Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.712
Filter
Add more filters

Publication year range
1.
Cell ; 187(18): 4996-5009.e14, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38996527

ABSTRACT

Latent membrane protein 1 (LMP1) is the primary oncoprotein of Epstein-Barr virus (EBV) and plays versatile roles in the EBV life cycle and pathogenesis. Despite decades of extensive research, the molecular basis for LMP1 folding, assembly, and activation remains unclear. Here, we report cryo-electron microscopy structures of LMP1 in two unexpected assemblies: a symmetric homodimer and a higher-order filamentous oligomer. LMP1 adopts a non-canonical and unpredicted fold that supports the formation of a stable homodimer through tight and antiparallel intermolecular packing. LMP1 dimers further assemble side-by-side into higher-order filamentous oligomers, thereby allowing the accumulation and specific organization of the flexible cytoplasmic tails for efficient recruitment of downstream factors. Super-resolution microscopy and cellular functional assays demonstrate that mutations at both dimeric and oligomeric interfaces disrupt LMP1 higher-order assembly and block multiple LMP1-mediated signaling pathways. Our research provides a framework for understanding the mechanism of LMP1 and for developing potential therapies targeting EBV-associated diseases.


Subject(s)
Herpesvirus 4, Human , Viral Matrix Proteins , Humans , Cryoelectron Microscopy , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/metabolism , HEK293 Cells , Herpesvirus 4, Human/metabolism , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/physiology , Models, Molecular , Mutation , Protein Multimerization , Signal Transduction , Viral Matrix Proteins/metabolism , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/genetics
2.
Immunity ; 54(7): 1405-1416.e7, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34216564

ABSTRACT

Epstein-Barr virus (EBV) encodes a G protein-coupled receptor (GPCR) termed BILF1 that is essential for EBV-mediated immunosuppression and oncogenesis. BILF1 couples with inhibitory G protein (Gi), the major intracellular signaling effector for human chemokine receptors, and exhibits constitutive signaling activity; the ligand(s) for BILF1 are unknown. We studied the origins of BILF1's constitutive activity through structure determination of BILF1 bound to the inhibitory G protein (Gi) heterotrimer. The 3.2-Å resolution cryo-electron microscopy structure revealed an extracellular loop within BILF1 that blocked the typical chemokine binding site, suggesting ligand-autonomous receptor activation. Rather, amino acid substitutions within BILF1 transmembrane regions at hallmark ligand-activated class A GPCR "microswitches" stabilized a constitutively active BILF1 conformation for Gi coupling in a ligand-independent fashion. Thus, the constitutive activity of BILF1 promotes immunosuppression and virulence independent of ligand availability, with implications for the function of GPCRs encoded by related viruses and for therapeutic targeting of EBV.


Subject(s)
Epstein-Barr Virus Infections/immunology , Herpesvirus 4, Human/immunology , Immunologic Factors/immunology , Receptors, G-Protein-Coupled/immunology , Viral Proteins/immunology , Animals , Binding Sites/immunology , Cell Line , Chemokines/immunology , Cryoelectron Microscopy/methods , Epstein-Barr Virus Infections/virology , HEK293 Cells , Humans , Protein Binding/immunology , Sf9 Cells , Signal Transduction/immunology
3.
Immunity ; 54(3): 586-602.e8, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33691136

ABSTRACT

To identify disease-relevant T cell receptors (TCRs) with shared antigen specificity, we analyzed 778,938 TCRß chain sequences from 178 non-small cell lung cancer patients using the GLIPH2 (grouping of lymphocyte interactions with paratope hotspots 2) algorithm. We identified over 66,000 shared specificity groups, of which 435 were clonally expanded and enriched in tumors compared to adjacent lung. The antigenic epitopes of one such tumor-enriched specificity group were identified using a yeast peptide-HLA A∗02:01 display library. These included a peptide from the epithelial protein TMEM161A, which is overexpressed in tumors and cross-reactive epitopes from Epstein-Barr virus and E. coli. Our findings suggest that this cross-reactivity may underlie the presence of virus-specific T cells in tumor infiltrates and that pathogen cross-reactivity may be a feature of multiple cancers. The approach and analytical pipelines generated in this work, as well as the specificity groups defined here, present a resource for understanding the T cell response in cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung/immunology , Epitope Mapping/methods , Epitopes, T-Lymphocyte/genetics , Lung Neoplasms/immunology , Receptors, Antigen, T-Cell, alpha-beta/genetics , T-Lymphocytes/immunology , Algorithms , Antigen Presentation , Antigens, Neoplasm/metabolism , Cells, Cultured , Cross Reactions , Epitopes, T-Lymphocyte/metabolism , HLA-A2 Antigen/metabolism , Humans , Protein Binding , T-Cell Antigen Receptor Specificity
4.
Semin Immunol ; 60: 101652, 2022 03.
Article in English | MEDLINE | ID: mdl-36162228

ABSTRACT

The two γ-herpesviruses Epstein Barr virus (EBV) and Kaposi sarcoma associated herpesvirus (KSHV) are each associated with more than 1% of all tumors in humans. While EBV establishes persistent infection in nearly all adult individuals, KSHV benefits from this widespread EBV prevalence for its own persistence. Interestingly, EBV infection expands early differentiated NKG2A+KIR- NK cells that protect against lytic EBV infection, while KSHV co-infection drives accumulation of poorly functional CD56-CD16+ NK cells. Thus persistent γ-herpesvirus infections are sculptors of human NK cell repertoires and the respectively stimulated NK cell subsets should be considered for immunotherapies of EBV and KSHV associated malignancies.


Subject(s)
Epstein-Barr Virus Infections , Herpesviridae Infections , Herpesvirus 8, Human , Neoplasms , Adult , Humans , Herpesvirus 4, Human/physiology , Herpesvirus 8, Human/physiology , Killer Cells, Natural
5.
Proc Natl Acad Sci U S A ; 120(20): e2219755120, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37155846

ABSTRACT

Latent Epstein-Barr virus (EBV) infection promotes undifferentiated nasopharyngeal carcinomas (NPCs) in humans, but the mechanism(s) for this effect has been difficult to study because EBV cannot transform normal epithelial cells in vitro and the EBV genome is often lost when NPC cells are grown in culture. Here we show that the latent EBV protein, LMP1 (Latent membrane protein 1), induces cellular proliferation and inhibits spontaneous differentiation of telomerase-immortalized normal oral keratinocytes (NOKs) in growth factor-deficient conditions by increasing the activity of the Hippo pathway effectors, YAP (Yes-associated protein) and TAZ (Transcriptional coactivator with PDZ-binding motif). We demonstrate that LMP1 enhances YAP and TAZ activity in NOKs both by decreasing Hippo pathway-mediated serine phosphorylation of YAP and TAZ and increasing Src kinase-mediated Y357 phosphorylation of YAP. Furthermore, knockdown of YAP and TAZ is sufficient to reduce proliferation and promote differentiation in EBV-infected NOKs. We find that YAP and TAZ are also required for LMP1-induced epithelial-to-mesenchymal transition. Importantly, we demonstrate that ibrutinib (an FDA-approved BTK inhibitor that blocks YAP and TAZ activity through an off-target effect) restores spontaneous differentiation and inhibits proliferation of EBV-infected NOKs at clinically relevant doses. These results suggest that LMP1-induced YAP and TAZ activity contributes to the development of NPC.


Subject(s)
Epstein-Barr Virus Infections , Nasopharyngeal Neoplasms , Humans , Cell Differentiation , Cell Proliferation , Epithelial Cells/metabolism , Herpesvirus 4, Human/genetics , Nasopharyngeal Neoplasms/genetics , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , YAP-Signaling Proteins
6.
Proc Natl Acad Sci U S A ; 120(34): e2211281120, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37579175

ABSTRACT

Autophagy serves as a defense mechanism against intracellular pathogens, but several microorganisms exploit it for their own benefit. Accordingly, certain herpesviruses include autophagic membranes into their infectious virus particles. In this study, we analyzed the composition of purified virions of the Epstein-Barr virus (EBV), a common oncogenic γ-herpesvirus. In these, we found several components of the autophagy machinery, including membrane-associated LC3B-II, and numerous viral proteins, such as the capsid assembly proteins BVRF2 and BdRF1. Additionally, we showed that BVRF2 and BdRF1 interact with LC3B-II via their common protein domain. Using an EBV mutant, we identified BVRF2 as essential to assemble mature capsids and produce infectious EBV. However, BdRF1 was sufficient for the release of noninfectious viral envelopes as long as autophagy was not compromised. These data suggest that BVRF2 and BdRF1 are not only important for capsid assembly but together with the LC3B conjugation complex of ATG5-ATG12-ATG15L1 are also critical for EBV envelope release.


Subject(s)
Capsid , Epstein-Barr Virus Infections , Humans , Capsid/metabolism , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , Viral Envelope/metabolism , Epstein-Barr Virus Infections/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism
7.
Clin Microbiol Rev ; 37(3): e0002223, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-38899877

ABSTRACT

SUMMARYWithin weeks of the first report of acquired immunodeficiency syndrome (AIDS) in 1981, it was observed that these patients often had Kaposi sarcoma (KS), a hitherto rarely seen skin tumor in the USA. It soon became apparent that AIDS was also associated with an increased incidence of high-grade lymphomas caused by Epstein-Barr virus (EBV). The association of AIDS with KS remained a mystery for more than a decade until Kaposi sarcoma-associated herpesvirus (KSHV) was discovered and found to be the cause of KS. KSHV was subsequently found to cause several other diseases associated with AIDS and human immunodeficiency virus (HIV) infection. People living with HIV/AIDS continue to have an increased incidence of certain cancers, and many of these cancers are caused by EBV and/or KSHV. In this review, we discuss the epidemiology, virology, pathogenesis, clinical manifestations, and treatment of cancers caused by EBV and KSHV in persons living with HIV.


Subject(s)
Epstein-Barr Virus Infections , HIV Infections , Herpesvirus 4, Human , Herpesvirus 8, Human , Lymphoproliferative Disorders , Humans , Herpesvirus 8, Human/pathogenicity , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/epidemiology , Epstein-Barr Virus Infections/virology , HIV Infections/complications , HIV Infections/epidemiology , HIV Infections/virology , Lymphoproliferative Disorders/virology , Lymphoproliferative Disorders/epidemiology , Sarcoma, Kaposi/epidemiology , Sarcoma, Kaposi/virology , Neoplasms/virology , Neoplasms/epidemiology , Neoplasms/complications
8.
Semin Cell Dev Biol ; 146: 2-19, 2023 09 15.
Article in English | MEDLINE | ID: mdl-36463091

ABSTRACT

Viruses have evolved a multitude of mechanisms to combat barriers to productive infection in the host cell. Virally-encoded miRNAs are one such means to regulate host gene expression in ways that benefit the virus lifecycle. miRNAs are small non-coding RNAs that regulate protein expression but do not trigger the adaptive immune response, making them powerful tools encoded by viruses to regulate cellular processes. Diverse viruses encode for miRNAs but little sequence homology exists between miRNAs of different viral species. Despite this, common cellular pathways are targeted for regulation, including apoptosis, immune evasion, cell growth and differentiation. Herein we will highlight the viruses that encode miRNAs and provide mechanistic insight into how viral miRNAs aid in lytic and latent infection by targeting common cellular processes. We also highlight how viral miRNAs can mimic host cell miRNAs as well as how viral miRNAs have evolved to regulate host miRNA expression. These studies dispel the myth that viral miRNAs are subtle regulators of gene expression, and highlight the critical importance of viral miRNAs to the virus lifecycle.


Subject(s)
MicroRNAs , Viruses , MicroRNAs/genetics , MicroRNAs/metabolism , Viruses/genetics , Viruses/metabolism , Cell Differentiation , Protein Processing, Post-Translational , Gene Expression , Gene Expression Regulation, Viral/genetics , Gene Expression Regulation
9.
J Virol ; 98(2): e0189923, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38294245

ABSTRACT

After Epstein-Barr virus (EBV) genome replication and encapsidation in the nucleus, nucleocapsids are translocated into the cytoplasm for subsequent tegumentation and maturation. The EBV BGLF4 kinase, which induces partial disassembly of the nuclear lamina, and the nuclear egress complex BFRF1/BFLF2 coordinately facilitate the nuclear egress of nucleocapsids. Here, we demonstrate that within EBV reactivated epithelial cells, viral capsids, tegument proteins, and glycoproteins are clustered in the juxtanuclear concave region, accompanied by redistributed cytoplasmic organelles and the cytoskeleton regulator IQ-domain GTPase-activation protein 1 (IQGAP1), close to the microtubule-organizing center (MTOC). The assembly compartment (AC) structure was diminished in BGLF4-knockdown TW01-EBV cells and BGLF4-knockout bacmid-carrying TW01 cells, suggesting that the formation of AC structure is BGLF4-dependent. Notably, glycoprotein gp350/220 was observed by confocal imaging to be distributed in the perinuclear concave region and surrounded by the endoplasmic reticulum (ER) membrane marker calnexin, indicating that the AC may be located within a globular structure derived from ER membranes, adjacent to the outer nuclear membrane. Moreover, the viral capsid protein BcLF1 and tegument protein BBLF1 were co-localized with IQGAP1 near the cytoplasmic membrane in the late stage of replication. Knockdown of IQGAP1 did not affect the AC formation but decreased virion release from both TW01-EBV and Akata+ cells, suggesting IQGAP1-mediated trafficking regulates EBV virion release. The data presented here show that BGLF4 is required for cytoskeletal rearrangement, coordination with the redistribution of cytoplasmic organelles and IQGAP1 for virus maturation, and subsequent IQGAP1-dependent virion release.IMPORTANCEEBV genome is replicated and encapsidated in the nucleus, and the resultant nucleocapsids are translocated to the cytoplasm for subsequent virion maturation. We show that a cytoplasmic AC, containing viral proteins, markers of the endoplasmic reticulum, Golgi, and endosomes, is formed in the juxtanuclear region of epithelial and B cells during EBV reactivation. The viral BGLF4 kinase contributes to the formation of the AC. The cellular protein IQGAP1 is also recruited to the AC and partially co-localizes with the virus capsid protein BcLF1 and tegument protein BBLF1 in EBV-reactivated cells, dependent on the BGLF4-induced cytoskeletal rearrangement. In addition, virion release was attenuated in IQGAP1-knockdown epithelial and B cells after reactivation, suggesting that IQGAP1-mediated trafficking may regulate the efficiency of virus maturation and release.


Subject(s)
Cytoplasm , Herpesvirus 4, Human , Protein Serine-Threonine Kinases , Viral Proteins , Virion , Virus Assembly , Virus Release , ras GTPase-Activating Proteins , Humans , Capsid Proteins/metabolism , Cytoplasm/metabolism , Cytoplasm/virology , Epstein-Barr Virus Infections/metabolism , Epstein-Barr Virus Infections/virology , Herpesvirus 4, Human/chemistry , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/growth & development , Herpesvirus 4, Human/metabolism , Membrane Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , ras GTPase-Activating Proteins/metabolism , Viral Proteins/metabolism , Virion/chemistry , Virion/growth & development , Virion/metabolism , Virus Assembly/physiology , Endoplasmic Reticulum/metabolism , Endosomes/metabolism , Golgi Apparatus/metabolism
10.
J Virol ; : e0099524, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39291960

ABSTRACT

Epstein-Barr virus (EBV) co-infections with human papillomavirus (HPV) have been observed in oropharyngeal squamous cell carcinoma. Modeling EBV/HPV co-infection in organotypic epithelial raft cultures revealed that HPV16 E7 inhibited EBV productive replication through the facilitated degradation of the retinoblastoma protein pRb/p105. To further understand how pRb is required for EBV productive replication, we generated CRISPR-Cas9 pRb knockout (KO) normal oral keratinocytes (NOKs) in the context of wild-type and mutant K120E p53. EBV replication was examined in organotypic rafts as a physiological correlate for epithelial differentiation. In pRb KO rafts, EBV DNA copy number was statistically decreased compared to vector controls, regardless of p53 context. Loss of pRb did not affect EBV binding or internalization of calcium-treated NOKs or early infection of rafts. Rather, the block in EBV replication correlated with impaired immediate early gene expression. An EBV infection time course in rafts with mutant p53 demonstrated that pRb-positive basal cells were initially infected with delayed replication occurring in differentiated layers. Loss of pRb showed increased S-phase progression makers and elevated activator E2F activity in raft tissues. Complementation with a panel of pRb/E2F binding mutants showed that wild type or pRb∆685 mutant capable of E2F binding reduced S-phase marker gene expression, rescued EBV DNA replication, and restored BZLF1 expression in pRb KO rafts. However, pRb KO complemented with pRb661W mutant, unable to bind E2Fs, failed to rescue EBV replication in raft culture. These findings suggest that EBV productive replication in differentiated epithelium requires pRb inhibition of activator E2Fs to restrict S-phase progression.IMPORTANCEA subset of human papillomavirus (HPV)-positive oropharyngeal squamous cell carcinoma is co-positive for Epstein-Barr virus (EBV). Potential oncogenic viral interactions revealed that HPV16 E7 inhibited productive EBV replication within the differentiated epithelium. As E7 mediates the degradation of pRb, we aimed to establish how pRb is involved in EBV replication. In the context of differentiated epithelium using organotypic raft culture, we evaluated how the loss of pRb affects EBV lytic replication to better comprehend EBV contributions to carcinogenesis. In this study, ablation of pRb interfered with EBV replication at the level of immediate early gene expression. Loss of pRb increased activator E2Fs and associated S-phase gene expression throughout the differentiated epithelium. Complementation studies showed that wild type and pRb mutant capable of binding to E2F rescued EBV replication, while pRb mutant lacking E2F binding did not. Altogether, these studies support that in differentiated tissues, HPV16 E7-mediated degradation of pRb inhibits EBV replication through unregulated E2F activity.

11.
FASEB J ; 38(18): e23820, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39302257

ABSTRACT

Epstein-Barr virus (EBV), a common gamma herpesvirus, establishes a life-long latent infection in the host to defend against innate immune recognition, which is closely related to a variety of malignant tumors, but its specific mechanism is unclear. BFRF3, an EBV-encoded small capsid protein, is mainly involved in the assembly of the viral capsid structure and the maintenance of its stability. Here, we showed that BFRF3 can inhibit TNF-α-mediated NF-кB promoter activation. Moreover, BFRF3 downregulates NF-кB-mediated promoter activation and transcription of inflammatory cytokines, including IL-6 and IL-8. Dual-luciferase reporter assay demonstrated that BFRF3 restrains NF-кB promoter activity at or below the p65 level, and coimmunoprecipitation analysis revealed that BFRF3 not only interacts with p65 but also binds to its critical truncated Rel homology domain (RHD) and transcriptional activation domain (TAD). However, BFRF3 does not affect the dimerization of p65-p50, but overexpression of BFRF3 reduces the nuclear accumulation of p65, and the phosphorylation of p65 (Ser536) is repressed during BFRF3 transfection and EBV lytic infection, which promotes the proliferation of EBV. Overall, our study suggested that BFRF3 may play a crucial role in antiviral immunity to defend against EBV infection by inhibiting NF-κB activity.


Subject(s)
Capsid Proteins , Herpesvirus 4, Human , NF-kappa B , Signal Transduction , Transcription Factor RelA , Humans , Herpesvirus 4, Human/metabolism , Herpesvirus 4, Human/immunology , Herpesvirus 4, Human/physiology , Capsid Proteins/metabolism , Capsid Proteins/genetics , Transcription Factor RelA/metabolism , NF-kappa B/metabolism , HEK293 Cells , Epstein-Barr Virus Infections/metabolism , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/immunology , Promoter Regions, Genetic , Tumor Necrosis Factor-alpha/metabolism
12.
FASEB J ; 38(1): e23345, 2024 01.
Article in English | MEDLINE | ID: mdl-38038978

ABSTRACT

The tripartite interaction motif (TRIM) family of proteins is known for their antiviral activity through different mechanisms, such as interfering with viral components, regulating immune responses, and participating in autophagy-mediated defense pathways. In this study, we investigated the role of tripartite interaction motif 26 (TRIM26), which is encoded by a major histocompatibility complex (MHC) gene, in regulating Epstein-Barr virus (EBV) infection of nasopharyngeal epithelial cells. We found that TRIM26 expression was induced upon EBV infection and that it indirectly targeted EphA2, a crucial epithelial receptor for EBV entry. Our results showed that TRIM26 interacted with heat shock protein 90-beta (HSP-90ß) and promoted its polyubiquitination, which led to its degradation via the proteasome pathway. This, in turn, affected EphA2 integrity and suppressed EBV infection. These findings suggest that TRIM26 could be a valuable target for developing therapeutic interventions against EBV infection and its associated pathogenesis.


Subject(s)
Epstein-Barr Virus Infections , Humans , Epstein-Barr Virus Infections/metabolism , Herpesvirus 4, Human/physiology , Epithelial Cells/metabolism , Ubiquitination , Protein Domains , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
13.
Rev Med Virol ; 34(1): e2487, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37905912

ABSTRACT

Epstein-Barr virus, a human gamma-herpesvirus, has a close connection to the pathogenesis of cancers and other diseases, which are a burden for public health worldwide. So far, several drugs or biomolecules have been discovered that can target EBV-encoded products for treatment, such as Silvestrol, affinity toxin, roscovitine, H20, H31, curcumin, thymoquinone, and ribosomal protein L22. These drugs activate or inhibit the function of some biomolecules, affecting subsequent signalling pathways by acting on the products of EBV. These drugs usually target LMP1, LMP2; EBNA1, EBNA2, EBNA3; EBER1, EBER2; Bam-HI A rightward transcript and BHRF1. Additionally, some promising findings in the fields of vaccines, immunological, and cellular therapies have been established. In this review, we mainly summarise the function of drugs mentioned above and unique mechanisms, hoping that we can help giving insight to the design of drugs for the treatment of EBV-associated diseases.


Subject(s)
Epstein-Barr Virus Infections , Herpesvirus 4, Human , Humans , Herpesvirus 4, Human/physiology , Viral Proteins/metabolism , Drug Development
14.
Rev Med Virol ; 34(1): e2493, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38078693

ABSTRACT

The role of numerous risk factors, including consumption of alcohol, smoking, having diet high in fat and sugar and many other items, on caner progression cannot be denied. Viral diseases are one these factors, and they can initiate some signalling pathways causing cancer. For example, they can be effective on providing oxygen and nutrients by inducing VEGF expression. In this review article, we summarised the mechanisms of angiogenesis and VEGF expression in cancerous tissues which are infected with oncoviruses (Epstein-Barr virus, Human papillomavirus infection, Human T-lymphotropic virus, Kaposi's sarcoma-associated herpesvirus, Hepatitis B and hepatitis C virus).


Subject(s)
Epstein-Barr Virus Infections , Vascular Endothelial Growth Factor A , Humans , Epstein-Barr Virus Infections/complications , Herpesvirus 4, Human , Herpesvirus 8, Human/genetics , Neoplasms/etiology , Vascular Endothelial Growth Factor A/genetics , Virus Diseases/complications
15.
Rev Med Virol ; 34(2): e2530, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38517354

ABSTRACT

A significant portion of human cancers are caused by oncoviruses (12%-25%). Oncoviruses employ various strategies to promote their replication and induce tumourigenesis in host cells, one of which involves modifying the gene expression patterns of the host cells, leading to the rewiring of genes and resulting in significant changes in cellular processes and signalling pathways. In recent studies, a specific mode of gene regulation known as circular RNA (circRNA)-mediated competing endogenous RNA (ceRNA) networks has emerged as a key player in this context. CircRNAs, a class of non-coding RNA molecules, can interact with other RNA molecules, such as mRNAs and microRNAs (miRNAs), through a process known as ceRNA crosstalk. This interaction occurs when circRNAs, acting as sponges, sequester miRNAs, thereby preventing them from binding to their target mRNAs and modulating their expression. By rewiring the host cell genome, oncoviruses have the ability to manipulate the expression and activity of circRNAs, thereby influencing the ceRNA networks that can profoundly impact cellular processes such as cell proliferation, differentiation, apoptosis, and immune responses. This review focuses on a comprehensive evaluation of the latest findings on the involvement of virus-induced reprogramming of host circRNA-mediated ceRNA networks in the development and pathophysiology of human viral cancers, including cervical cancer, gastric cancer, nasopharyngeal carcinoma, Kaposi's sarcoma, hepatocellular carcinoma, and diffuse large B cell lymphoma. Understanding these mechanisms can improve our knowledge of how oncoviruses contribute to human tumourigenesis and identify potential targets for developing optimised therapies and diagnostic tools for viral cancers.


Subject(s)
Liver Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , RNA, Circular/genetics , RNA, Messenger/metabolism , RNA, Competitive Endogenous , Retroviridae/genetics , Retroviridae/metabolism , Gene Expression Profiling/methods , Carcinogenesis/genetics
16.
Rev Med Virol ; 34(3): e2550, 2024 May.
Article in English | MEDLINE | ID: mdl-38801246

ABSTRACT

Alzheimer's disease (AD) is a real and current scientific and societal challenge. Alzheimer's disease is characterised by a neurodegenerative neuroinflammatory process, but the etiopathogenetic mechanisms are still unclear. The possible infectious aetiology and potential involvement of Herpes viruses as triggers for the formation of extracellular deposits of amyloid beta (Aß) peptide (amyloid plaques) and intraneuronal aggregates of hyperphosphorylated and misfold could be a possible explanation. In fact, the possible genetic interference of Herpes viruses with the genome of the host neuronal cell or the stimulation of the infection to a continuous immune response with a consequent chronic inflammation could constitute those mechanisms underlying the development of AD, with possible implications in the understanding and management of the disease. Herpes viruses could be significantly involved in the pathogenesis of AD and in particular, their ability to reactivate in particular conditions such as immunocompromise and immunosenescence, could explain the neurological damage characteristic of AD. Our review aims to evaluate the state of the art of knowledge and perspectives regarding the potential relationship between Herpes viruses and AD, in order to be able to identify the possible etiopathogenetic mechanisms and the possible therapeutic implications.


Subject(s)
Alzheimer Disease , Herpesviridae Infections , Herpesviridae , Humans , Alzheimer Disease/virology , Alzheimer Disease/immunology , Herpesviridae/pathogenicity , Herpesviridae/genetics , Herpesviridae/physiology , Herpesviridae Infections/virology , Herpesviridae Infections/immunology , Amyloid beta-Peptides/metabolism , Animals
17.
Brain ; 147(10): 3573-3582, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-38630618

ABSTRACT

Epstein-Barr virus (EBV) infection has been advocated as a prerequisite for developing multiple sclerosis (MS) and possibly the propagation of the disease. However, the precise mechanisms for such influences are still unclear. A large-scale study investigating the host genetics of EBV serology and related clinical manifestations, such as infectious mononucleosis (IM), may help us better understand the role of EBV in MS pathogenesis. This study evaluates the host genetic factors that influence serological response against EBV and history of IM and cross-evaluates them with MS risk and genetic susceptibility in the Swedish population. Plasma IgG antibody levels against EBV nuclear antigen-1 [EBNA-1, truncated = amino acids (aa) (325-641), peptide = aa(385-420)] and viral capsid antigen p18 (VCAp18) were measured using bead-based multiplex serology for 8744 MS cases and 7229 population-matched control subjects. The MS risk association for high/low EBV antibody levels and history of IM was compared to relevant clinical measures along with sex, age at sampling, and associated HLA allele variants. Genome-wide and HLA allele association analyses were also performed to identify genetic risk factors for EBV antibody response and IM history. Higher antibody levels against VCAp18 [odds ratio (OR) = 1.74, 95% confidence interval (CI) = 1.60-1.88] and EBNA-1, particularly the peptide (OR = 3.13, 95% CI = 2.93-3.35), were associated with an increased risk for MS. The risk increased with higher anti-EBNA-1 IgG levels up to 12× the reference risk. We also identified several independent HLA haplotypes associated with EBV serology overlapping with known MS risk alleles (e.g. DRB1*15:01). Although there were several candidates, no variants outside the HLA region reached genome-wide significance. Cumulative HLA risk for anti-EBNA-1 IgG levels, particularly the peptide fragment, was strongly associated with MS. In contrast, the genetic risk for high anti-VCAp18 IgG levels was not as strongly associated with MS risk. IM history was not associated with class II HLA genes but negatively associated with A*02:01, which is protective against MS. Our findings emphasize that the risk association between anti-EBNA-1 IgG levels and MS may be partly due to overlapping HLA associations. Additionally, the increasing MS risk with increasing anti-EBNA-1 levels would be consistent with a pathogenic role of the EBNA-1 immune response, perhaps through molecular mimicry. Given that high anti-EBNA-1 antibodies may reflect a poorly controlled T-cell defence against the virus, our findings would be consistent with DRB1*15:01 being a poor class II antigen in the immune defence against EBV. Last, the difference in genetic control of IM supports the independent roles of EBNA-1 and IM in MS susceptibility.


Subject(s)
Epstein-Barr Virus Infections , Epstein-Barr Virus Nuclear Antigens , Herpesvirus 4, Human , Multiple Sclerosis , Humans , Multiple Sclerosis/genetics , Multiple Sclerosis/immunology , Male , Female , Herpesvirus 4, Human/immunology , Herpesvirus 4, Human/genetics , Adult , Epstein-Barr Virus Nuclear Antigens/immunology , Epstein-Barr Virus Nuclear Antigens/genetics , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/complications , Antibodies, Viral/blood , Middle Aged , Genetic Predisposition to Disease , Immunoglobulin G/blood , Immunoglobulin G/immunology , Sweden , Young Adult , Capsid Proteins/immunology , Capsid Proteins/genetics , Infectious Mononucleosis/immunology , Infectious Mononucleosis/genetics , Genome-Wide Association Study , Antigens, Viral/immunology
18.
Proc Natl Acad Sci U S A ; 119(18): e2123248119, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35486690

ABSTRACT

Herpesviruses are ubiquitous, genetically diverse DNA viruses, with long-term presence in humans associated with infrequent but significant pathology. Human leukocyte antigen (HLA) class I presents intracellularly derived peptide fragments from infected tissue cells to CD8+ T and natural killer cells, thereby directing antiviral immunity. Allotypes of highly polymorphic HLA class I are distinguished by their peptide binding repertoires. Because this HLA class I variation is a major determinant of herpesvirus disease, we examined if sequence diversity of virus proteins reflects evasion of HLA presentation. Using population genomic data from Epstein­Barr virus (EBV), human cytomegalovirus (HCMV), and Varicella­Zoster virus, we tested whether diversity differed between the regions of herpesvirus proteins that can be recognized, or not, by HLA class I. Herpesviruses exhibit lytic and latent infection stages, with the latter better enabling immune evasion. Whereas HLA binding peptides of lytic proteins are conserved, we found that EBV and HCMV proteins expressed during latency have increased peptide sequence diversity. Similarly, latent, but not lytic, herpesvirus proteins have greater population structure in HLA binding than nonbinding peptides. Finally, we found patterns consistent with EBV adaption to the local HLA environment, with less efficient recognition of EBV isolates by high-frequency HLA class I allotypes. Here, the frequency of CD8+ T cell epitopes inversely correlated with the frequency of HLA class I recognition. Previous analyses have shown that pathogen-mediated natural selection maintains exceptional polymorphism in HLA residues that determine peptide recognition. Here, we show that HLA class I peptide recognition impacts diversity of globally widespread pathogens.


Subject(s)
Herpesviridae , Histocompatibility Antigens Class I , Peptides , Genetic Variation , Herpesviridae/genetics , Herpesviridae/immunology , Histocompatibility Antigens Class I/genetics , Humans , Peptides/genetics
19.
J Infect Dis ; 229(1): 73-82, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-37433031

ABSTRACT

BACKGROUND: The 2 cofactors in the etiology of Burkitt lymphoma (BL) are Epstein-Barr virus (EBV) and repeated Plasmodium falciparum malaria infections. This study evaluated EBV loads in mucosal and systemic compartments of children with malaria and controls. Age was analyzed as a covariate because immunity to malaria in endemic regions is age dependent. METHODS: Children (2-10 years) with clinical malaria from Western Kenya and community controls without malaria were enrolled. Saliva and blood samples were collected, EBV viral load was assessed by quantitative polymerase chain reaction, and EpiTYPER MassARRAY was used to assess methylation of 3 different EBV genes. RESULTS: Regardless of the compartment, we detected EBV more frequently in malaria cases compared to controls, although the difference was not significant. When EBV was detected, there were no differences in viral load between cases and controls. However, EBV methylation was significantly lower in the malaria group compared to controls in both plasma and saliva (P < .05), indicating increased EBV lytic replication. In younger children before development of immunity to malaria, there was a significant effect of malaria on EBV load in peripheral blood mononuclear cells (P = .04). CONCLUSIONS: These data suggest that malaria can directly modulate EBV persistence in children, increasing their risk for BL.


Subject(s)
Burkitt Lymphoma , Epstein-Barr Virus Infections , Malaria , Child , Humans , Herpesvirus 4, Human , Kenya/epidemiology , Leukocytes, Mononuclear , Malaria/complications , Malaria/epidemiology , Burkitt Lymphoma/epidemiology , Burkitt Lymphoma/etiology
20.
J Biol Chem ; 299(5): 104613, 2023 05.
Article in English | MEDLINE | ID: mdl-36931391

ABSTRACT

Epstein-Barr virus (EBV) is a member of the lymphotropic virus family and is highly correlated with some human malignant tumors. It has been reported that envelope glycoprotein 110 (gp110) plays an essential role in viral fusion, DNA replication, and nucleocapsid assembly of EBV. However, it has not been established whether gp110 is involved in regulating the host's innate immunity. In this study, we found that gp110 inhibits tumor necrosis factor α-mediated NF- κB promoter activity and the downstream production of NF- κB-regulated cytokines under physiological conditions. Using dual-luciferase reporter assays, we showed that gp110 might impede the NF-κB promoter activation downstream of NF-κB transactivational subunit p65. Subsequently, we used coimmunoprecipitation assays to demonstrate that gp110 interacts with p65 during EBV lytic infection, and that the C-terminal cytoplasmic region of gp110 is the key interaction domain with p65. Furthermore, we determined that gp110 can bind to the N-terminal Rel homologous and C-terminal domains of p65. Alternatively, gp110 might not disturb the association of p65 with nontransactivational subunit p50, but we showed it restrains activational phosphorylation (at Ser536) and nuclear translocation of p65, which we also found to be executed by the C-terminal cytoplasmic region of gp110. Altogether, these data suggest that the surface protein gp110 may be a vital component for EBV to antagonize the host's innate immune response, which is also helpful for revealing the infectivity and pathogenesis of EBV.


Subject(s)
Epstein-Barr Virus Infections , NF-kappa B , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Herpesvirus 4, Human/metabolism , Epstein-Barr Virus Infections/genetics , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism , Signal Transduction , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL