Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Appl Microbiol Biotechnol ; 108(1): 14, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38170308

ABSTRACT

The oleaginous yeast Yarrowia lipolytica represents a potential microbial cell factory for the recombinant production of various valuable products. Currently, the commonly used selection markers for transformation in Y. lipolytica are limited, and successive genetic manipulations are often restricted by the number of available selection markers. In our study, we developed a dominant marker, dsdA, which encodes a D-serine deaminase for genetic manipulation in Y. lipolytica. In Y. lipolytica, this marker confers the ability to use D-serine as a nitrogen source. In addition, the selection conditions of several infrequently used dominant markers including bleoR (zeocin resistance), kanMX (G418 resistance), and guaB (mycophenolic acid resistance) were also analyzed. Our results demonstrated that these selection markers can be used for the genetic manipulation of Y. lipolytica and their selection conditions were different for various strains. Ultimately, the selection markers tested here will be useful to expand the genetic toolbox of Y. lipolytica. KEY POINTS: • The dsdA from Escherichia coli was developed as a dominant marker. • The applicability of several resistance markers in Y. lipolytica was determined. • We introduced the Cre/mutant lox system for marker recycling.


Subject(s)
Yarrowia , Yarrowia/genetics , Genetic Markers/genetics
2.
BMC Biotechnol ; 23(1): 40, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37723521

ABSTRACT

BACKGROUND: Cutaneotrichosporon oleaginosus is an oleaginous yeast that can produce up to 80% lipid per dry weight. Its high capacity for the biosynthesis of single cell oil makes it highly interesting for the production of engineered lipids or oleochemicals for industrial applications. However, the genetic toolbox for metabolic engineering of this non-conventional yeast has not yet been systematically expanded. Only three long endogenous promoter sequences have been used for heterologous gene expression, further three dominant and one auxotrophic marker have been established. RESULTS: In this study, the structure of putative endogenous promoter sequences was analyzed based on more than 280 highly expressed genes. The identified motifs of regulatory elements and translational initiation sites were used to annotate the four endogenous putative promoter sequences D9FADp, UBIp, PPIp, and 60Sp. The promoter sequences were tested in a construct regulating the known dominant marker hygromycin B phosphotransferase. The four newly described promoters and the previously established GAPDHp successfully initiated expression of the resistance gene and PPIp was selected for further marker development. The geneticin G418 resistance (aminoglycoside 3'-phosphotransferase, APH) and the nourseothricin resistance gene N-acetyl transferase (NAT) were tested for applicability in C. oleaginosus. Both markers showed high transformation efficiency, positive rate, and were compatible for combined use in a successive and simultaneous manner. CONCLUSIONS: The implementation of four endogenous promoters and one novel dominant resistance markers for C. oleaginosus opens up new opportunities for genetic engineering and strain development. In combination with recently developed methods for targeted genomic integration, the established toolbox allows a wide spectrum of new strategies for genetic and metabolic engineering of the industrially highly relevant yeast.


Subject(s)
Basidiomycota , Promoter Regions, Genetic/genetics , Drug Resistance, Microbial , Genomics , Metabolic Engineering
3.
Microb Cell Fact ; 19(1): 22, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32024536

ABSTRACT

BACKGROUND: Yarrowia lipolytica is an oleaginous yeast that can be genetically engineered to produce lipid and non-lipid biochemicals from a variety of feedstocks. Metabolic engineering of this organism usually requires genetic markers in order to select for modified cells. The potential to combine multiple genetic manipulations depends on the availability of multiple or recyclable selectable markers. RESULTS: We found that Y. lipolytica has the ability to utilize acetamide as the sole nitrogen source suggesting that the genome contains an acetamidase gene. Two potential Y. lipolytica acetamidase gene candidates were identified by homology to the A. nidulans acetamidase amdS. These genes were deleted in the wild-type Y. lipolytica strain YB-392, and deletion strains were evaluated for acetamide utilization. One deletion strain was unable to grow on acetamide and a putative acetamidase gene YlAMD1 was identified. Transformation of YlAMD1 followed by selection on acetamide media and counterselection on fluoroacetamide media showed that YlAMD1 can be used as a recyclable genetic marker in Saccharomyces cerevisiae and Ylamd1Δ Y. lipolytica. CONCLUSIONS: These findings add to our understanding of Y. lipolytica nitrogen utilization and expand the set of genetic tools available for engineering this organism, as well as S. cerevisiae.


Subject(s)
Acetamides/metabolism , Amidohydrolases/genetics , Metabolic Engineering , Yarrowia/genetics , Yarrowia/metabolism , Genetic Markers/genetics , Saccharomyces cerevisiae/genetics , Transformation, Genetic
4.
Appl Microbiol Biotechnol ; 102(6): 2753-2761, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29435619

ABSTRACT

We have investigated the use of the gene coding for acetamidase (amdS) as a recyclable dominant marker for the methylotrophic yeast Komagataella phaffii in order to broaden its genetic toolbox. First, the endogenous constitutive AMD2 gene (a putative acetamidase) was deleted generating strain LA1. A cassette (amdSloxP) was constructed bearing a codon-optimized version of the Aspergillus nidulans amdS gene flanked by loxP sites for marker excision with Cre recombinase. This cassette was successfully tested as a dominant selection marker for transformation of the LA1 strain after selection on plates containing acetamide as a sole nitrogen source. Finally, amdSloxP was used to sequentially disrupt the K. phaffii ADE2 and URA5 genes. After each disruption event, a Cre-mediated marker recycling step was performed by plating cells on medium containing fluoroacetamide. In conclusion, amdS proved to be a suitable tool for K. phaffii transformation and marker recycling thus providing a new antibiotic-free system for genetic manipulation of this yeast.


Subject(s)
Amidohydrolases/metabolism , Genetic Engineering/methods , Saccharomycetales/genetics , Selection, Genetic , Transformation, Genetic , Amidohydrolases/genetics , Gene Knockout Techniques , Recombination, Genetic
5.
BMC Bioinformatics ; 18(Suppl 11): 404, 2017 Oct 03.
Article in English | MEDLINE | ID: mdl-28984187

ABSTRACT

BACKGROUND: Dominant markers in an F2 population or a hybrid population have much less linkage information in repulsion phase than in coupling phase. Linkage analysis produces two separate complementary marker linkage maps that have little use in disease association analysis and breeding. There is a need to develop efficient statistical methods and computational algorithms to construct or merge a complete linkage dominant marker maps. The key for doing so is to efficiently estimate recombination fractions between dominant markers in repulsion phases. RESULT: We proposed an expectation least square (ELS) algorithm and binomial analysis of three-point gametes (BAT) for estimating gamete frequencies from F2 dominant and codominant marker data, respectively. The results obtained from simulated and real genotype datasets showed that the ELS algorithm was able to accurately estimate frequencies of gametes and outperformed the EM algorithm in estimating recombination fractions between dominant loci and recovering true linkage maps of 6 dominant loci in coupling and unknown linkage phases. Our BAT method also had smaller variances in estimation of two-point recombination fractions than the EM algorithm. CONCLUSION: ELS is a powerful method for accurate estimation of gamete frequencies in dominant three-locus system in an F2 population and BAT is a computationally efficient and fast method for estimating frequencies of three-point codominant gametes.


Subject(s)
Crosses, Genetic , Recombination, Genetic , Statistics as Topic/methods , Algorithms , Animals , Computer Simulation , Female , Genes, Dominant , Genetic Linkage , Genetic Loci , Genetic Markers , Least-Squares Analysis , Male , Mice , Models, Genetic
6.
Mol Phylogenet Evol ; 92: 266-79, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26162672

ABSTRACT

Using multiple markers and multiple analytical approaches is critical for establishing species boundaries reliably, especially so in the case of cryptic species. Despite development of new and powerful analytical methods, most studies continue to adopt a few, with the choice often being subjective. One such example is routine analysis of Amplified Fragment Length Polymorphism (AFLP) data using population genetic models despite disparity between method assumptions and data properties. The application of newly developed methods for analyzing this dominant marker may not be entirely clear in the context of species delimitation. In this study, we use AFLPs and mtDNA to investigate cryptic speciation in the Trimeresurus macrops complex that belongs to a taxonomically difficult lineage of Asian pitvipers. We analyze AFLPs using population genetic, phylogenetic, multivariate statistical, and Bayes Factor Delimitation methods. A gene tree from three mtDNA markers provided additional evidence. Our results show that the inferences about species boundaries that can be derived from population genetic analysis of AFLPs have certain limitations. In contrast, four multivariate statistical analyses produced clear clusters that are consistent with each other, as well as with Bayes Factor Delimitation results, and with mtDNA and total evidence phylogenies. Furthermore, our results concur with allopatric distributions and patterns of variation in individual morphological characters previously identified in the three proposed species: T. macrops sensu stricto, T. cardamomensis, and T. rubeus. Our study provides evidence for reproductive isolation and genetic distinctiveness that define these taxa as full species. In addition, we re-emphasize the importance of examining congruence of results from multiple methods of AFLP analysis for inferring species diversity.


Subject(s)
Viperidae/genetics , Amplified Fragment Length Polymorphism Analysis , Animals , Asia , Bayes Theorem , Cluster Analysis , DNA, Mitochondrial/genetics , Gene Flow , Genetic Markers , Genetics, Population , Geography , Multivariate Analysis , Phylogeny
7.
FEMS Yeast Res ; 14(5): 741-54, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24833416

ABSTRACT

Large strain construction programs and functional analysis studies are becoming commonplace in Saccharomyces cerevisiae and involve construction of strains that carry multiple selectable marker genes. Extensive strain engineering is, however, severely hampered by the limited number of recyclable marker genes and by the reduced genome stability that occurs upon repeated use of heterologous recombinase-based marker removal methods. The present study proposes an efficient method to recycle multiple markers in S. cerevisiae simultaneously, thereby circumventing shortcomings of existing techniques and substantially accelerating the process of selection-excision. This method relies on artificial generation of double-strand breaks around the selection marker cassette by the meganuclease I-SceI and the subsequent repair of these breaks by the yeast homologous recombination machinery, guided by direct repeats. Simultaneous removal of up to three marker cassettes was achieved with high efficiencies (up to 56%), suggesting that I-SceI-based marker removal has the potential to co-excise an even larger number of markers. This locus- and marker-independent method can be used for both dominant and auxotrophy-complementing marker genes. Seven pDS plasmids carrying various selectable markers, which can be used for PCR-based generation of deletion cassettes suited for I-SceI marker recycling, are described and made available to the scientific community.


Subject(s)
DNA Breaks, Double-Stranded , Deoxyribonucleases, Type II Site-Specific/metabolism , Gene Deletion , Genetics, Microbial/methods , Mutagenesis, Insertional/methods , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Homologous Recombination , Metabolic Engineering/methods , Plasmids , Selection, Genetic
8.
mSphere ; 7(4): e0034722, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35968963

ABSTRACT

Candida albicans is a pathobiont fungus that can colonize multiple niches in the human body but is also a frequent cause of both mucosal and systemic disease. Despite its clinical importance, a paucity of dominant selectable markers has hindered the development of tools for genetic manipulation of the species. One factor limiting the utilization of dominant selectable markers is that C. albicans is inherently more resistant to antibiotics used for selection in other species. Here, we showed that the inclusion of suitable adjuvants can enable the use of two aminoglycoside antibiotics, hygromycin B and G418, for positive selection in C. albicans. Combining these antibiotics with an adjuvant, such as quinine or molybdate, substantially suppressed the background growth of C. albicans, thereby enabling transformants expressing CaHygB or CaKan markers to be readily identified. We verified that these adjuvants were not mutagenic to C. albicans and that CaHygB and CaKan markers were orthogonal to the existing marker NAT1/SAT1, and so provide complementary tools for the genetic manipulation of C. albicans strains. Our study also established that adjuvant-based approaches can enable the use of selectable markers that would otherwise be limited by high background growth from susceptible cells. IMPORTANCE Only a single dominant selectable marker has been widely adopted for use in the opportunistic fungal pathogen Candida albicans. This is in stark contrast to model fungi where a repertoire of dominant markers is readily available. A limiting factor for C. albicans has been the high levels of background growth obtained with multiple antibiotics, thereby limiting their use for distinguishing cells that carry an antibiotic-resistance gene from those that do not. Here, we demonstrated that the inclusion of adjuvants can reduce background growth and enable the robust use of both CaHygB and CaKan markers for genetic selection in C. albicans.


Subject(s)
Anti-Bacterial Agents , Candida albicans , Biomarkers , Candida albicans/genetics , Drug Resistance, Microbial/genetics , Humans
9.
Methods Mol Biol ; 2222: 249-262, 2021.
Article in English | MEDLINE | ID: mdl-33301098

ABSTRACT

Inter-simple sequence repeat (ISSR) markers are highly polymorphic, relatively easy to develop, and inexpensive compared to other methods and have numerous applications. Importantly, the same ISSR primers can potentially be used universally across plant phylogenetic diversity. The basic technique of ISSRs is flexible and can be modified with options for implementation for a broad range of projects and budgets. Ranked in increasing order of technical demand and costs, these are manual agarose and manual polyacrylamide with silver staining and automated using fluorescently labeled primers and capillary electrophoresis. Overall manual agarose-based ISSRs are a sound, safe, easy, and low-cost method for reliably inferring plant genetic diversity. Here, we provide detailed protocols to undertake this fingerprinting method and provide guidance to the literature for the many options available for this technique.


Subject(s)
Genetic Variation , Genomics , Microsatellite Repeats , Random Amplified Polymorphic DNA Technique , DNA Barcoding, Taxonomic/methods , DNA Primers , Genetic Markers , Genomics/methods , Phylogeny , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL