Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37.985
Filter
Add more filters

Publication year range
1.
Cell ; 187(15): 4030-4042.e13, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38908367

ABSTRACT

Insufficient telomerase activity, stemming from low telomerase reverse transcriptase (TERT) gene transcription, contributes to telomere dysfunction and aging pathologies. Besides its traditional function in telomere synthesis, TERT acts as a transcriptional co-regulator of genes pivotal in aging and age-associated diseases. Here, we report the identification of a TERT activator compound (TAC) that upregulates TERT transcription via the MEK/ERK/AP-1 cascade. In primary human cells and naturally aged mice, TAC-induced elevation of TERT levels promotes telomere synthesis, blunts tissue aging hallmarks with reduced cellular senescence and inflammatory cytokines, and silences p16INK4a expression via upregulation of DNMT3B-mediated promoter hypermethylation. In the brain, TAC alleviates neuroinflammation, increases neurotrophic factors, stimulates adult neurogenesis, and preserves cognitive function without evident toxicity, including cancer risk. Together, these findings underscore TERT's critical role in aging processes and provide preclinical proof of concept for physiological TERT activation as a strategy to mitigate multiple aging hallmarks and associated pathologies.


Subject(s)
Aging , DNA Methylation , Telomerase , Telomerase/metabolism , Telomerase/genetics , Humans , Animals , Mice , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , Cellular Senescence , Promoter Regions, Genetic , DNA Methyltransferase 3B , Brain/metabolism , Telomere/metabolism , Mice, Inbred C57BL , Male , Transcription Factor AP-1/metabolism , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Neurogenesis
2.
Cell ; 186(6): 1195-1211.e19, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36796363

ABSTRACT

Social interactions require awareness and understanding of the behavior of others. Mirror neurons, cells representing an action by self and others, have been proposed to be integral to the cognitive substrates that enable such awareness and understanding. Mirror neurons of the primate neocortex represent skilled motor tasks, but it is unclear if they are critical for the actions they embody, enable social behaviors, or exist in non-cortical regions. We demonstrate that the activity of individual VMHvlPR neurons in the mouse hypothalamus represents aggression performed by self and others. We used a genetically encoded mirror-TRAP strategy to functionally interrogate these aggression-mirroring neurons. We find that their activity is essential for fighting and that forced activation of these cells triggers aggressive displays by mice, even toward their mirror image. Together, we have discovered a mirroring center in an evolutionarily ancient region that provides a subcortical cognitive substrate essential for a social behavior.


Subject(s)
Aggression , Hypothalamus , Mirror Neurons , Animals , Mice , Aggression/physiology , Hypothalamus/cytology , Social Behavior
3.
Cell ; 177(2): 256-271.e22, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30879788

ABSTRACT

We previously reported that inducing gamma oscillations with a non-invasive light flicker (gamma entrainment using sensory stimulus or GENUS) impacted pathology in the visual cortex of Alzheimer's disease mouse models. Here, we designed auditory tone stimulation that drove gamma frequency neural activity in auditory cortex (AC) and hippocampal CA1. Seven days of auditory GENUS improved spatial and recognition memory and reduced amyloid in AC and hippocampus of 5XFAD mice. Changes in activation responses were evident in microglia, astrocytes, and vasculature. Auditory GENUS also reduced phosphorylated tau in the P301S tauopathy model. Furthermore, combined auditory and visual GENUS, but not either alone, produced microglial-clustering responses, and decreased amyloid in medial prefrontal cortex. Whole brain analysis using SHIELD revealed widespread reduction of amyloid plaques throughout neocortex after multi-sensory GENUS. Thus, GENUS can be achieved through multiple sensory modalities with wide-ranging effects across multiple brain areas to improve cognitive function.


Subject(s)
Acoustic Stimulation/methods , Alzheimer Disease/therapy , Cognition/physiology , Alzheimer Disease/pathology , Amyloid/metabolism , Amyloid beta-Peptides/metabolism , Animals , Auditory Perception/physiology , Brain/metabolism , Disease Models, Animal , Gamma Rhythm/physiology , Hippocampus/metabolism , Male , Mice , Mice, Inbred C57BL , Microglia/metabolism , Plaque, Amyloid/metabolism
4.
Cell ; 176(3): 597-609.e18, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30661754

ABSTRACT

Many evolutionary years separate humans and macaques, and although the amygdala and cingulate cortex evolved to enable emotion and cognition in both, an evident functional gap exists. Although they were traditionally attributed to differential neuroanatomy, functional differences might also arise from coding mechanisms. Here we find that human neurons better utilize information capacity (efficient coding) than macaque neurons in both regions, and that cingulate neurons are more efficient than amygdala neurons in both species. In contrast, we find more overlap in the neural vocabulary and more synchronized activity (robustness coding) in monkeys in both regions and in the amygdala of both species. Our findings demonstrate a tradeoff between robustness and efficiency across species and regions. We suggest that this tradeoff can contribute to differential cognitive functions between species and underlie the complementary roles of the amygdala and the cingulate cortex. In turn, it can contribute to fragility underlying human psychopathologies.


Subject(s)
Amygdala/physiology , Gyrus Cinguli/physiology , Neurons/physiology , Adult , Animals , Biological Evolution , Child , Child, Preschool , Cognition/physiology , Emotions/physiology , Female , Humans , Macaca , Macaca mulatta , Magnetic Resonance Imaging , Male , Middle Aged , Nerve Net/metabolism , Nerve Net/physiology , Prefrontal Cortex/physiology , Species Specificity
5.
Cell ; 177(4): 986-998.e15, 2019 05 02.
Article in English | MEDLINE | ID: mdl-30982599

ABSTRACT

By observing their social partners, primates learn about reward values of objects. Here, we show that monkeys' amygdala neurons derive object values from observation and use these values to simulate a partner monkey's decision process. While monkeys alternated making reward-based choices, amygdala neurons encoded object-specific values learned from observation. Dynamic activities converted these values to representations of the recorded monkey's own choices. Surprisingly, the same activity patterns unfolded spontaneously before partner's choices in separate neurons, as if these neurons simulated the partner's decision-making. These "simulation neurons" encoded signatures of mutual-inhibitory decision computation, including value comparisons and value-to-choice conversions, resulting in accurate predictions of partner's choices. Population decoding identified differential contributions of amygdala subnuclei. Biophysical modeling of amygdala circuits showed that simulation neurons emerge naturally from convergence between object-value neurons and self-other neurons. By simulating decision computations during observation, these neurons could allow primates to reconstruct their social partners' mental states.


Subject(s)
Amygdala/metabolism , Amygdala/physiology , Decision Making/physiology , Animals , Behavior, Animal/physiology , Choice Behavior/physiology , Interpersonal Relations , Learning/physiology , Macaca mulatta/physiology , Male , Neurons/metabolism , Neurons/physiology , Reward
6.
Annu Rev Neurosci ; 47(1): 145-166, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38663092

ABSTRACT

The cerebellum has a well-established role in controlling motor functions, including coordination, posture, and the learning of skilled movements. The mechanisms for how it carries out motor behavior remain under intense investigation. Interestingly though, in recent years the mechanisms of cerebellar function have faced additional scrutiny since nonmotor behaviors may also be controlled by the cerebellum. With such complexity arising, there is now a pressing need to better understand how cerebellar structure, function, and behavior intersect to influence behaviors that are dynamically called upon as an animal experiences its environment. Here, we discuss recent experimental work that frames possible neural mechanisms for how the cerebellum shapes disparate behaviors and why its dysfunction is catastrophic in hereditary and acquired conditions-both motor and nonmotor. For these reasons, the cerebellum might be the ideal therapeutic target.


Subject(s)
Cerebellum , Learning , Movement , Cerebellum/physiology , Animals , Humans , Learning/physiology , Movement/physiology
7.
Annu Rev Neurosci ; 47(1): 255-276, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38663429

ABSTRACT

The zebrafish visual system has become a paradigmatic preparation for behavioral and systems neuroscience. Around 40 types of retinal ganglion cells (RGCs) serve as matched filters for stimulus features, including light, optic flow, prey, and objects on a collision course. RGCs distribute their signals via axon collaterals to 12 retinorecipient areas in forebrain and midbrain. The major visuomotor hub, the optic tectum, harbors nine RGC input layers that combine information on multiple features. The retinotopic map in the tectum is locally adapted to visual scene statistics and visual subfield-specific behavioral demands. Tectal projections to premotor centers are topographically organized according to behavioral commands. The known connectivity in more than 20 processing streams allows us to dissect the cellular basis of elementary perceptual and cognitive functions. Visually evoked responses, such as prey capture or loom avoidance, are controlled by dedicated multistation pathways that-at least in the larva-resemble labeled lines. This architecture serves the neuronal code's purpose of driving adaptive behavior.


Subject(s)
Retinal Ganglion Cells , Superior Colliculi , Visual Pathways , Zebrafish , Animals , Visual Pathways/physiology , Zebrafish/physiology , Retinal Ganglion Cells/physiology , Superior Colliculi/physiology , Visual Perception/physiology
8.
Mol Cell ; 84(4): 621-639.e9, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38244545

ABSTRACT

The DNA-binding protein SATB2 is genetically linked to human intelligence. We studied its influence on the three-dimensional (3D) epigenome by mapping chromatin interactions and accessibility in control versus SATB2-deficient cortical neurons. We find that SATB2 affects the chromatin looping between enhancers and promoters of neuronal-activity-regulated genes, thus influencing their expression. It also alters A/B compartments, topologically associating domains, and frequently interacting regions. Genes linked to SATB2-dependent 3D genome changes are implicated in highly specialized neuronal functions and contribute to cognitive ability and risk for neuropsychiatric and neurodevelopmental disorders. Non-coding DNA regions with a SATB2-dependent structure are enriched for common variants associated with educational attainment, intelligence, and schizophrenia. Our data establish SATB2 as a cell-type-specific 3D genome modulator, which operates both independently and in cooperation with CCCTC-binding factor (CTCF) to set up the chromatin landscape of pyramidal neurons for cognitive processes.


Subject(s)
Matrix Attachment Region Binding Proteins , Transcription Factors , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Neurons/metabolism , CCCTC-Binding Factor/metabolism , Chromatin/genetics , Chromatin/metabolism , Genome , Cognition , Matrix Attachment Region Binding Proteins/genetics , Matrix Attachment Region Binding Proteins/metabolism
9.
Annu Rev Neurosci ; 46: 381-401, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37428602

ABSTRACT

Primates have evolved diverse cognitive capabilities to navigate their complex social world. To understand how the brain implements critical social cognitive abilities, we describe functional specialization in the domains of face processing, social interaction understanding, and mental state attribution. Systems for face processing are specialized from the level of single cells to populations of neurons within brain regions to hierarchically organized networks that extract and represent abstract social information. Such functional specialization is not confined to the sensorimotor periphery but appears to be a pervasive theme of primate brain organization all the way to the apex regions of cortical hierarchies. Circuits processing social information are juxtaposed with parallel systems involved in processing nonsocial information, suggesting common computations applied to different domains. The emerging picture of the neural basis of social cognition is a set of distinct but interacting subnetworks involved in component processes such as face perception and social reasoning, traversing large parts of the primate brain.


Subject(s)
Brain , Social Cognition , Animals , Brain/physiology , Primates/physiology , Social Perception , Cognition/physiology
10.
Annu Rev Neurosci ; 45: 361-386, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35385670

ABSTRACT

Cognitive neuroscience has highlighted the cerebral cortex while often overlooking subcortical structures. This cortical proclivity is found in basic and translational research on many aspects of cognition, especially higher cognitive domains such as language, reading, music, and math. We suggest that, for both anatomical and evolutionary reasons, multiple subcortical structures play substantial roles across higher and lower cognition. We present a comprehensive review of existing evidence, which indeed reveals extensive subcortical contributions in multiple cognitive domains. We argue that the findings are overall both real and important. Next, we advance a theoretical framework to capture the nature of (sub)cortical contributions to cognition. Finally, we propose how new subcortical cognitive roles can be identified by leveraging anatomical and evolutionary principles, and we describe specific methods that can be used to reveal subcortical cognition. Altogether, this review aims to advance cognitive neuroscience by highlighting subcortical cognition and facilitating its future investigation.


Subject(s)
Brain , Magnetic Resonance Imaging , Cerebral Cortex , Cognition , Fruit
11.
Annu Rev Neurosci ; 45: 533-560, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35803587

ABSTRACT

The neocortex is a complex neurobiological system with many interacting regions. How these regions work together to subserve flexible behavior and cognition has become increasingly amenable to rigorous research. Here, I review recent experimental and theoretical work on the modus operandi of a multiregional cortex. These studies revealed several general principles for the neocortical interareal connectivity, low-dimensional macroscopic gradients of biological properties across cortical areas, and a hierarchy of timescales for information processing. Theoretical work suggests testable predictions regarding differential excitation and inhibition along feedforward and feedback pathways in the cortical hierarchy. Furthermore, modeling of distributed working memory and simple decision-making has given rise to a novel mathematical concept, dubbed bifurcation in space, that potentially explains how different cortical areas, with a canonical circuit organization but gradients of biological heterogeneities, are able to subserve their respective (e.g., sensory coding versus executive control) functions in a modularly organized brain.


Subject(s)
Neocortex , Cognition/physiology , Executive Function , Memory, Short-Term/physiology , Neocortex/physiology , Nerve Net/physiology
12.
Annu Rev Neurosci ; 44: 295-313, 2021 07 08.
Article in English | MEDLINE | ID: mdl-33752448

ABSTRACT

As a frontal node in the primate social brain, the medial prefrontal cortex (MPFC) plays a critical role in coordinating one's own behavior with respect to that of others. Current literature demonstrates that single neurons in the MPFC encode behavior-related variables such as intentions, actions, and rewards, specifically for self and other, and that the MPFC comes into play when reflecting upon oneself and others. The social moderator account of MPFC function can explain maladaptive social cognition in people with autism spectrum disorder, which tips the balance in favor of self-centered perspectives rather than taking into consideration the perspective of others. Several strands of evidence suggest a hypothesis that the MPFC represents different other mental models, depending on the context at hand, to better predict others' emotions and behaviors. This hypothesis also accounts for aberrant MPFC activity in autistic individuals while they are mentalizing others.


Subject(s)
Autism Spectrum Disorder , Magnetic Resonance Imaging , Animals , Brain Mapping , Prefrontal Cortex , Primates
13.
Trends Biochem Sci ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39358050

ABSTRACT

Emerging evidence links type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD), with brain insulin resistance (BIR) as a key factor. In a recent study, Lanzillotta et al. reveal that reduced biliverdin reductase-A (BVR-A) impairs glycogen synthase kinase 3ß (GSK3ß) phosphorylation, causing mitochondrial dysfunction and exacerbating brain insulin resistance in the progression of both T2DM and AD.

14.
Proc Natl Acad Sci U S A ; 121(41): e2412017121, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39352934

ABSTRACT

Major initiatives attempt to prevent dementia by targeting modifiable risk factors. Low education is frequently pointed to, due to its relationship with dementia. Impact of education is difficult to assess, however, because of associations with multiple other factors, requiring large population-representative samples to tease the relationships apart. We studied 207,814 Norwegian men born between 1950 and 1959 who underwent compulsory cognitive testing during military conscription as young adults, to systematically test associations of education, cognition, and other important factors. Participants were grouped into five education levels and seven cognitive levels. A total of 1,521 were diagnosed with dementia between ages 60 and 69 y. While having compulsory education only was associated with increased risk (Hazard ratio [HR] = 1.37, CI: 1.17 to 1.60), this association was markedly attenuated when controlling for cognitive test scores (HR = 1.08, CI: 0.91 to 1.28). In contrast, low cognitive score was associated with double risk of later diagnosis, even when controlling for education (HR = 2.00, CI: 1.65 to 2.42). This relationship survived controlling for early-life socioeconomic status and replicated within pairs of brothers. This suggests that genetic and environmental factors shared within families, e.g., common genetics, parental education, socioeconomic status, or other shared experiences, cannot account for the association. Rather, independent, nonfamilial factors are more important. In contrast, within-family factors accounted for the relationship between low education and diagnosis risk. In conclusion, implementing measures to increase cognitive function in childhood and adolescence appears to be a more promising strategy for reducing dementia burden.


Subject(s)
Cognition , Dementia , Educational Status , Humans , Dementia/epidemiology , Dementia/prevention & control , Male , Cognition/physiology , Risk Factors , Middle Aged , Aged , Norway/epidemiology , Adolescent
15.
Proc Natl Acad Sci U S A ; 121(28): e2321346121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38954551

ABSTRACT

How does the brain process the faces of familiar people? Neuropsychological studies have argued for an area of the temporal pole (TP) linking faces with person identities, but magnetic susceptibility artifacts in this region have hampered its study with fMRI. Using data acquisition and analysis methods optimized to overcome this artifact, we identify a familiar face response in TP, reliably observed in individual brains. This area responds strongly to visual images of familiar faces over unfamiliar faces, objects, and scenes. However, TP did not just respond to images of faces, but also to a variety of high-level social cognitive tasks, including semantic, episodic, and theory of mind tasks. The response profile of TP contrasted with a nearby region of the perirhinal cortex that responded specifically to faces, but not to social cognition tasks. TP was functionally connected with a distributed network in the association cortex associated with social cognition, while PR was functionally connected with face-preferring areas of the ventral visual cortex. This work identifies a missing link in the human face processing system that specifically processes familiar faces, and is well placed to integrate visual information about faces with higher-order conceptual information about other people. The results suggest that separate streams for person and face processing reach anterior temporal areas positioned at the top of the cortical hierarchy.


Subject(s)
Magnetic Resonance Imaging , Temporal Lobe , Humans , Magnetic Resonance Imaging/methods , Temporal Lobe/physiology , Temporal Lobe/diagnostic imaging , Male , Female , Adult , Facial Recognition/physiology , Brain Mapping/methods , Recognition, Psychology/physiology , Face/physiology , Young Adult , Pattern Recognition, Visual/physiology
16.
Proc Natl Acad Sci U S A ; 121(42): e2406823121, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39378087

ABSTRACT

In recent decades, many jurisdictions have moved toward legalizing euthanasia and assisted suicide, alongside a near-universal increase in public acceptance of medical aid in dying. Here, we draw on a comprehensive quantitative review of current laws on assisted dying, experimental survey evidence, and four decades of time-series data to explore the relationship between these legislative transitions and change in moral attitudes. Our analyses reveal that existing laws on medical aid in dying impose a common set of eligibility restrictions, based on the patient's age, decision-making capacity, prognosis, and the nature of their illness. Fulfillment of these eligibility criteria elevates public moral approval of physician-assisted death, equally in countries with (i.e., Spain) and without (i.e., the United Kingdom) assisted dying laws. Finally, historical records of public attitudes toward euthanasia across numerous countries uncovered anticipatory growth in moral approval leading up to legalization, but no accelerated growth thereafter. Taken together, our findings suggest that the enactment of medical aid in dying laws, and their specific provisions, crystallize patterns in moral intuition.


Subject(s)
Morals , Suicide, Assisted , Humans , Suicide, Assisted/legislation & jurisprudence , Suicide, Assisted/ethics , Euthanasia/legislation & jurisprudence , Euthanasia/ethics , Intuition , Public Opinion , Decision Making/ethics
17.
Proc Natl Acad Sci U S A ; 121(32): e2402068121, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39088395

ABSTRACT

Linguistic communication is an intrinsically social activity that enables us to share thoughts across minds. Many complex social uses of language can be captured by domain-general representations of other minds (i.e., mentalistic representations) that externally modulate linguistic meaning through Gricean reasoning. However, here we show that representations of others' attention are embedded within language itself. Across ten languages, we show that demonstratives-basic grammatical words (e.g., "this"/"that") which are evolutionarily ancient, learned early in life, and documented in all known languages-are intrinsic attention tools. Beyond their spatial meanings, demonstratives encode both joint attention and the direction in which the listener must turn to establish it. Crucially, the frequency of the spatial and attentional uses of demonstratives varies across languages, suggesting that both spatial and mentalistic representations are part of their conventional meaning. Using computational modeling, we show that mentalistic representations of others' attention are internally encoded in demonstratives, with their effect further boosted by Gricean reasoning. Yet, speakers are largely unaware of this, incorrectly reporting that they primarily capture spatial representations. Our findings show that representations of other people's cognitive states (namely, their attention) are embedded in language and suggest that the most basic building blocks of the linguistic system crucially rely on social cognition.


Subject(s)
Attention , Language , Humans , Attention/physiology , Cognition/physiology , Linguistics , Communication , Female , Male
18.
Proc Natl Acad Sci U S A ; 121(8): e2313042121, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38346194

ABSTRACT

One of the very fundamental attributes for telencephalic neural computation in mammals involves network activities oscillating beyond the initial trigger. The continuing and automated processing of transient inputs shall constitute the basis of cognition and intelligence but may lead to neuropsychiatric disorders such as epileptic seizures if carried so far as to engross part of or the whole telencephalic system. From a conventional view of the basic design of the telencephalic local circuitry, the GABAergic interneurons (INs) and glutamatergic pyramidal neurons (PNs) make negative feedback loops which would regulate the neural activities back to the original state. The drive for the most intriguing self-perpetuating telencephalic activities, then, has not been posed and characterized. We found activity-dependent deployment and delineated functional consequences of the electrical synapses directly linking INs and PNs in the amygdala, a prototypical telencephalic circuitry. These electrical synapses endow INs dual (a faster excitatory and a slower inhibitory) actions on PNs, providing a network-intrinsic excitatory drive that fuels the IN-PN interconnected circuitries and enables persistent oscillations with preservation of GABAergic negative feedback. Moreover, the entities of electrical synapses between INs and PNs are engaged in and disengaged from functioning in a highly dynamic way according to neural activities, which then determine the spatiotemporal scale of recruited oscillating networks. This study uncovers a special wide-range and context-dependent plasticity for wiring/rewiring of brain networks. Epileptogenesis or a wide spectrum of clinical disorders may ensue, however, from different scales of pathological extension of this unique form of telencephalic plasticity.


Subject(s)
Electrical Synapses , Epilepsy , Animals , Humans , Synapses/physiology , Interneurons/physiology , Brain , Epilepsy/pathology , Seizures/pathology , Mammals
19.
Proc Natl Acad Sci U S A ; 121(12): e2309232121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38466844

ABSTRACT

Sociality is a defining feature of the human experience: We rely on others to ensure survival and cooperate in complex social networks to thrive. Are there brain mechanisms that help ensure we quickly learn about our social world to optimally navigate it? We tested whether portions of the brain's default network engage "by default" to quickly prioritize social learning during the memory consolidation process. To test this possibility, participants underwent functional MRI (fMRI) while viewing scenes from the documentary film, Samsara. This film shows footage of real people and places from around the world. We normed the footage to select scenes that differed along the dimension of sociality, while matched on valence, arousal, interestingness, and familiarity. During fMRI, participants watched the "social" and "nonsocial" scenes, completed a rest scan, and a surprise recognition memory test. Participants showed superior social (vs. nonsocial) memory performance, and the social memory advantage was associated with neural pattern reinstatement during rest in the dorsomedial prefrontal cortex (DMPFC), a key node of the default network. Moreover, it was during early rest that DMPFC social pattern reinstatement was greatest and predicted subsequent social memory performance most strongly, consistent with the "prioritization" account. Results simultaneously update 1) theories of memory consolidation, which have not addressed how social information may be prioritized in the learning process, and 2) understanding of default network function, which remains to be fully characterized. More broadly, the results underscore the inherent human drive to understand our vastly social world.


Subject(s)
Brain Mapping , Social Learning , Humans , Prefrontal Cortex/diagnostic imaging , Brain , Cognition , Rest , Magnetic Resonance Imaging/methods
20.
Proc Natl Acad Sci U S A ; 121(16): e2401196121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38588422

ABSTRACT

Face pareidolia is a tendency to seeing faces in nonface images that reflects high tuning to a face scheme. Yet, studies of the brain networks underwriting face pareidolia are scarce. Here, we examined the time course and dynamic topography of gamma oscillatory neuromagnetic activity while administering a task with nonface images resembling a face. Images were presented either with canonical orientation or with display inversion that heavily impedes face pareidolia. At early processing stages, the peaks in gamma activity (40 to 45 Hz) to images either triggering or not face pareidolia originate mainly from the right medioventral and lateral occipital cortices, rostral and caudal cuneus gyri, and medial superior occipital gyrus. Yet, the difference occurred at later processing stages in the high-frequency range of 80 to 85 Hz over a set of the areas constituting the social brain. The findings speak rather for a relatively late neural network playing a key role in face pareidolia. Strikingly, a cutting-edge analysis of brain connectivity unfolding over time reveals mutual feedforward and feedback intra- and interhemispheric communication not only within the social brain but also within the extended large-scale network of down- and upstream regions. In particular, the superior temporal sulcus and insula strongly engage in communication with other brain regions either as signal transmitters or recipients throughout the whole processing of face-pareidolia images.


Subject(s)
Brain Mapping , Face , Brain , Occipital Lobe , Temporal Lobe
SELECTION OF CITATIONS
SEARCH DETAIL