Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Phytochem Anal ; 35(5): 1197-1206, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38572825

ABSTRACT

INTRODUCTION: Sicklepod [Cassia obtusifolia L. syn Senna obtusifolia (L.) H.S. Irwin & Barneby, Fabaceae] sprouts are promising ingredients with health-promoting benefits. Notwithstanding, the pharmacologically active compounds in sicklepod sprouts have not been studied or analysed in detail. OBJECTIVE: This study aimed to isolate and structurally identify phytochemicals showing α-glucosidase inhibitory activity in sicklepod sprouts and simultaneously quantify the compounds in the sprouts to determine the optimal cultivation method and germination time to maximise active compounds. METHOD: A simultaneous high-performance liquid chromatography-ultraviolet (HPLC-UV) method with high sensitivity and accuracy was developed and used to analyse time-dependent changes in anthraquinone content during sicklepod germination. RESULTS: Thirteen anthraquinones were isolated and identified, of which six-chrysoobtusin, emodin, 1-O-methyl-2-methoxychrysophanol, 7-O-methylobtusin, chrysophanol, and physcion-showed moderate α-glucosidase inhibitory activity. The maximum content of anthraquinones in a sprout was observed on Day 5 under both light and dark conditions. CONCLUSION: The findings of this study revealed that sicklepod sprouts which are promising functional food materials contain a variety of anthraquinones.


Subject(s)
Anthraquinones , Glycoside Hydrolase Inhibitors , alpha-Glucosidases , Anthraquinones/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Chromatography, High Pressure Liquid/methods , alpha-Glucosidases/metabolism , Cassia/chemistry , Senna Plant/chemistry , Germination/drug effects
2.
Phytochem Anal ; 34(2): 240-253, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36636016

ABSTRACT

INTRODUCTION: The seeds of Cassia obtusifolia L. (Cassiae [C.] semen) have been widely used as both food and traditional Chinese medicine in China. OBJECTIVES: We aimed to analyze the metabolic mechanisms underlying C. semen germination. MATERIALS AND METHODS: Different samples of C. semen at various germination stages were collected. These samples were subjected to 1 H-NMR and UHPLC/Q-Orbitrap-MS-based untargeted metabolomics analysis together with transcriptomics analysis. RESULTS: A total of 50 differential metabolites (mainly amino acids and sugars) and 20 key genes involved in multiple pathways were identified in two comparisons of different groups (36 h vs 12 h and 84 h vs 36 h). The metabolite-gene network for seed germination was depicted. In the germination of C. semen, fructose and mannose metabolism was activated in the testa rupture period, indicating more energy was needed (36 h). In the embryonic axis elongation period (84 h), the pentose and glucuronate interconversions pathway and the phenylpropanoid biosynthesis pathway were activated, which suggested some nutrient sources (nitrogen and sugar) were in demand. Furthermore, oxygen, energy, and nutrition should be supplied throughout the whole germination process. These global views open up an integrated perspective for understanding the complex biological regulatory mechanisms during the germination process of C. semen.


Subject(s)
Cassia , Germination , Cassia/chemistry , Transcriptome , Plant Extracts/metabolism , Metabolomics
3.
J Sep Sci ; 45(4): 938-944, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34932273

ABSTRACT

Traditional bioassay-guided investigation of bioactive compounds from natural products comprises critical steps, such as extraction, repeated column separation, and activity assay. Thus, the development of facile, rapid, and efficient technology is critically important. Here, a HepG2 cell-based extraction method was first developed to rapidly screen potential antitumor compounds from the seeds ofCassia obtusifolia. Then, an online extraction and enrichment-high-speed counter-current chromatography (HSCCC) strategy was fabricated to facilely and efficiently isolate target antitumor compounds, which included direct extraction from solid C. obtusifolia, removal of polar interferences, enrichment of target compounds, and preparative isolation by HSCCC using flow rate stepwise increasing mode. After further purification by Sephadex LH-20 column, five antitumor anthraquinones, aurantio-obtusin, 1-desmethylaurantio-obtusin, chryso-obtusin, obtusin, and questin, were obtained for structural characterization and bioassay verification. The results may not only provide new perspectives for facile and rapid investigation of bioactive compounds from complex natural products, but also offer a scientific basis for the potential applications of C. obtusifolia.


Subject(s)
Cassia , Anthraquinones/chemistry , Cassia/chemistry , Countercurrent Distribution , Plant Extracts/chemistry , Seeds/chemistry
4.
Molecules ; 26(20)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34684833

ABSTRACT

Cassia obtusifolia L., of the Leguminosae family, is used as a diuretic, laxative, tonic, purgative, and natural remedy for treating headache, dizziness, constipation, tophobia, and lacrimation and for improving eyesight. It is commonly used in tea in Korea. Various anthraquinone derivatives make up its main chemical constituents: emodin, chrysophanol, physcion, obtusifolin, obtusin, au rantio-obtusin, chryso-obtusin, alaternin, questin, aloe-emodin, gluco-aurantio-obtusin, gluco-obtusifolin, naphthopyrone glycosides, toralactone-9-ß-gentiobioside, toralactone gentiobioside, and cassiaside. C. obtusifolia L. possesses a wide range of pharmacological properties (e.g., antidiabetic, antimicrobial, anti-inflammatory, hepatoprotective, and neuroprotective properties) and may be used to treat Alzheimer's disease, Parkinson's disease, and cancer. In addition, C. obtusifolia L. contributes to histamine release and antiplatelet aggregation. This review summarizes the botanical, phytochemical, and pharmacological features of C. obtusifolia and its therapeutic uses.


Subject(s)
Cassia/chemistry , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytotherapy , Plants, Medicinal/chemistry , Animals , Anthraquinones/chemistry , Anthraquinones/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Ethnopharmacology , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Liver/drug effects , Liver/metabolism , Medicine, Korean Traditional , Mosquito Vectors/drug effects , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Phytochemicals/therapeutic use , Republic of Korea
5.
Molecules ; 24(15)2019 Aug 02.
Article in English | MEDLINE | ID: mdl-31382366

ABSTRACT

In order to explore Cassia seed polysaccharides (CSPs) as natural antioxidants for application in the functional-food industry, microwave-assisted extraction (MAE) was optimized for the extraction of CSPs by using a response surface methodology. Furthermore, the chemical structures and antioxidant activities of CSPs extracted by MAE and hot water extraction were investigated and compared. The maximum extraction yield of CSPs extracted by MAE (8.02 ± 0.19%) was obtained at the optimized extraction parameters as follows: microwave power (415 W), extraction time (7.0 min), and ratio of water to raw material (51 mL/g). Additionally, the contents of the uronic acids, molecular weight, ratio of constituent monosaccharides, intrinsic viscosities, and degrees of esterification of CSPs were significantly affected by the MAE method. Moreover, CSPs exhibited remarkable 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) ABTS, 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl DPPH, nitric oxide, and hydroxyl radical scavenging activities as well as reducing power. The high antioxidant activities observed in CSPs extracted by MAE could be partially attributed to its low molecular weights and high content of unmethylated galacturonic acid. Results indicate that the MAE method could be an efficient technique for the extraction of CSPs with high antioxidant activity, and CSPs could be further explored as functional food ingredients.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Cassia/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Polysaccharides/chemistry , Polysaccharides/pharmacology , Seeds/chemistry , Antioxidants/isolation & purification , Chemical Fractionation , Chromatography, High Pressure Liquid , Molecular Structure , Molecular Weight , Plant Extracts/isolation & purification , Polysaccharides/isolation & purification , Structure-Activity Relationship
6.
Article in English | MEDLINE | ID: mdl-29193258

ABSTRACT

Pieris rapae, a serious Lepidoptera pest of cultivated crucifers, utilizes midgut enzymes to digest food and detoxify secondary metabolites from host plants. A recombinant trypsin inhibitor (COTI) from nonhost plant, Cassia obtusifolia, significantly decreased activities of trypsin-like proteases in the larval midgut on Pieris rapae and could suppress the growth of larvae. In order to know how COTI took effect, transcriptional profiles of P. rapae midgut in response to COTI was studied. A total of 51,544 unigenes were generated and 45.86% of which had homologs in public databases. Most of the regulated genes associated with digestion, detoxification, homeostasis, and resistance were downregulated after ingestion of COTI. Meanwhile, several unigenes in the integrin signaling pathway might be involved in response to COTI. Furthermore, using comparative transcriptome analysis, we detected differently expressing genes and identified a new reference gene, UPF3, by qRT-polymerase chain reaction (PCR). Therefore, it was suggested that not only proteolysis inhibition, but also suppression of expression of genes involved in metabolism, development, signaling, and defense might account for the anti-insect resistance of COTI.


Subject(s)
Butterflies/enzymology , Cassia/metabolism , Plant Proteins/metabolism , Transcriptome , Trypsin Inhibitors/metabolism , Animals , Butterflies/growth & development , Gastrointestinal Tract/enzymology , Gene Expression Profiling , Larva/enzymology , Larva/growth & development , Recombinant Proteins/metabolism
7.
Phytother Res ; 32(8): 1537-1545, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29675883

ABSTRACT

The purpose of the present study is to find the natural compound(s) having a therapeutic potential to treat lung inflammatory disorders. In our screening procedure, the methanol extract of the seeds of Cassia obtusifolia (cassiae semen) inhibited inducible nitric oxide synthase-catalyzed nitric oxide production in alveolar macrophages (MH-S). From the extract, 8 major anthraquinone derivatives were successfully isolated. They are chrysophanol, physcion, 2-hydroxy-emodin 1-methyl ether, obtusifolin, obtusin, aurantio-obtusin, chryso-obtusin, and gluco-obtusifolin, among which aurantio-obtusin (IC50  = 71.7 µM) showed significant inhibitory action on nitric oxide production from lipopolysaccharide-treated MH-S cells, mainly by downregulation of inducible nitric oxide synthase expression. This down-regulatory action of aurantio-obtusin was mediated at least in part via interrupting c-Jun N-terminal kinase/IκB kinase/nuclear transcription factor-κB pathways. Aurantio-obtusin also inhibited IL-6 production in IL-1ß-treated lung epithelial cells, A549. Importantly, this compound (10 and 100 mg/kg) by oral administration attenuated lung inflammatory responses in a mouse model of lipopolysaccharide-induced acute lung injury. Therefore, it is for the first time found that aurantio-obtusin may have a therapeutic potential for treating lung inflammatory diseases.


Subject(s)
Anthraquinones/pharmacology , Cassia/chemistry , Inflammation/drug therapy , Lung/drug effects , Macrophages, Alveolar/drug effects , Plant Extracts/pharmacology , A549 Cells , Animals , Emodin/analogs & derivatives , Glucosides , Humans , Lipopolysaccharides , Lung/pathology , Male , Mice , Mice, Inbred ICR , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Seeds/chemistry , Signal Transduction/drug effects
8.
Int J Mol Sci ; 19(9)2018 Aug 21.
Article in English | MEDLINE | ID: mdl-30134624

ABSTRACT

The seed is the pharmaceutical and breeding organ of Cassia obtusifolia, a well-known medical herb containing aurantio-obtusin (a kind of anthraquinone), food, and landscape. In order to understand the molecular mechanism of the biosynthesis of aurantio-obtusin, seed formation and development, and stress response of C. obtusifolia, it is necessary to understand the genomics information. Although previous seed transcriptome of C. obtusifolia has been carried out by short-read next-generation sequencing (NGS) technology, the vast majority of the resulting unigenes did not represent full-length cDNA sequences and supply enough gene expression profile information of the various organs or tissues. In this study, fifteen cDNA libraries, which were constructed from the seed, root, stem, leaf, and flower (three repetitions with each organ) of C. obtusifolia, were sequenced using hybrid approach combining single-molecule real-time (SMRT) and NGS platform. More than 4,315,774 long reads with 9.66 Gb sequencing data and 361,427,021 short reads with 108.13 Gb sequencing data were generated by SMRT and NGS platform, respectively. 67,222 consensus isoforms were clustered from the reads and 81.73% (61,016) of which were longer than 1000 bp. Furthermore, the 67,222 consensus isoforms represented 58,106 nonredundant transcripts, 98.25% (57,092) of which were annotated and 25,573 of which were assigned to specific metabolic pathways by KEGG. CoDXS and CoDXR genes were directly used for functional characterization to validate the accuracy of sequences obtained from transcriptome. A total of 658 seed-specific transcripts indicated their special roles in physiological processes in seed. Analysis of transcripts which were involved in the early stage of anthraquinone biosynthesis suggested that the aurantio-obtusin in C. obtusifolia was mainly generated from isochorismate and Mevalonate/methylerythritol phosphate (MVA/MEP) pathway, and three reactions catalyzed by Menaquinone-specific isochorismate synthase (ICS), 1-deoxy-d-xylulose-5-phosphate synthase (DXS) and isopentenyl diphosphate (IPPS) might be the limited steps. Several seed-specific CYPs, SAM-dependent methyltransferase, and UDP-glycosyltransferase (UDPG) supplied promising candidate genes in the late stage of anthraquinone biosynthesis. In addition, four seed-specific transcriptional factors including three MYB Transcription Factor (MYB) and one MADS-box Transcription Factor (MADS) transcriptional factors) and alternative splicing might be involved with seed formation and development. Meanwhile, most members of Hsp20 genes showed high expression level in seed and flower; seven of which might have chaperon activities under various abiotic stresses. Finally, the expressional patterns of genes with particular interests showed similar trends in both transcriptome assay and qRT-PCR. In conclusion, this is the first full-length transcriptome sequencing reported in Caesalpiniaceae family, and thus providing a more complete insight into aurantio-obtusin biosynthesis, seed formation and development, and stress response as well in C. obtusifolia.


Subject(s)
Anthraquinones/metabolism , Cassia/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Seeds/genetics , Transcriptome , Cassia/growth & development , Cassia/metabolism , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Gene Expression Regulation, Developmental , Gene Library , Gene Ontology , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Plant Stems/genetics , Plant Stems/growth & development , Plant Stems/metabolism , Plants, Medicinal , Seeds/growth & development , Seeds/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
9.
Molecules ; 23(1)2017 Dec 28.
Article in English | MEDLINE | ID: mdl-29283428

ABSTRACT

Cassia obtusifolia Linn. have been used to improve vision, inflammatory diseases, and as hepatoprotective agents and to promote urination from ancient times. In the present study, we investigated the influence of glycosylation of components of C. obtusifolia and structure-activity relationships (SARs) with respect to the inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and ß-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1), which are related to Alzheimer's disease (AD). All six C. obtusifolia-derived compounds, rubrofusarin (1), rubrofusarin 6-O-ß-d-glucopyranoside (2), rubrofusarin 6-O-ß-d-gentiobioside (3), nor-rubrofusarin 6-O-ß-d-glucoside (4), isorubrofusarin 10-O-ß-d-gentiobioside (5), and rubrofusarin 6-O-ß-d-triglucoside (6) showed promising inhibitory activity against AChE/BACE1. Compounds 3 and 4 showed most significant inhibition against AChE and BACE1, respectively. The SARs results emphasized the importance of gentiobiosyl moiety in the rubrofusarin for AChE inhibition, whereas the presence of hydroxyl group at C-8 and the glucosyl moiety at the C-6 position in the nor-rubrofusarin appeared to largely determine BACE1 inhibition. Kinetics and docking studies showed the lowest binding energy and highest affinity for mixed-type inhibitors, 3 and 4. Hydrophobic bonds interactions and the number of hydrogen bonds determined the strength of the protein-inhibitor interaction. These results suggest that C. obtusifolia and its constituents have therapeutic potential, and that the SARs of its active components are further explored with a view towards developing a treatment for AD.


Subject(s)
Acetylcholinesterase/chemistry , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Butyrylcholinesterase/chemistry , Cholinesterase Inhibitors/chemistry , Glycosides/chemistry , Pyrones/chemistry , Amyloid Precursor Protein Secretases/chemistry , Binding Sites , Cassia/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Kinetics , Molecular Docking Simulation/methods , Molecular Structure , Plant Extracts/chemistry , Protein Binding , Structure-Activity Relationship , Thermodynamics
10.
Molecules ; 22(1)2016 Dec 27.
Article in English | MEDLINE | ID: mdl-28035984

ABSTRACT

The present work aims to evaluate the anti-diabetic potentials of 16 anthraquinones, two naphthopyrone glycosides, and one naphthalene glycoside from Cassia obtusifolia via inhibition against the protein tyrosine phosphatases 1B (PTP1B) and α-glucosidase. Among them, anthraquinones emodin and alaternin exhibited the highest inhibitory activities on PTP1B and α-glucosidase, respectively. Moreover, we examined the effects of alaternin and emodin on stimulation of glucose uptake by insulin-resistant human HepG2 cells. The results showed that alaternin and emodin significantly increased the insulin-provoked glucose uptake. In addition, our kinetic study revealed that alaternin competitively inhibited PTP1B, and showed mixed-type inhibition against α-glucosidase. In order to confirm enzyme inhibition, we predicted the 3D structure of PTP1B using Autodock 4.2 to simulate the binding of alaternin. The docking simulation results demonstrated that four residues of PTP1B (Gly183, Arg221, Ile219, Gly220) interact with three hydroxyl groups of alaternin and that the binding energy was negative (-6.30 kcal/mol), indicating that the four hydrogen bonds stabilize the open form of the enzyme and potentiate tight binding of the active site of PTP1B, resulting in more effective PTP1B inhibition. The results of the present study clearly demonstrate that C. obtusifolia and its constituents have potential anti-diabetic activity and can be used as a functional food for the treatment of diabetes and associated complications.


Subject(s)
Cassia/chemistry , Emodin/analogs & derivatives , Glycoside Hydrolase Inhibitors/pharmacology , Glycosides/pharmacology , Hypoglycemic Agents/pharmacology , Naphthalenes/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , alpha-Glucosidases/metabolism , Catalytic Domain , Cell Line, Tumor , Emodin/pharmacology , Glucose/metabolism , Hep G2 Cells , Humans , Insulin Resistance/physiology , Medicine, Chinese Traditional , Molecular Docking Simulation , Plant Preparations/pharmacology
11.
J Sep Sci ; 38(14): 2431-8, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25944408

ABSTRACT

A simple and efficient high-performance liquid chromatography fingerprint method was developed to discriminate Semen cassiae from two related species: Cassia obtusifolia L. (CO) and Cassia tora L. (CT), the seeds of which are abbreviated as COS and CTS, respectively. 22 major bioactive ingredients in 42 samples (20 COS and 22 CTS) collected from different provinces of China were identified. The statistical methods included similarity analysis and partial least-squares discriminant analysis. The pattern analysis method was specific and could be readily used for the comprehensive evaluation of Semen cassiae samples. Therefore, high-performance liquid chromatography fingerprint in combination with pattern analysis provided a simple and reliable method for discriminating between COS and CTS.


Subject(s)
Cassia/chemistry , Plant Extracts/analysis , Seeds/chemistry , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/chemistry , Least-Squares Analysis , Multivariate Analysis , Quality Control , Reproducibility of Results , Species Specificity
12.
Biosci Biotechnol Biochem ; 79(11): 1818-26, 2015.
Article in English | MEDLINE | ID: mdl-26076901

ABSTRACT

Cassia obtusifolia, belonging to legume family, is important in many fields with high pharmaceutical, economic, and ecological values. These interests of C. obtusifolia triggered in-depth and fundamental genetic and molecular research. Therefore, the stable reference gene is necessary for normalization of the gene expression studies. In this study, 10 candidate reference genes were subjected to expression analysis in 12 different tissues and under different stresses by qRT-PCR. The expression stability was evaluated using geNorm, NormFinder, and BestKeeper software. In conclusion, different suitable reference genes were selected in different tissues and under different stress. CYP1, EF1α2, ACT2, UBQ1 were the most stable reference genes in all samples. The relative expression levels of WRKY gene were detected to confirm the reliability of the selected reference genes. These results provided suitable reference genes that could be used for normalization in C. obtusifolia tissues and under different stress.


Subject(s)
Cassia/genetics , Gene Expression Regulation, Plant/genetics , Plant Proteins/biosynthesis , Computational Biology , Plant Proteins/genetics , Software , Tissue Distribution/genetics
13.
Biosci Biotechnol Biochem ; 78(5): 791-9, 2014.
Article in English | MEDLINE | ID: mdl-25035981

ABSTRACT

A cDNA library generated from seeds of Cassia obtusifolia was sequenced using Illumina/Solexa platform. More than 12,968,231 high quality reads were generated, and have been deposited in NCBI SRA (SRR 1012912). A total of 40,102 unigenes (>200 bp) were obtained with an average sequence length of 681 bp by de novo assembly. About 34,089 (85%) unique sequences were annotated and 8694 of the unique sequences were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes. Among them, 131 unigenes, which are involved in the biosynthesis and (or) regulation of anthraquinone, carotenoid, flavonoid, and lipid, the 4 best known active metabolites, were identified from cDNA library. In addition, three lipid transfer proteins were obtained, which may contribute to the lipid molecules transporting between biological membranes. Meanwhile, 30 cytochrome P450, 12 SAM-dependent methyltransferases, and 12 UDP-glucosyltransferase unigenes were identified, which could also be responsible for the biosynthesis of active metabolites.


Subject(s)
Cassia/genetics , Cassia/metabolism , Gene Expression Profiling , Genes, Plant/genetics , Seeds/genetics , Seeds/metabolism , Amino Acid Sequence , Anthraquinones/metabolism , Carrier Proteins/chemistry , Carrier Proteins/genetics , Carrier Proteins/metabolism , Flavonoids/biosynthesis , Gene Library , Gene Ontology , Genomics , Lipid Metabolism/genetics , Molecular Sequence Data , Terpenes/metabolism
14.
J Agric Food Chem ; 71(14): 5721-5732, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36971230

ABSTRACT

Safety issues of the controversial anthraquinones from Cassia obtusifolia seed water extracts (CWEs) limit its application. This work aimed to remove the anthraquinones of CWEs by baking treatment (BT), stir-frying treatment (ST), and adsorption treatment (AT). Effects of these treatments on the chemical composition, physicochemical properties of polysaccharides, and antioxidant activities of CWEs were analyzed and compared. Results indicated that AT exhibited the best removal effect on the total anthraquinone among the three treatments. After AT, the contents of rhein, emodin, aloe-emodin, and aurantio-obtusin of the CWE were below the limit of detection. In addition, AT increased the contents of neutral sugars in CWEs in comparison to BT and ST. None of the treatments had an obvious influence on the structural characteristics of polysaccharides. However, AT decreased the antioxidant activity of CWEs due to their lower anthraquinone content. In summary, AT was considered as an efficient and simple method to remove anthraquinones, while retaining the features of polysaccharides.


Subject(s)
Anthraquinones , Cassia , Plant Extracts , Seeds , Adsorption , Anthraquinones/chemistry , Antioxidants/analysis , Cassia/chemistry , Cooking/methods , Emodin/analysis , Plant Extracts/chemistry , Polysaccharides/analysis , Seeds/chemistry
15.
J Ethnopharmacol ; 306: 116199, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-36702448

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Cassiae Semen, belonging to the family Leguminosae, is derived from the dry mature seeds of Cassia obtusifolia L. or Cassia tora L. and has long been used as a laxative, hepatoprotective, improve eyesight, and antidiabetic complications medicine or functional food in Asia. AIMS OF THE REVIEW: This review summarizes the integrated research progress of botany, traditional uses, phytochemistry, pharmacology, toxicity, and quality control of Cassiae Semen. Additionally, the emerging challenges and possible developing directions are discussed as well. MATERIALS AND METHODS: The information on Cassiae Semen was collected from published scientific materials, including ancient books of traditional Chinese Medicine; Ph.D. and M. Sc. dissertations; monographs on medicinal plants; pharmacopoeia of various countries and electronic databases, such as PubMed, Web of Science, ACS, Science Direct, J-STAGE, Springer link, Taylor, CNKI and Google Scholar, etc. RESULTS: First, the traditional uses and plant origins of Cassiae Semen are outlined. Secondly, approximately 137 compounds, including anthraquinones, naphthopyranones, naphthalenes, flavones, polysaccharides and other compounds, have been isolated and identified from Cassia obtusifolia L. and Cassia tora L. Third, the pharmacological activities and mechanisms of crude extract of Cassiae Semen and its main bioactive compounds are summarized. Moreover, the processing, toxicity, and quality control are introduced briefly. CONCLUSIONS: Cassiae Semen is a frequently used Chinese Materia Medica with pharmacological effects that mainly affect the digestive system, cardiovascular systems and nervous system. This review summarized its botany, traditional uses, phytochemistry, and pharmacology, it also exhibited recent scientific research advances and gaps, which provide a deeper insight into the understanding and application of Cassiae Semen. In future research on Cassiae Semen, more attention should be given to the pharmacological activities of naphthopyranones and polysaccharides and the mechanism of action for improving eye diseases. Meanwhile, it is essential to focus on strengthening the study on the pharmacokinetics research and the safety evaluation of related health products research.


Subject(s)
Botany , Plants, Medicinal , Senna Plant , Plants, Medicinal/chemistry , Medicine, Chinese Traditional , Quality Control , Phytochemicals/pharmacology , Seeds , Ethnopharmacology , Plant Extracts/pharmacology
16.
Chin Herb Med ; 15(3): 421-429, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37538867

ABSTRACT

Objective: Cassiae Semen (CS, Juemingzi in Chinese) has been used for thousands of years in ancient Chinese history for relieving constipation, improving liver function as well as preventing myopia. Here we aimed to elucidate the anti-steatosis effect and underlying mechanism of CS against non-alcoholic fatty liver disease (NAFLD). Methods: High-performance liquid chromatography (HPLC) was used to identify the major components of CS water extract. Mice were fed with a high-fat and sugar-water (HFSW) diet to induce hepatic steatosis and then treated with CS. The anti-NAFLD effect was determined by measuring serum biomarkers and histopathology staining. Additionally, the effects of CS on cell viability and lipid metabolism in oleic acid and palmitic acid (OAPA)-treated HepG2 cells were measured. The expression of essential genes and proteins involved in lipid metabolism and autophagy signalings were measured to uncover the underlying mechanism. Results: Five compounds, including aurantio-obtusin, rubrofusarin gentiobioside, cassiaside C, emodin and rhein were simultaneously identified in CS extract. CS not only improved the diet-induced hepatic steatosis in vivo, as indicated by decreased number and size of lipid droplets, hepatic and serum triglycerides (TG) levels, but also markedly attenuated the OAPA-induced lipid accumulation in hepatocytes. These lipid-lowering effects induced by CS were largely dependent on the inhibition of fatty acid synthase (FASN) and the activation of autophagy-related signaling, including AMP-activated protein kinase (AMPK), light chain 3-II (LC3-II)/ LC3-1 and autophagy-related gene5 (ATG5). Conclusion: Our study suggested that CS effectively protected liver steatosis via decreasing FASN-related fatty acid synthesis and activating AMPK-mediated autophagy, which might become a promising therapeutic strategy for relieving NAFLD.

17.
J Sep Sci ; 35(2): 256-62, 2012 Jan.
Article in English | MEDLINE | ID: mdl-25939902

ABSTRACT

Recycling counter-current chromatography (CCC) together with step-gradient CCC and medium-pressure liquid chromatography (MPLC) was employed to separate nine anthraquinone compounds from Cassia obtusifolia L. in this study. The results showed that recycling CCC is a powerful tool for compounds that are difficult to separate with common elution mode. CCC was the better option for crude material while MPLC had advantage for the final tuning. The combination of recycling CCC and MPLC could simplify the method exploring process in the separation process. The structures of these compounds were identified according to their mass spectra, by (1)H-NMR and compared with standard compounds.


Subject(s)
Anthraquinones/isolation & purification , Cassia/chemistry , Countercurrent Distribution/methods , Anthraquinones/chemistry , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/isolation & purification , Magnetic Resonance Spectroscopy , Plants, Medicinal/chemistry , Seeds/chemistry , Solvents , Spectrometry, Mass, Electrospray Ionization
18.
J Pharm Biomed Anal ; 204: 114243, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34273658

ABSTRACT

Metabolomics is a rapid and sensitive tool for the detection of dynamic metabolic compositions in the study of systemic metabolic consequences. However, it is also susceptible to a tiny variation of pre-analytical handling procedures. To provide reproducible results, specific knowledge on metabolites perturbance along with different freeze-thaw cycles (FTCs) is needed for further metabolomics studies. In this paper, five FTCs of germinated Cassiae Semen (CS) were chosen as a case study to investigate the influence of FTC effect based on UHPLC-Q-Orbitrap-MS and NMR technologies. A total of 108 metabolites were relatively quantified by LC-MS and NMR analyses. Principal component analysis (PCA) showed that the first and second FTC samples are welly separated from the other groups; however, the extent of FTC-induced effects are smaller after the third cycle. Upon five consecutive FTCs, alterations which consisted of decreased stachyose, sucrose, norrubrofusarin-6-O-ß-d-glucopyranoside, and quercetin 3-(3″-acetylgalactoside), as well as increased phenylalanine, leucine, isoleucine, methionine, phenylalanine, mannose, gluconic acid, and valine, could be observed. FTC does not exert the same effect on all metabolites. Although a large number of secondary metabolites were stable when subjected to five FTCs, FTC effects may lead to false-positive in the discovery of biomarker. In the case of reusing plant seed samples, no more than three consecutive freeze-thaw cycles were found advisable. This work provides unique perspectives on the FTC effects, which may fill in some existing gaps in the knowledge of the stability of plant metabolites during sample pre-handling.


Subject(s)
Cassia , Chromatography, Liquid , Metabolomics , Seeds , Semen , Tandem Mass Spectrometry
19.
J Ethnopharmacol ; 268: 113572, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33188899

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The seed of Senna obtusifolia (L.) H. S. Irwin & Barneby (Cassiae semen, CS) also known as Jue ming zi in China, has been traditionally used for weight management by purging the liver and improving the liver functions to support digestion. In the past decades, it has been used for hepatoprotection and treatment of overweight and other metabolic disorders such as hyperlipidaemia and diabetes. AIM OF THE REVIEW: This review aimed at providing comprehensive information on the traditional usages, pharmacology, phytochemistry and toxicology of CS and critically exploring its potential usage for clinical weight management from both traditional and modern application perspectives. MATERIALS AND METHODS: In order to fully understand the properties, actions and indications of CS, two sets of Chinese classical texts were searched, namely: Zhong Hua Yi Dian (Encyclopedia of Traditional Chinese Medicine) and Zhong Guo Ben Cao Quan Shu (Complete Collection of Traditional Texts on Chinese Materia Medica). The purpose of studying these classical texts was to determine the traditional use of CS in weight management. Comprehensive searches were also performed on seven databases for publications on original randomised clinical trials (RCT), in vivo, in vitro or in silico studies related to pharmacological effects of CS. Detailed information about the phytochemistry of CS was collected from books, encyclopedia, online databases and journal literature. FINDINGS: In classical literature review, 89 classic texts provided information of properties, actions and indications of CS. In modern literature review, 44 studies were included for analysis, including 5 RCTs, 7 in vivo studies, 14 in vitro studies, 2 in silico studies and 16 studies of mixed types. Chinese classic literature has provided traditional evidence of the usage of CS for weight management. Contemporary studies have revealed that CS has weight loss effects and possesses some other pharmacological activities supporting weight management. Some chemical compounds of CS have been hypothesised to have a direct or indirect contribution to weight control. CONCLUSIONS: The relationships between chemical compounds and the corresponding weight-loss target proteins are not fully understood. Therefore, CS constituents should be further explored for the development of novel therapeutic or preventive agents for the treatment of overweight and obesity.


Subject(s)
Anti-Obesity Agents/therapeutic use , Cinnamomum aromaticum , Drugs, Chinese Herbal/therapeutic use , Ethnopharmacology/methods , Literature, Modern , Medicine, Chinese Traditional/methods , Animals , Anti-Obesity Agents/isolation & purification , Anti-Obesity Agents/pharmacology , Drugs, Chinese Herbal/isolation & purification , Drugs, Chinese Herbal/pharmacology , Humans , Overweight/drug therapy , Overweight/ethnology , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Seeds
20.
Saudi J Biol Sci ; 27(7): 1766-1772, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32565694

ABSTRACT

The emergence of drug-resistant organisms have been increasing globally; therefore, it is a burning need to find an alternative drug to get rid of the diseases caused by resistant strains. This study aims to evaluate the antimicrobial and wound healing activities of Loranthus acacia, Cassia obtusifolia and Cymbopogon proximus plants. All the plants were collected and extracted - by maceration method. Antimicrobial activities determined using standard ATCC strain for Gram-positive bacteria (Bacillus subtilis, Bacillus crew, Methicillin-resistant Staphylococcus aureus, Staphylococcus aureus) and Gram-negative bacteria (Shigella sonnnei, Salmonella Typhimurium, Salmonella typhi, Klebsiella pnuemoniae, Escherichia coli and Pseudomonas aeruginosa) following agar well diffusion method. Plants extracts were prepared as gel and investigated for in vivo wound healing activities in rats. Histological studies were performed on animals' skin. The results showed that all tested plants have various antimicrobial and wound healing activities. Out of these plants, L. acacia exhibited the best result; it revealed a significant result for antimicrobial activities counter to all Gram-positive, Gram-negative bacteria and wound healing activities in comparing with the reference drug. Thus, it is essential to consider L. acacia as a prospective source in progress in the synthesis of a new antimicrobial drug for the treatment of infectious diseases.

SELECTION OF CITATIONS
SEARCH DETAIL