Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Int J Mol Sci ; 25(16)2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39201654

ABSTRACT

Digital PCR (dPCR) is a powerful method for highly sensitive and precise quantification of nucleic acids. However, designing and optimizing new multiplex dPCR assays using target sequence specific probes remains cumbersome, since fluorescent signals must be optimized for every new target panel. As a solution, we established a generic fluorogenic 6-plex reporter set, based on mediator probe technology, that decouples target detection from signal generation. This generic reporter set is compatible with different target panels and thus provides already optimized fluorescence signals from the start of new assay development. Generic reporters showed high population separability in a colorimetric 6-plex mediator probe dPCR, due to their tailored fluorophore and quencher selection. These reporters were further tested using different KRAS, NRAS and BRAF single-nucleotide polymorphisms (SNP), which are frequent point mutation targets in liquid biopsy. We specifically quantified SNP targets in our multiplex approach down to 0.4 copies per microliter (cp/µL) reaction mix, equaling 10 copies per reaction, on a wild-type background of 400 cp/µL for each, equaling 0.1% variant allele frequencies. We also demonstrated the design of an alternative generic reporter set from scratch in order to give detailed step-by-step guidance on how to systematically establish and optimize novel generic reporter sets. Those generic reporter sets can be customized for various digital PCR platforms or target panels with different degrees of multiplexing.


Subject(s)
Colorimetry , Polymorphism, Single Nucleotide , Humans , Colorimetry/methods , Multiplex Polymerase Chain Reaction/methods , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Membrane Proteins/genetics , GTP Phosphohydrolases
2.
J Transl Med ; 21(1): 725, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37845764

ABSTRACT

BACKGROUND: Molecular Tumor Boards (MTB) operating in real-world have generated limited consensus on good practices for accrual, actionable alteration mapping, and outcome metrics. These topics are addressed herein in 124 MTB patients, all real-world accrued at progression, and lacking approved therapy options. METHODS: Actionable genomic alterations identified by tumor DNA (tDNA) and circulating tumor DNA (ctDNA) profiling were mapped by customized OncoKB criteria to reflect diagnostic/therapeutic indications as approved in Europe. Alterations were considered non-SoC when mapped at either OncoKB level 3, regardless of tDNA/ctDNA origin, or at OncoKB levels 1/2, provided they were undetectable in matched tDNA, and had not been exploited in previous therapy lines. RESULTS: Altogether, actionable alterations were detected in 54/124 (43.5%) MTB patients, but only in 39 cases (31%) were these alterations (25 from tDNA, 14 from ctDNA) actionable/unexploited, e.g. they had not resulted in the assignment of pre-MTB treatments. Interestingly, actionable and actionable/unexploited alterations both decreased (37.5% and 22.7% respectively) in a subset of 88 MTB patients profiled by tDNA-only, but increased considerably (77.7% and 66.7%) in 18 distinct patients undergoing combined tDNA/ctDNA testing, approaching the potential treatment opportunities (76.9%) in 147 treatment-naïve patients undergoing routine tDNA profiling for the first time. Non-SoC therapy was MTB-recommended to all 39 patients with actionable/unexploited alterations, but only 22 (56%) accessed the applicable drug, mainly due to clinical deterioration, lengthy drug-gathering procedures, and geographical distance from recruiting clinical trials. Partial response and stable disease were recorded in 8 and 7 of 19 evaluable patients, respectively. The time to progression (TTP) ratio (MTB-recommended treatment vs last pre-MTB treatment) exceeded the conventional Von Hoff 1.3 cut-off in 9/19 cases, high absolute TTP and Von Hoff values coinciding in 3 cases. Retrospectively, 8 patients receiving post-MTB treatment(s) as per physician's choice were noted to have a much longer overall survival from MTB accrual than 11 patients who had received no further treatment (35.09 vs 6.67 months, p = 0.006). CONCLUSIONS: MTB-recommended/non-SoC treatments are effective, including those assigned by ctDNA-only alterations. However, real-world MTBs may inadvertently recruit patients electively susceptible to diverse and/or multiple treatments.


Subject(s)
Neoplasms , United States , Humans , National Cancer Institute (U.S.) , Retrospective Studies , Mutation , Neoplasms/genetics , DNA, Neoplasm/genetics , High-Throughput Nucleotide Sequencing/methods , Biomarkers, Tumor/genetics
3.
Anal Bioanal Chem ; 415(7): 1333-1337, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36680591

ABSTRACT

Human monkeypox has attracted attention recently. Monkeypox virus (MPXV) keeps evolving as it spreading around the world rapidly, which may threaten the health of more and more people. Here, we have developed a high order reference method based on digital PCR (dPCR) for MPXV detection, of which the limits of quantification (LoQ) and detection (LoD) are 38 and 6 copies/reaction, respectively. Pseudovirus reference materials (RM) containing the conserved F3L gene has been developed, and the homogeneity assessment showed that the RM was homogeneous. The reference value with its expanded uncertainty determined by the established dPCR is (2.74 ± 0.46) × 103 copies/µL. Six different MPXV test kits were accessed by the RM. Four out of six test kits cannot reach their claimed LoDs. The poor analytical sensitivity might cause false-negative results, which lead to incorrect diagnosis and treatment. The establishment of a high order reference method of dPCR and pseudovirus RM is very useful for improving the accuracy and reliability of MPXV detection.


Subject(s)
Mpox (monkeypox) , Humans , Mpox (monkeypox)/diagnosis , Monkeypox virus/genetics , Reproducibility of Results , DNA, Viral/analysis , Polymerase Chain Reaction/methods
4.
Anal Bioanal Chem ; 415(4): 725-733, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36571590

ABSTRACT

Accurate measurement of human epidermal growth factor receptor 2 (HER2) copy number variation (CNV) is very important for guiding the tumor target therapy in breast cancer. Digital PCR (dPCR) is a sensitive and an absolute quantitative method, which can be used to detect HER2 CNV. Three HER2 exon-specific digital PCR assays along with three new reference genes assays (homo sapiens ribonuclease P RNA component H1 (RPPH1), glucose-6-phosphate isomerase (GPI), and chromosome 1 open reading frame 43 (C1ORF43), on different chromosomes) were established and validated by using standard reference material, 8 different cell lines and 110 clinical Formalin-fixed and paraffin-embedded (FFPE) samples. DPCR can achieve precise quantification of HER2 CNV by calculating the ratio of HER2/reference gene. The positive and negative coincidence rates were 98% (53/54) and 95% (53/56), respectively, compared with fluorescence in situ hybridization (FISH) diagnostic result 110 of FFPE samples. The common reference gene CEP17 used for FISH diagnostic was not suitable as single reference gene for HER2 CNV measurements by dPCR. The best practice of HER2 CNV determination by dPCR is to conduct the three duplex assays of H1 (HER2 exon 4) with the proposed three new reference genes, with a positive cut-off value of H1/RPPH1 ≥ 2.0 or H1/averaged reference gene ≥ 2.0. The proposed dPCR method in our study can accurately provide absolute copy number of HER2 and reference gene on an alternative chromosome, thus avoiding false negative caused by polysomy of chromosome 17. The improved molecular typing and diagnosis of breast cancer will better guide clinical medication.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , DNA Copy Number Variations , In Situ Hybridization, Fluorescence , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Polymerase Chain Reaction/methods , Genes, erbB-2
5.
Aquaculture ; 5642023 Feb 15.
Article in English | MEDLINE | ID: mdl-38562455

ABSTRACT

Environmental DNA (eDNA) water assays are beginning to be implemented for many important pathogens in confined aquaculture systems. Recirculating systems are rapidly being developed for fin fish aquaculture. Zebrafish (Danio rerio) are reared in these systems, and Pseudoloma neurophilia (Microsporidia) represents a serious challenge for zebrafish research facilities. Diagnosis of the pathogen has traditionally used histology or PCR of tissues with lethal sampling. However, with the development of a nonlethal assay to detect P. neurophilia in tank water, facilities will be able to integrate the assay into routine surveillance efforts to couple with their established protocols. Here, we first describe a modified protocol to extract and quantify parasite DNA from the environment for nonlethal detection of P. neurophilia in adult zebrafish populations. Using this modified assay, we then evaluated water samples from a longitudinal experimental infection study, targeting timepoints during initial infection. The parasite was detectable in the water immediately after initial exposure until week 4 post exposure (pe), when the parasite was undetectable until 7 weeks pe. After that time, the parasite was sporadically detected in the water for the 10-month study, likely correlating with the lifecycle of the parasite. Using water samples from the Zebrafish International Resource Center, we also validated the clinical relevance of the assay in a large zebrafish facility. The integration of this assay at ZIRC will significantly compliment surveillance and control efforts for the microsporidian parasite.

6.
Clin Chem Lab Med ; 58(2): 306-313, 2020 01 28.
Article in English | MEDLINE | ID: mdl-31469650

ABSTRACT

Background Non-small cell lung cancer (NSCLC) patients benefit from targeted therapies both in first- and second-line treatment. Nevertheless, molecular profiling of lung cancer tumors after first disease progression is seldom performed. The analysis of circulating tumor DNA (ctDNA) enables not only non-invasive biomarker testing but also monitoring tumor response to treatment. Digital PCR (dPCR), although a robust approach, only enables the analysis of a limited number of mutations. Next-generation sequencing (NGS), on the other hand, enables the analysis of significantly greater numbers of mutations. Methods A total of 54 circulating free DNA (cfDNA) samples from 52 NSCLC patients and two healthy donors were analyzed by NGS using the Oncomine™ Lung cfDNA Assay kit and dPCR. Results Lin's concordance correlation coefficient and Pearson's correlation coefficient between mutant allele frequencies (MAFs) assessed by NGS and dPCR revealed a positive and linear relationship between the two data sets (ρc = 0.986; 95% confidence interval [CI] = 0.975-0.991; r = 0.987; p < 0.0001, respectively), indicating an excellent concordance between both measurements. Similarly, the agreement between NGS and dPCR for the detection of the resistance mutation p.T790M was almost perfect (K = 0.81; 95% CI = 0.62-0.99), with an excellent correlation in terms of MAFs (ρc = 0.991; 95% CI = 0.981-0.992 and Pearson's r = 0.998; p < 0.0001). Importantly, cfDNA sequencing was successful using as low as 10 ng cfDNA input. Conclusions MAFs assessed by NGS were highly correlated with MAFs assessed by dPCR, demonstrating that NGS is a robust technique for ctDNA quantification using clinical samples, thereby allowing for dynamic genomic surveillance in the era of precision medicine.


Subject(s)
Carcinoma, Non-Small-Cell Lung/diagnosis , Circulating Tumor DNA/chemistry , High-Throughput Nucleotide Sequencing/methods , Lung Neoplasms/pathology , Adult , Aged , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Circulating Tumor DNA/genetics , Female , Gene Frequency , Humans , Liquid Biopsy , Lung Neoplasms/genetics , Male , Middle Aged , Mutation , Mutation, Missense , Neoplasm Staging , Polymerase Chain Reaction , Reagent Kits, Diagnostic
7.
J Clin Lab Anal ; 34(8): e23344, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32329932

ABSTRACT

BACKGROUND: In standard analytical conditions, an isolation step is essential for circulating tumor DNA (ctDNA) analysis. The necessity of this step becomes unclear with the development of highly sensitive detection methods. The aim of this study was to evaluate ctDNA mimetic nDNA detection as reference materials (RMs) using dPCR technologies either directly from serum or without serum. METHODS: To determine an absolute count of both mutation and wild-type bearing DNA molecules, genomic DNA (gDNA) and nucleosomal DNA (nDNA), which are similar in size to cell-free DNA, were evaluated. We tested 3 KRAS mutations in colorectal cancer cell lines. RESULTS: We describe the recent progress in RMs. The short DNA fragments, such as sDNA and nDNA, exhibited higher quantitative values of dPCR compared to gDNA. The efficiency between Atlantis dsDNase (AD) and Micrococcal Nuclease (MN) affects DNA quantification. Moreover, there was a significant difference in dPCR output when spiking gDNA or nDNA containing KRAS mutations into FBS compared to the dPCR output under non-FBS conditions. CONCLUSION: The matrix effect crucially affects the accuracy of gDNA and nDNA level estimation in the direct detection of mimic of patient samples. The form of reference material we proposed should be optimized for various conditions to develop reference materials that can accurately measure copy number and verify the detection of KRAS mutations in the matrix.


Subject(s)
Circulating Tumor DNA/genetics , Mutation/genetics , Polymerase Chain Reaction/methods , Proto-Oncogene Proteins p21(ras)/genetics , Cell Line, Tumor , Colorectal Neoplasms/genetics , Humans
8.
Food Control ; 93: 191-200, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30393444

ABSTRACT

Knowledge of the number of DNA sequences targeted by the taxon-specific reference assays is essential for correct GM quantification and is key to the harmonisation of measurement results. In the present study droplet digital PCR (ddPCR) was used to determine the number of DNA target copies of taxon-specific assays validated for real-time PCR for the four main genetically modified (GM) crops. The transferability of experimental conditions from real-time PCR to ddPCR was also explored, as well as the effect of DNA digestion. The results of this study indicate that for each crop at least one taxon-specific assay can be identified as having a single DNA target. A short list of taxon-specific reference assays is proposed as best candidates for the relative quantification of GM events for soybean, maize, cotton and oilseed rape. The investigated assays could be in most cases transferred to ddPCR without further optimisation. The use of DNA digestion did not improve ddPCR characteristics such as rain and resolution at the conditions tested.

9.
Haemophilia ; 21(1): 140-7, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25438872

ABSTRACT

Factor V (FV) deficiency is a rare autosomal recessive bleeding disorder caused by mutations in the F5 gene. FV-deficient patients in whom no mutation or only one mutation is found may harbour large gene rearrangements, which are not detected by conventional mutation screening strategies. The aim of this study was to develop and validate a multiplex ligation-dependent probe amplification (MLPA) assay for the detection of large deletions and duplications in the F5 gene. Twenty-two MLPA probes targeting 19 of the 25 exons and the upstream and downstream regions of the F5 gene were designed and tested in 10 normal controls, a patient with a known heterozygous deletion of F5 exons 1-7 (positive control) and 14 genetically unexplained FV-deficient patients. MLPA results were confirmed by digital PCR on a QuantStudio(™) 3D Digital PCR System. The F5-specific probes yielded a reproducible peak profile in normal controls, correctly detected the known deletion in the positive control and suggested the presence of a novel deletion of exons 9-10 in a patient with undetectable FV levels and only one identified mutation. Follow-up by chip-based digital PCR, long-range PCR and direct sequencing confirmed that this patient carried a heterozygous F5 deletion of 1823 bp extending from intron 8 to intron 10. Bioinformatics sequence analysis pinpointed repetitive elements that might have originated the deletion. In conclusion, we have developed and validated an MLPA assay for the detection of gross F5 gene rearrangements. This assay may represent a valuable tool for the molecular diagnosis of FV deficiency.


Subject(s)
DNA Mutational Analysis/methods , Factor V Deficiency/genetics , Multiplex Polymerase Chain Reaction/methods , Female , Humans , Male , Mutation
10.
J Virol Methods ; 324: 114859, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38061673

ABSTRACT

The quantitative polymerase chain reaction (qPCR) technique is an extensively used molecular tool for the detection and quantification of viral genome load. However, since the qPCR assay is a relative quantification method that relies on an external calibration curve it has a lower assay precision and sensitivity. The digital PCR (dPCR) technique is a good alternative to the qPCR assay as it offers highly precise and direct quantification of viral genome load in samples. In this study, performance characteristics such as the quantification range, sensitivity, precision, and specificity of the dPCR technique was compared to qPCR technique for the detection and quantification of IBV genome loads in serial dilutions of IBV positive plasmid DNA, and IBV infected chicken tissue and swab samples. The quantification range of the qPCR assay was wider than that of the dPCR assay, however dPCR had a higher sensitivity compared to qPCR. The precision of quantification of DNA in plasmid samples in terms of repeatability and reproducibility of results was higher when using the dPCR assay compared to qPCR assay. The quantification results of IBV genome load in infected samples by the qPCR and dPCR assays displayed a high correlation. Hence, our findings suggest that dPCR could be used in avian virology research for improved precision and sensitivity in detection and quantification of viral genome loads.


Subject(s)
Infectious bronchitis virus , Animals , Infectious bronchitis virus/genetics , Reproducibility of Results , DNA , Chickens , Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/methods
11.
Viruses ; 15(7)2023 07 19.
Article in English | MEDLINE | ID: mdl-37515264

ABSTRACT

MicroRNAs (miRNAs, miRs) are a group of small, 17-25 nucleotide, non-coding RNA sequences that, in their mature form, regulate gene expression at the post-transcriptional level. They participate in many physiological and pathological processes in both humans and animals. One such process is viral infection, in which miR-155 participates in innate and adaptive immune responses to a broad range of inflammatory mediators. Recently, the study of microRNA has become an interesting field of research as a potential candidate for biomarkers for various processes and disease. To use miRNAs as potential biomarkers of inflammation in viral diseases of animals and humans, it is necessary to improve their detection and quantification. In a previous study, using reverse transcription real-time quantitative PCR (RT-qPCR), we showed that the expression of ocu-miR-155-5p in liver tissue was significantly higher in rabbits infected with Lagovirus europaeus/Rabbit Hemorrhagic Disease Virus (RHDV) compared to healthy rabbits. The results indicated a role for ocu-miR-155-5p in Lagovirus europaeus/RHDV infection and reflected hepatitis and the impairment/dysfunction of this organ during RHD. MiR-155-5p was, therefore, hypothesized as a potential candidate for a tissue biomarker of inflammation and examined in tissues in Lagovirus europaeus/RHDV infection by dPCR. The objective of the study is the absolute quantification of ocu-miR-155-5p in four tissues (liver, lung, kidney, and spleen) of rabbits infected with Lagovirus europaeus/RHDV by digital PCR, a robust technique for the precise and direct quantification of small amounts of nucleic acids, including miRNAs, without standard curves and external references. The average copy number/µL (copies/µL) of ocu-miRNA-155-5p in rabbits infected with Lagovirus europaeus GI.1a/Rossi in the liver tissue was 12.26 ± 0.14, that in the lung tissue was 48.90 ± 9.23, that in the kidney tissue was 16.92 ± 2.89, and that in the spleen was 25.10 ± 0.90. In contrast, in the tissues of healthy control rabbits, the average number of copies/µL of ocu-miRNA-155-5p was 5.07 ± 1.10 for the liver, 23.52 ± 2.77 for lungs, 8.10 ± 0.86 for kidneys, and 42.12 ± 3.68 for the spleen. The increased expression of ocu-miRNA-155-5p in infected rabbits was demonstrated in the liver (a fold-change of 2.4, p-value = 0.0003), lung (a fold-change of 2.1, p-value = 0.03), and kidneys (a fold-change of 2.1, p-value = 0.01), with a decrease in the spleen (a fold-change of 0.6, p-value = 0.002). In the study of Lagovirus europaeus/RHDV infection and in the context of viral infections, this is the first report that shows the potential use of dPCR for the sensitive and absolute quantification of microRNA-155-5p in tissues during viral infection. We think miR-155-5p may be a potential candidate for a tissue biomarker of inflammation with Lagovirus europaeus/RHDV infection. Our report presents a new path in discovering potential candidates for the tissue biomarkers of inflammation.


Subject(s)
Caliciviridae Infections , Hemorrhagic Disease Virus, Rabbit , Lagovirus , MicroRNAs , Animals , Rabbits , Humans , Hemorrhagic Disease Virus, Rabbit/genetics , Lagovirus/genetics , Real-Time Polymerase Chain Reaction , Biomarkers , Inflammation , MicroRNAs/genetics , Phylogeny
12.
Orphanet J Rare Dis ; 18(1): 278, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37684689

ABSTRACT

OBJECTIVE: This study aimed to establish a cell-free fetal DNA (cffDNA) assay using multiplex digital PCR (dPCR) for identifying fetuses at increased risk of 22q11.2 deletion/duplication syndrome. METHODS: Six detection sites and their corresponding probes were designed for the 22q11.2 recurrent region. A dPCR assay for the noninvasive screening of 22q11.2 deletion/duplication syndrome was established. A total of 130 plasma samples from pregnant women (including 15 samples with fetal 22q11.2 deletion/duplication syndrome) were blindly tested for evaluating the sensitivity and specificity of the established assay. RESULTS: DNA with different sizes of 22q11.2 deletion/duplication was detected via dPCR, indicating that the designed probes and detection sites were reasonable and effective. In the retrospective clinical samples, 11 out of 15 samples of pregnant women with 22q11.2 deletion/duplication were detected during the cffDNA assay, and accurate regional localization was achieved. Among the 115 normal samples, 111 were confirmed to be normal. Receiver operating characteristic curves were used for assessing the cut-off values and AUC for these samples. The sensitivity, specificity, and positive as well as negative predictive values were 73.3%, 96.5%, 73.3%, and 96.5%, respectively. CONCLUSION: The cffDNA assay based on dPCR technology for the noninvasive detection of 22q11.2 recurrent copy number variants in fetuses detected most affected cases, including smaller but relatively common nested deletions, with a low false-positive rate. It is a potential, efficient and simple method for the noninvasive screening of 22q11.2 deletion/duplication syndrome.


Subject(s)
Cell-Free Nucleic Acids , DiGeorge Syndrome , Noninvasive Prenatal Testing , Pregnancy , Female , Humans , Retrospective Studies , DiGeorge Syndrome/diagnosis , DiGeorge Syndrome/genetics , Multiplex Polymerase Chain Reaction
13.
Animals (Basel) ; 13(19)2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37835696

ABSTRACT

Neospora caninum is an obligate intracellular parasite that causes reproductive disorders and major economic losses in cattle, and induces neuromuscular disorders in canids. Exogenous infections are becoming increasingly important due to disease outbreaks. The sylvatic life cycle of N. caninum interferes with the domestic dog-ruminant life cycle, but understanding of it is scarce. The population of wild canids may play an important role in parasite dispersion. Feces from 42 grey wolves (Canis lupus) and 39 golden jackals (Canis aureus) were analyzed for the N. caninum Nc5 gene using a novel real-time PCR (qPCR) with a detection limit of 5 targets/µL in clinical samples. Three wolves (3/42; 7.1%) and one golden jackal (1/39; 2.6%) tested positive, which is the first detection of N. caninum in the population of grey wolves in Slovenia and the first detection of N. caninum DNA in the feces of a golden jackal. In addition to the grey wolf, we propose the golden jackal as a potential definitive host with hypothetical epidemiological importance for the sylvatic-domestic life cycle of N. caninum, due to its proximity to human habitats and its rapid expansion throughout Europe.

14.
Int J Biol Macromol ; 184: 750-759, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34171259

ABSTRACT

Pathogens pose a severe threat to food safety and human health. The traditional methods for pathogen detection can't meet the growing diagnosis and control need. Digital PCR (dPCR) attracts a considerable attention for its ability to absolutely quantify pathogens with features of high selectivity, simplicity, accuracy and rapidity. The dPCR technique that achieves absolute quantification based on end-point measurement without standard curve offers a guideline for further genetic analysis and molecular diagnosis. It could contribute to the quantification of low level of nucleic acid, early detection and timely prevention of pathogenic diseases. In this review, 1442 publications about dPCR were selected and the detections of various pathogens by dPCR were reviewed comprehensively, including viruses, bacteria, parasites and fungi. A number of examples are cited to illustrate that dPCR is a new powerful tool with desired accuracy, sensitivity, and reproducibility for quantification of different types of pathogens. Moreover, the benefits, challenges and future prospects of the dPCR were also highlighted in this review.


Subject(s)
Infections/diagnosis , Polymerase Chain Reaction/methods , Animals , Bacteria/isolation & purification , Food Microbiology , Food Parasitology , Fungi/isolation & purification , Humans , Parasites/isolation & purification , Reproducibility of Results , Viruses/isolation & purification
15.
Front Mol Biosci ; 8: 775299, 2021.
Article in English | MEDLINE | ID: mdl-34888355

ABSTRACT

Rapid and accurate identification of patients colonised with carbapenemase-producing organisms (CPOs) is essential to adopt prompt prevention measures to reduce the risk of transmission. Recent studies have demonstrated the ability to combine machine learning (ML) algorithms with real-time digital PCR (dPCR) instruments to increase classification accuracy of multiplex PCR assays when using synthetic DNA templates. We sought to determine if this novel methodology could be applied to improve identification of the five major carbapenem-resistant genes in clinical CPO-isolates, which would represent a leap forward in the use of PCR-based data-driven diagnostics for clinical applications. We collected 253 clinical isolates (including 221 CPO-positive samples) and developed a novel 5-plex PCR assay for detection of blaIMP, blaKPC, blaNDM, blaOXA-48, and blaVIM. Combining the recently reported ML method "Amplification and Melting Curve Analysis" (AMCA) with the abovementioned multiplex assay, we assessed the performance of the AMCA methodology in detecting these genes. The improved classification accuracy of AMCA relies on the usage of real-time data from a single-fluorescent channel and benefits from the kinetic/thermodynamic information encoded in the thousands of amplification events produced by high throughput real-time dPCR. The 5-plex showed a lower limit of detection of 10 DNA copies per reaction for each primer set and no cross-reactivity with other carbapenemase genes. The AMCA classifier demonstrated excellent predictive performance with 99.6% (CI 97.8-99.9%) accuracy (only one misclassified sample out of the 253, with a total of 160,041 positive amplification events), which represents a 7.9% increase (p-value <0.05) compared to conventional melting curve analysis. This work demonstrates the use of the AMCA method to increase the throughput and performance of state-of-the-art molecular diagnostic platforms, without hardware modifications and additional costs, thus potentially providing substantial clinical utility on screening patients for CPO carriage.

16.
J Virol Methods ; 295: 114185, 2021 09.
Article in English | MEDLINE | ID: mdl-34051244

ABSTRACT

OBJECTIVE: Viral nucleic acid detection by real-time reverse transcription polymerase chain reaction (qPCR) is the current standard method for diagnosis of SARS-CoV-2 infection. However, due to low viral load in some COVID-19 patients, false negative results from this method have been repeatedly reported. METHOD: In this study, we compared the sensitivity and specificity of digital PCR (dPCR) in simulated samples and clinical samples with qPCR assay through a series of vigorous tests. RESULTS: The results showed that dPCR was more sensitive than qPCR especially for samples with low viral load (≤3 copies). In addition, dPCR had similar specificity as qPCR and could effectively distinguish other human coronaviruses and influenza virus from SARS-CoV-2. More importantly, dPCR was more sensitive than qPCR in detecting the virus in the "negative" samples from recurrent COVID-19 patients. CONCLUSIONS: In summary, dPCR could serve as a powerful complement to the current qPCR method for SARS-CoV-2 detection, especially for the samples with extremely low viral load, such as recurrent COVID-19 patients.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/isolation & purification , Viral Load , COVID-19/virology , Humans , RNA, Viral/genetics , Recurrence , SARS-CoV-2/genetics , Sensitivity and Specificity
17.
Insects ; 12(11)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34821836

ABSTRACT

Paenibacillus larvae is the causative agent of American foulbrood (AFB), a devastating disease of honeybees. P. larvae spore counts in bee-related samples correlate with the presence of AFB symptoms and may, therefore, be used to identify at-risk colonies. Here, we constructed a TaqMan-based real-time PCR (qPCR) assay targeting a single-copy chromosomal metalloproteinase gene for reliable quantification of P. larvae. The assay was calibrated using digital PCR (dPCR) to allow absolute quantification of P. larvae spores in honey and hive debris samples. The limits of detection and quantification were 8 and 58 spores/g for honey and 188 and 707 spores/mL for hive debris, respectively. To assess the association between AFB clinical symptoms and spore counts, we quantified spores in honey and hive debris samples originating from honeybee colonies with known severity of clinical symptoms. Spore counts in AFB-positive colonies were significantly higher than those in asymptomatic colonies but did not differ significantly with regard to the severity of clinical symptoms. For honey, the average spore germination rate was 0.52% (range = 0.04-6.05%), indicating poor and inconsistent in vitro germination. The newly developed qPCR assay allows reliable detection and quantification of P. larvae in honey and hive debris samples but can also be extended to other sample types.

18.
Biology (Basel) ; 10(5)2021 May 09.
Article in English | MEDLINE | ID: mdl-34065065

ABSTRACT

Digital polymerase chain reaction (dPCR) is a breakthrough technology based on the partitioning of the analytical sample and detection of individual end-point amplifications into the separate compartments. Among the numerous applications of this technology, its suitability in mutation detection is relevant and characterized by unprecedented levels of precision. The actual applicability of this analytical technique to quantify the presence of a specific plant genotype, in both raw materials and transformed products, by exploiting a point polymorphism has been evaluated. As proof of concept, an Italian premium pasta production chain was considered and a dPCR assay based on a durum wheat target variety private point mutation was designed and evaluated in supply-chain samples. From the results obtained, the assay can be applied to confirm the presence of a target variety and to quantify it in raw materials and transformed products, such as commercial grain lots and pasta. The performance, costs, and applicability of the assay has been compared to analytical alternatives, namely simple sequence repeats (SSRs) and genotype-by-sequencing based on Diversity Arrays Technology sequencing (DArTseqTM).

19.
Mol Ther Methods Clin Dev ; 16: 172-178, 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32055645

ABSTRACT

Treatment with axicabtagene ciloleucel (Axi-cel) CD19-CAR-T (chimeric antigen receptor T) cells has been approved for refractory/relapsed diffuse large B cell lymphoma (DLBCL) and primary mediastinal large B cell lymphoma (PMBCL). Because treatment success as well as side effects might depend on CAR-T cell expansion in vivo, we aimed at developing digital PCR (dPCR) assays for detection and quantification of CAR-T cells. To this end, we cloned and sequenced the complete cDNA of the CAR construct. We designed different combinations of primers and dual-labeled hydrolysis probes located in various CAR regions. Three combinations were successfully tested on CAR-positive and -negative cells in duplex reactions with a reference gene (REF) to concomitantly assess cell numbers. All assays demonstrated excellent specificity and reproducibility with neglectable inter-assay variations. For all three assays, almost perfect correlation between the two dPCRs (Axi-cel versus REF) was observed, and the limit of detection was one single CAR-transduced cell corresponding to a sensitivity of 0.01% for 100 ng genomic DNA. After cross-validation, we used one assay to monitor Axi-cel CAR-T numbers in patients. CAR-T expansion and contraction followed the expected kinetics with median peak value of 11.2 Axi-cel CAR-T cells/µL at 11.3 days (median). Clinically, we observed only two partial responses (PRs) in the five patients with CAR-T cell peak numbers below median, whereas four of the five patients with comparatively good expansion showed clinical responses (two complete responses [CRs] and two PRs) on day 30. In conclusion, we established a novel dPCR assay for the sensitive detection of transgenic CAR-T cells, which should be very useful in the context of Axi-cel treatment.

20.
Front Oncol ; 9: 1510, 2019.
Article in English | MEDLINE | ID: mdl-31998653

ABSTRACT

Background: Papillary thyroid cancer (PTC) is the most common type of thyroid malignancy. Serum thyroglobulin (Tg) levels are used to monitor PTC treatment response and recurrences however, in about 25% of the cases the sensitivity of this method is compromised due to either the presence of neutralizing anti-Tg antibodies (TgAb) or the absence of Tg in less differentiated tumors. Up to 80% of PTC tumors harbor the c.1799T>A hotspot mutation in the BRAF gene (BRAFV600E). Here, we assessed the potential use of plasma cell-free BRAFV600E mutant tumor DNA (ctDNA) levels in determining the minimal residual tumor status of PTC patients. Methods: Patients were classified as either having persistent disease (PD) or no evidence of disease (NED) based on clinicopathological assessments. Tumor BRAFV600E status was determined by both direct sequencing and digital PCR. Plasma total cell-free BRAFV600 wild type DNA (cfDNA) and ctDNA fractions circulating in the plasma of PTC patients were determined by an emulsion based-digital PCR and total ctDNA was quantified by 3D digital PCR. The total ctDNA levels (copies/ml) were then compared to patients' clinicopathological features. Results: About 74% (28/38) of tumors harbored the BRAFV600E mutation. Percent plasma ctDNA fractions for PD patients with BRAFV600E tumors ranged from 0 to 2.07%, whereas absolute plasma ctDNA copies ranged from 0 to 62 copies. The ctDNA levels accurately detected tumor burden of PTC patients whose tumors harbored BRAFV600E; median plasma ctDNA copy numbers were significantly higher (Wilcoxon test, p = 0.03) in patients with metastasis (MET) (20 copies/ml) compared to patients with non-metastatic (non-MET) tumors (1 copy/ml). The plasma ctDNA levels (copies/ml) accurately determined the disease status of PTC patients with sensitivity of 86% and specificity of 90% as compared to 78% sensitivity and 65% specificity determined by serum Tg levels (ng/ml) with areas under the curves (AUC) of 0.88 and 0.71, respectively. Intriguingly, plasma total cfDNA levels were significantly higher in patients with no evidence of residual disease (NED) compared to persistent disease (PD) patients. Conclusions: Our study supports the clinical applicability of plasma ctDNA as biomarker to determine the residual tumor status and tumor burden of PTC patients.

SELECTION OF CITATIONS
SEARCH DETAIL