smaller (P = 0.045) and more likely to show an infiltrative growth pattern (P < 0.001) than non-sclerosing PanNETs. They were frequently associated with a large pancreatic duct, causing duct stenosis. Additionally, we found significantly increased expression of the small intestinal NET markers serotonin, CDX2 and CDH17 in sclerosing PanNETs (P < 0.001) as compared with non-sclerosing PanNETs. No difference in clinical outcome was found; however, more sclerosing PanNETs were stage IIB or above (P = 0.035), with lymph node metastasis being seen in three of nine sclerosing PanNETs with a tumour size of <20 mm. CONCLUSIONS: Sclerosing PanNETs have distinct pathological features and biomarker expression profiles. In addition, lymph node metastasis can be present even with small sclerosing PanNETs.


Subject(s)
Biomarkers, Tumor/analysis , Cadherins/biosynthesis , Neuroendocrine Tumors/pathology , Pancreatic Neoplasms/pathology , Adult , Aged , Female , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Lymphatic Metastasis/pathology , Male , Middle Aged , Neuroendocrine Tumors/mortality , Pancreatic Neoplasms/mortality , Tissue Array Analysis
8.
Histopathology ; 66(7): 1010-21, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25388236

ABSTRACT

AIMS: Cadherin 17 (CDH17) is expressed primarily in normal intestinal epithelium and digestive tract tumours, and has limited expression in other neoplasms. The aims of this study were to examine CDH17 expression in well-differentiated neuroendocrine tumours (WDNETs) from various primary sites, representing the foregut, midgut, and hindgut, and tumours metastasizing to the liver, and to correlate the differences between the expression of CDH17, CDX2, and thyroid transcription factor 1 (TTF1). METHODS AND RESULTS: We investigated CDH17 immunohistochemical expression in 150 primary WDNETs from eight anatomical sites, including 68 from the foregut, 70 from the midgut, and 12 from the hindgut, and 15 metastases. CDH17 immunoreactivity increased significantly from foregut to hindgut WDNETs (P < 0.0001). Pancreatic WDNETs expressed CDH17 at a significantly higher frequency than other foregut tumours. Within the midgut, appendiceal and small-intestinal WDNETs were more frequently positive for CDH17 than for CDX2. All hindgut WDNETs expressed CDH17, in contrast to CDX2 (positive in one rectal case). CDH17 expression in liver metastases was similar to that of the primary tumours. CONCLUSIONS: This study is the first to comprehensively examine CDH17 expression in WDNETs from different sites. CDH17 is a sensitive marker for midgut WDNETs, and the CDH17+/CDX2-/TTF1- phenotype was found to be sensitive (92%) and specific (91%) for hindgut WDNETs.


Subject(s)
Biomarkers, Tumor/metabolism , Cadherins/metabolism , DNA-Binding Proteins/metabolism , Intestinal Neoplasms/metabolism , Neuroendocrine Tumors/metabolism , Humans , Immunohistochemistry , Intestinal Neoplasms/pathology , Male , Neuroendocrine Tumors/pathology , Transcription Factors
9.
Biochim Biophys Acta ; 1834(11): 2372-9, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23557862

ABSTRACT

Colorectal cancer (CRC), one of the most prevalent cancers in the western world, is treatable if detected early. However, 70% of CRC is detected at an advanced stage. This is largely due to the inadequacy of current faecal occult blood screening testing and costs involved in conducting population-based colonoscopy, the 'gold standard' for CRC detection. Another biomarker for CRC, carcinoembryonic antigen, while useful for monitoring CRC recurrence, is ineffective, lacking the specificity required early detection of CRC. For these reasons there is a need for more effective blood-based markers for early CRC detection. In this study we targeted glycoproteins secreted from the human colon carcinoma cell line LIM1215 as a source of potential CRC biomarkers. Secreted candidate glycoproteins were confirmed by MS and validated by Western blot analysis of tissue/tumour interstitial fluid (Tif) from LIM1215 xenograft tumours grown in immunocompromised mice. Overall, 39 glycoproteins were identified in LIM1215 culture media (CCM) and 5 glycoproteins in LIM1215 tumour xenograft Tif; of these, cadherin-17 (CDH17), galectin-3 binding protein (LGALS3BP), and tyrosine-protein kinase-like 7 (PTK7) were identified in both CM and glycosylation motifs. Swiss-Prot was used to annotate Tif. Many of the glycoproteins identified in this study (e.g., AREG, DSG2, EFNA1, EFNA3, EFNA4, EPHB4, ST14, and TIMP1) have been reported to be implicated in CRC biology. Interestingly, the cadherin-17 ectodomain, but not full length cadherin-17, was identified in CM, Tif and plasma derived from mice bearing the LIM1215 xenograft tumour. To our knowledge, this is the first report of the cadherin-17 ectodomain in plasma. In this study, we report for the first time that the presence of full-length cadherin-17 in exosomes released into the CM. This article is part of a Special Issue entitled: An Updated Secretome.


Subject(s)
Cadherins/analysis , Cadherins/blood , Colon/pathology , Colonic Neoplasms/blood , Colonic Neoplasms/pathology , Extracellular Fluid/metabolism , Amino Acid Sequence , Animals , Biomarkers, Tumor/analysis , Biomarkers, Tumor/blood , Biomarkers, Tumor/metabolism , Cadherins/metabolism , Cell Line, Tumor , Colon/metabolism , Colonic Neoplasms/metabolism , Exosomes/metabolism , Exosomes/pathology , Glycoproteins/analysis , Glycoproteins/metabolism , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Mice, SCID , Molecular Sequence Data , Proteomics
10.
Virchows Arch ; 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37349623

ABSTRACT

Histopathological diagnosis of pulmonary tumors is essential for treatment decisions. The distinction between primary lung adenocarcinoma and pulmonary metastasis from the gastrointestinal (GI) tract may be difficult. Therefore, we compared the diagnostic value of several immunohistochemical markers in pulmonary tumors. Tissue microarrays from 629 resected primary lung cancers and 422 resected pulmonary epithelial metastases from various sites (whereof 275 colorectal cancer) were investigated for the immunohistochemical expression of CDH17, GPA33, MUC2, MUC6, SATB2, and SMAD4, for comparison with CDX2, CK20, CK7, and TTF-1. The most sensitive markers for GI origin were GPA33 (positive in 98%, 60%, and 100% of pulmonary metastases from colorectal cancer, pancreatic cancer, and other GI adenocarcinomas, respectively), CDX2 (99/40/100%), and CDH17 (99/0/100%). In comparison, SATB2 and CK20 showed higher specificity, with expression in 5% and 10% of mucinous primary lung adenocarcinomas and both in 0% of TTF-1-negative non-mucinous primary lung adenocarcinomas (25-50% and 5-16%, respectively, for GPA33/CDX2/CDH17). MUC2 was negative in all primary lung cancers, but positive only in less than half of pulmonary metastases from mucinous adenocarcinomas from other organs. Combining six GI markers did not perfectly separate primary lung cancers from pulmonary metastases including subgroups such as mucinous adenocarcinomas or CK7-positive GI tract metastases. This comprehensive comparison suggests that CDH17, GPA33, and SATB2 may be used as equivalent alternatives to CDX2 and CK20. However, no single or combination of markers can categorically distinguish primary lung cancers from metastatic GI tract cancer.

11.
Virchows Arch ; 480(2): 269-280, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34581850

ABSTRACT

In 2020, the WHO published a new system for classifying invasive endocervical adenocarcinoma based on histological features and high-risk human papillomavirus (HPV) infection. However, immunophenotypes of each histological subtype require further investigation. We immunohistochemically analyzed 66 invasive endocervical adenocarcinomas using three cell-lineage-specific markers: claudin 18 (CLDN18) for gastric, cadherin 17 (CDH17) for intestinal, and PAX8 for Müllerian epithelial cells. We identified five immunophenotypes of endocervical adenocarcinoma: gastric (21%); intestinal (14%); gastrointestinal (11%); Müllerian (35%); and not otherwise specified (NOS) (20%). Adenocarcinomas with gastric immunophenotype, characterized by aging (p = 0.0050), infrequent HPV infection (p < 0.0001), concurrent lobular endocervical glandular hyperplasia (p = 0.0060), lymphovascular invasion (p = 0.0073), advanced clinical stage (p = 0.0001), and the poorest progression-free (p < 0.0001) and overall (p = 0.0023) survivals, were morphologically compatible with gastric-type adenocarcinoma of the WHO 2020 classification. Conversely, most adenocarcinomas with Müllerian (91%) and intestinal (89%) immunophenotypes were HPV associated and morphologically compatible with usual- or intestinal-type adenocarcinomas of the WHO 2020 classification. The morphology of adenocarcinomas with gastrointestinal immunophenotype was intermediate or mixed between those of gastric and intestinal immunophenotypes; 57% were HPV associated. Adenocarcinomas with NOS immunophenotype were mainly HPV associated (85%) and histologically poorly differentiated. Multivariate analysis revealed that gastric (p = 0.008), intestinal + gastrointestinal (p = 0.0103), and NOS (p = 0.009) immunophenotypes were independent predictors of progression-free survival. Immunophenotypes characterized by CLDN18, CDH17, and PAX8 exhibited clinicopathological relevance and may improve the diagnostic accuracy and prognostic value of conventional histological classification.


Subject(s)
Adenocarcinoma , Papillomavirus Infections , Uterine Cervical Neoplasms , Adenocarcinoma/pathology , Biomarkers, Tumor/analysis , Cadherins , Claudins , Female , Humans , PAX8 Transcription Factor , Prognosis , Uterine Cervical Neoplasms/pathology
12.
Biomater Res ; 26(1): 64, 2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36435809

ABSTRACT

BACKGROUND: It is highly desirable to develop new therapeutic strategies for gastric cancer given the low survival rate despite improvement in the past decades. Cadherin 17 (CDH17) is a membrane protein highly expressed in cancers of digestive system. Nanobody represents a novel antibody format for cancer targeted imaging and drug delivery. Nanobody targeting CHD17 as an imaging probe and a delivery vehicle of toxin remains to be explored for its theragnostic potential in gastric cancer. METHODS: Naïve nanobody phage library was screened against CDH17 Domain 1-3 and identified nanobodies were extensively characterized with various assays. Nanobodies labeled with imaging probe were tested in vitro and in vivo for gastric cancer detection. A CDH17 Nanobody fused with toxin PE38 was evaluated for gastric cancer inhibition in vitro and in vivo. RESULTS: Two nanobodies (A1 and E8) against human CDH17 with high affinity and high specificity were successfully obtained. These nanobodies could specifically bind to CDH17 protein and CDH17-positive gastric cancer cells. E8 nanobody as a lead was extensively determined for tumor imaging and drug delivery. It could efficiently co-localize with CDH17-positive gastric cancer cells in zebrafish embryos and rapidly visualize the tumor mass in mice within 3 h when conjugated with imaging dyes. E8 nanobody fused with toxin PE38 showed excellent anti-tumor effect and remarkably improved the mice survival in cell-derived (CDX) and patient-derived xenograft (PDX) models. The immunotoxin also enhanced the anti-tumor effect of clinical drug 5-Fluorouracil. CONCLUSIONS: The study presents a novel imaging and drug delivery strategy by targeting CDH17. CDH17 nanobody-based immunotoxin is potentially a promising therapeutic modality for clinical translation against gastric cancer.

13.
J Gastrointest Cancer ; 52(3): 960-969, 2021 Sep.
Article in English | MEDLINE | ID: mdl-32929682

ABSTRACT

BACKGROUND: Colorectal cancer is a major cause of morbidity and mortality throughout the world. Although the diagnosis of colorectal cancer is straightforward in primary site, yet it may represent a diagnostic problem in metastatic tumor of unknown primary origin. Hence, immunohistochemical analysis in combination with morphologic assessment and correlation with clinical data becomes crucial, because it is important to specify the primary site of metastasis since some specific tumor types may respond well to targeted molecular therapies. Therefore, establishment of reliable diagnostic markers that confirm or rule out colorectal origin is mandatory. AIM: To study the expression of cadherin 17 and CDX2 in colorectal carcinoma and to evaluate their diagnostic roles in identifying metastatic colonic from non-colonic adenocarcinomas in cancer of unknown primary site. DESIGN AND METHODS: This retrospective study included 65 cases of adenocarcinomas: 35 cases of colorectal adenocarcinoma (primary or metastatic) and 30 cases of non-colorectal adenocarcinoma. They were retrieved from the archives of Pathology Department of Ain Shams University and Ain Shams University Specialized Hospitals during the period from 2010 to 2015. Immunohistochemical study was performed using cadherin 17 and CDX2 antibodies. RESULTS: The sensitivity and specificity of CDX2 and cadherin 17 are 97.1% and 53.3% and 100% and 50% in detecting colonic adenocarcinoma respectively. The PPV, NPV, and overall accuracy of CDX2 versus cadherin 17 were 70.8%, 94.1%, and 76.9% versus 70%, 100%, and 76.9% respectively. CONCLUSION: Cadherin 17 is a more sensitive marker than CDX2 in diagnosis of carcinoma of unknown primary site especially when colorectal carcinoma is suspected.


Subject(s)
Adenocarcinoma/metabolism , CDX2 Transcription Factor/metabolism , Cadherins/metabolism , Colorectal Neoplasms/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adult , Aged , Biomarkers, Tumor/metabolism , CDX2 Transcription Factor/genetics , Cadherins/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Egypt , Female , Humans , Immunohistochemistry , Male , Middle Aged , Retrospective Studies , Sensitivity and Specificity
14.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 3): 85-94, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33682793

ABSTRACT

The cadherin superfamily of calcium-dependent cell-adhesion proteins has over 100 members in the human genome. All members of the superfamily feature at least a pair of extracellular cadherin (EC) repeats with calcium-binding sites in the EC linker region. The EC repeats across family members form distinct complexes that mediate cellular adhesion. For instance, classical cadherins (five EC repeats) strand-swap their N-termini and exchange tryptophan residues in EC1, while the clustered protocadherins (six EC repeats) use an extended antiparallel `forearm handshake' involving repeats EC1-EC4. The 7D-cadherins, cadherin-16 (CDH16) and cadherin-17 (CDH17), are the most similar to classical cadherins and have seven EC repeats, two of which are likely to have arisen from gene duplication of EC1-2 from a classical ancestor. However, CDH16 and CDH17 lack the EC1 tryptophan residue used by classical cadherins to mediate adhesion. The structure of human CDH17 EC1-2 presented here reveals features that are not seen in classical cadherins and that are incompatible with the EC1 strand-swap mechanism for adhesion. Analyses of crystal contacts, predicted glycosylation and disease-related mutations are presented along with sequence alignments suggesting that the novel features in the CDH17 EC1-2 structure are well conserved. These results hint at distinct adhesive properties for 7D-cadherins.


Subject(s)
Cadherins/chemistry , Cadherins/metabolism , Amino Acid Sequence , Cadherins/isolation & purification , Crystallography, X-Ray , Glycosylation , Humans , Protein Binding , Static Electricity
15.
Ann Nucl Med ; 34(1): 13-23, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31605356

ABSTRACT

OBJECTIVE: Cadherin-17 (CDH17) is a transmembrane protein that mediates cell-cell adhesion and is frequently expressed in adenocarcinomas, including gastric cancer. CDH17 may be an effective diagnostic marker for the staging of gastric cancer. Here, we developed an 111In-labeled anti-CDH17 monoclonal antibody (Mab) as an imaging tracer and performed biodistribution and single-photon emission computed tomography (SPECT)/computed tomography (CT) imaging studies using mice with CDH17-positive gastric cancer xenografts. CDH17 expression in gastric cancer specimens was also analyzed. METHODS: The cross-reactivity and affinity of our anti-CDH17 Mab D2101 was evaluated by surface plasmon resonance analysis and cell enzyme-linked immunosorbent assay, respectively. Biodistribution and SPECT/CT studies of 111In-labeled D2101 (111In-D2101) were performed. CDH17 expression in gastric cancer specimens was evaluated by immunohistochemistry. RESULTS: Surface plasmon resonance analysis revealed that D2101 specifically recognizes human CDH17, but not murine CDH17. The affinity of D2101 slightly decreased as a result of the radiolabeling procedures. The biodistribution study revealed high uptake of 111In-D2101 in tumors (maximum, 39.2 ± 9.5% ID/g at 96 h postinjection), but low uptake in normal organs, including the stomach. Temporal SPECT/CT imaging with 111In-D2101 visualized tumors with a high degree of tumor-to-nontumor contrast. Immunohistochemical analysis revealed that, compared with HER2, which is a potential marker of N-stage, CDH17 had a higher frequency of positivity in specimens of primary and metastatic gastric cancer. CONCLUSION: Our 111In-anti-CDH17 Mab D2101 depicted CDH17-positive gastric cancer xenografts in vivo and has the potential to be an imaging probe for the diagnosis of primary lesions and lymph-node metastasis in gastric cancer.


Subject(s)
Cadherins/immunology , Immunoconjugates/chemistry , Immunoconjugates/immunology , Indium Radioisotopes/chemistry , Single Photon Emission Computed Tomography Computed Tomography/methods , Stomach Neoplasms/diagnostic imaging , Stomach Neoplasms/pathology , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic , Gene Expression Regulation, Neoplastic , Humans , Immunoconjugates/pharmacokinetics , Isotope Labeling , Lymphatic Metastasis , Mice , Neoplasm Staging , Tissue Distribution
16.
Gene ; 682: 92-100, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-29783070

ABSTRACT

Gastric cancer (GC), one of the most common cancers of the digestive system, results in high morbidity and mortality, but the molecular mechanisms underlying GC remain largely unknown. Cadherin-17 (CDH17) is a nonclassical member of the cadherin (CDH) superfamily of calcium-dependent proteins. Despite recent advances in the understanding of CDH17 biology, the mechanism of CDH17 in GC proliferation, migration, and invasion has not been extensively studied. In the present study, we observed that CDH17 expression was increased in GC tissues compared with para-carcinoma tissues and was correlated with lymph node metastasis and the AJCC stage. Additionally, a significant correlation was found between CDH17 protein expression and the number of blood and lymph vessels in GC tissues. Furthermore, in vitro suppression of CDH17 expression using short-interfering RNA (siRNA) decreased AGS cell proliferation, migration and invasion. Conversely, overexpression of CDH17 through plasmid transfection enhanced the malignant activity of AGS cells. Moreover, CDH17 increased the matrix metallopeptidase 2 (MMP-2) levels via the canonical nuclear factor-kappaB (NF-κB) pathway. Our findings offer new insights into the mechanism of the CDH17/NF-κB/MMP-2 axis, and the associated signalling pathways might represent novel targets for the treatment of GC.


Subject(s)
Cadherins/metabolism , Gene Expression Regulation, Neoplastic , Matrix Metalloproteinase 2/metabolism , NF-kappa B/metabolism , Stomach Neoplasms/metabolism , Aged , Cell Line, Tumor , Cell Movement , Cell Proliferation , Female , Gene Expression Profiling , Humans , Lymphatic Metastasis , Male , Middle Aged , Neoplasm Invasiveness , RNA, Small Interfering/metabolism , Signal Transduction
17.
Cancer Lett ; 454: 204-214, 2019 07 10.
Article in English | MEDLINE | ID: mdl-31004701

ABSTRACT

Liver-intestine cadherin (CDH17) has been known to function as a tumor stimulator and diagnostic marker for almost two decades. However, its function in highly malignant pancreatic cancer (PC) has yet to be elucidated. Using different strategies including siRNA, shRNA, and CRISPR technology, we successfully induced knockdown and knockout of CDH17 in Panc02-H7 cells and established the corresponding stable cell lines. With these cells, we demonstrated that loss of CDH17 function not only suppressed Panc02-H7 cell growth in vitro but also significantly slowed orthotopic tumor growth in vivo, resulting in the significant life extension. In vitro studies demonstrated that impairing CDH17 inhibited cell proliferation, colony formation, and motility by mechanistically modulating pro- and anti-apoptosis events in PC cells, as CDH17 suppression obviously increased expression of Bad, cytochrome C, cleaved caspase 3, and cleaved PARP, and reduced expression of Bcl-2, Survivin, and pAkt. In vivo studies showed CDH17 knockout resulted in apoptotic PC tumor death through activating caspase-3 activity. Taken together, CDH17 functions as an oncogenic molecule critical to PC growth by regulating tumor apoptosis signaling pathways and CDH17 could be targeted to develop an anti-PC therapeutic approach.


Subject(s)
Cadherins/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Animals , Apoptosis/physiology , Cadherins/biosynthesis , Cell Line, Tumor , Cell Movement/genetics , Gene Knockdown Techniques , Gene Knockout Techniques , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , Signal Transduction , Transfection
18.
Biomed Pharmacother ; 108: 331-337, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30227326

ABSTRACT

Cadherin-17 (CDH17), a structurally unique member of the non-classical cadherin family, is associated with poor survival, cell proliferation, and metastasis in colorectal cancer. However, the role of CDH17 in the apoptosis and autophagy of colorectal cancer cells remains unclear. Here, we aimed to investigate the effect of CDH17 knockdown on autophagy and apoptosis in colorectal cancer cells. We inhibited CDH17 expression in KM12SM and KM12C colorectal cancer cells by RNA interference and found that silencing of CDH17 significantly inhibited cell viability and increased apoptosis in KM12SM and KM12C cells. In addition, silencing of CDH17 significantly increased the expression of cleaved caspase-3 and Bax and decreased the expression of Bcl-2. Concurrently, silencing of CDH17 significantly inhibited the conversion of LC3-I to LC3-II and decreased the formation of LC3+ autophagic vacuoles and the accumulation of acidic vesicular organelles, indicating that autophagy was significantly inhibited in KM12SM and KM12C cells. Additionally, treatment with the autophagy-specific activator rapamycin attenuated apoptosis in CDH17-knockdown cells and as indicated by decreased caspase-3 activity, decreased expression of cleaved caspase-3 and Bax, and increased expression of Bcl-2. In conclusion, CDH17 silencing induced apoptosis and inhibited autophagy in KM12SM and KM12C cells, and this autophagy protected the cells from apoptotic cell death.


Subject(s)
Apoptosis/genetics , Autophagy/genetics , Cadherins/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Gene Silencing , Cadherins/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans
19.
Article in English | MEDLINE | ID: mdl-29474162

ABSTRACT

Cadherin-17 (CDH17) is highly expressed in gastric cancer and is thus considered to be a good target for antibody therapy. CDH17 is classified as a nonclassical cadherin, in that it is composed of seven extracellular cadherin domains. We generated anti-CDH17 monoclonal antibodies (mAbs) which recognize the extracellular domain of CDH17. Competitive assay using AGS, a gastric cancer cell line, cells revealed that five selected anti-CDH17 mAbs recognize different epitopes on CDH17. As AGS cells were shown to exhibit broad expression pattern of CDH17 by flow cytometry, we separated three clones with a low (10,000/cell), medium (50,000/cell), and high (200,000/cell) expression level, designating them as AGSlow, AGSmed, and AGShigh, respectively. The mAbs, coupled with saporin, exhibited effective cytotoxicity to AGShigh, but poor cytotoxicity to AGSlow. By contrast, the immunotoxin cocktail using the three clones D2101, D2005, and D2008, which recognize different epitopes, exhibited efficient cytotoxicity, even to the AGSlow group. The effect of the immunotoxin cocktail is synergistic, as the combination index was demonstrated to be below 1.0, as calculated by the method of Chou and Talalay using CalcuSyn software. These results suggest that the immunotoxin cocktail targeted to multiple epitopes has synergistic effects on low expression level cells, which expand the applicable range of immunotoxin therapy for cancer.


Subject(s)
Antibodies, Monoclonal/pharmacology , Apoptosis/drug effects , Cadherins/immunology , Drug Synergism , Epitopes/immunology , Immunotoxins/pharmacology , Stomach Neoplasms/pathology , Biomarkers, Tumor/metabolism , Cadherins/antagonists & inhibitors , Cadherins/metabolism , Humans , Stomach Neoplasms/immunology , Stomach Neoplasms/metabolism , Tumor Cells, Cultured
20.
Oncol Lett ; 15(1): 559-567, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29387234

ABSTRACT

A previous study demonstrated that cytokeratin 19 (CK19) expression in hepatocellular carcinoma (HCC) is an indicator of HCC invasiveness, including lymph node metastasis (LNM), tumor infiltration/non-encapsulation and poor prognosis. The exact mechanism by which CK19 expression results in poor prognosis remains unclear. Through the use of an Affymetrix U133A oligonucleotide microarray [20 patients with hepatitis B virus (HBV)-HCC], it was demonstrated that cadherin 17 (CDH17) significantly correlated with CK19 expression (R2, 0.867; P<0.001) in HBV-HCC. Immunohistochemical analysis (114 patients with HBV-HCC) also demonstrated a significant correlation between CK19 and CDH17 expressions in primary tumor tissue (R2, 0.414; P<0.001). In addition, CK19 and CDH17 expressions levels revealed a significant association with LNM (P<0.001). Cox regression multivariate analysis demonstrated that indocyanine green retention at 15 min >10% and CDH17 expression were independent prognostic factors for disease free survival (P=0.010 and 0.002, respectively). In vitro studies showed that epidermal growth factor can induce the expression of both CK19 and CDH17, and CDH17 in turn can enhance the expression of CK19 in HCC. In summary, this study demonstrated that the early recurrence and poor prognosis of CK19(+) HCC may be due to the expression of CDH17, a gene known to be associated with vascular invasion, tumor metastasis, and advanced tumor stage of HCC. Thus, novel therapeutics by targeting CDH17 may be beneficial for CK19(+) HCC.

SELECTION OF CITATIONS
SEARCH DETAIL