Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Trends Biochem Sci ; 49(1): 79-92, 2024 01.
Article in English | MEDLINE | ID: mdl-38036336

ABSTRACT

Humans and other mammals inhabit hypoxic high-altitude locales. In many of these species, genes under positive selection include ones in the Hypoxia Inducible Factor (HIF) pathway. One is PHD2 (EGLN1), which encodes for a key oxygen sensor. Another is HIF2A (EPAS1), which encodes for a PHD2-regulated transcription factor. Recent studies have provided insights into mechanisms for these high-altitude alleles. These studies have (i) shown that selection can occur on nonconserved, unstructured regions of proteins, (ii) revealed that high altitude-associated amino acid substitutions can have differential effects on protein-protein interactions, (iii) provided evidence for convergent evolution by different molecular mechanisms, and (iv) suggested that mutations in different genes can complement one another to produce a set of adaptive phenotypes.


Subject(s)
Adaptation, Physiological , Altitude , Humans , Animals , Adaptation, Physiological/genetics , Hypoxia/genetics , Phenotype , Gene Expression Regulation , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Mammals/genetics
2.
EMBO J ; 42(20): e113743, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37661833

ABSTRACT

Mitochondria play essential roles in cancer cell adaptation to hypoxia, but the underlying mechanisms remain elusive. Through mitochondrial proteomic profiling, we here find that the prolyl hydroxylase EglN1 (PHD2) accumulates on mitochondria under hypoxia. EglN1 substrate-binding region in the ß2ß3 loop is responsible for its mitochondrial translocation and contributes to breast tumor growth. Furthermore, we identify AMP-activated protein kinase alpha (AMPKα) as an EglN1 substrate on mitochondria. The EglN1-AMPKα interaction is essential for their mutual mitochondrial translocation. After EglN1 prolyl-hydroxylates AMPKα under normoxia, they rapidly dissociate following prolyl-hydroxylation, leading to their immediate release from mitochondria. In contrast, hypoxia results in constant EglN1-AMPKα interaction and their accumulation on mitochondria, leading to the formation of a Ca2+ /calmodulin-dependent protein kinase 2 (CaMKK2)-EglN1-AMPKα complex to activate AMPKα phosphorylation, ensuring metabolic homeostasis and breast tumor growth. Our findings identify EglN1 as an oxygen-sensitive metabolic checkpoint signaling hypoxic stress to mitochondria through its ß2ß3 loop region, suggesting a potential therapeutic target for breast cancer.


Subject(s)
AMP-Activated Protein Kinases , Breast Neoplasms , Female , Humans , AMP-Activated Protein Kinases/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Hypoxia , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Mitochondria/metabolism , Proteomics
3.
Hum Genomics ; 18(1): 52, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790075

ABSTRACT

The recent article by Harit et al. in Human Genomics reported a novel association of the C allele of rs479200 in the human EGLN1 gene with severe COVID-19 in Indian patients. The gene in context is an oxygen-sensor gene whose T allele has been reported to contribute to the inability to cope with hypoxia due to increased expression of the EGLN1 gene and therefore persons with TT genotype of EGLN1 rs479200 are more susceptible to severe manifestations of hypoxia. In contrast to this dogma, Harit et al. showed that the C allele is associated with the worsening of COVID-19 hypoxia without suggesting or even discussing the scientific plausibility of the association. The article also suffers from certain epidemiological, statistical, and mathematical issues that need to be critically elaborated and discussed. In this context, the findings of Harit et al. may be re-evaluated.


Subject(s)
COVID-19 , Genetic Predisposition to Disease , Hypoxia-Inducible Factor-Proline Dioxygenases , SARS-CoV-2 , Humans , Alleles , COVID-19/genetics , COVID-19/epidemiology , COVID-19/virology , Genotype , Hypoxia/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , India/epidemiology , Polymorphism, Single Nucleotide/genetics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Severity of Illness Index
4.
Hum Genomics ; 18(1): 7, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291512

ABSTRACT

The present study investigated two single nucleotide polymorphisms (SNPs)-rs479200 and rs516651 in the host EGLN1/PHD2 gene for their association with COVID-19 severity. A retrospective cohort of 158 COVID-19 patients from the Indian population (March 2020 to June 2021) was enrolled. Notably, the frequency of C allele (0.664) was twofold higher than T allele (0.336) in severe COVID-19 patients. Here, we report a novel finding that the C allele of rs479200 in the EGLN1 gene imparts a high risk of severe COVID-19 (odds ratio-6.214 (1.84-20.99) p = 0.003; 9.421 (2.019-43.957) p = 0.004), in additive inheritance model (adjusted and unadjusted, respectively).


Subject(s)
COVID-19 , Humans , Alleles , Retrospective Studies , COVID-19/epidemiology , COVID-19/genetics , Polymorphism, Single Nucleotide/genetics , Asian People , Genetic Predisposition to Disease , Gene Frequency , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics
5.
Mol Cell ; 66(6): 772-779, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28622522

ABSTRACT

The EGLN (also called PHD) prolyl hydroxylase enzymes and their canonical targets, the HIFα subunits, represent the core of an ancient oxygen-monitoring machinery used by metazoans. In this review, we highlight recent progress in understanding the overlapping versus specific roles of EGLN enzymes and HIF isoforms and discuss how feedback loops based on recently identified noncoding RNAs introduce additional layers of complexity to the hypoxic response. Based on novel interactions identified upstream and downstream of EGLNs, an integrated network connecting oxygen-sensing functions to metabolic and signaling pathways is gradually emerging with broad therapeutic implications.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Endoglin/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neoplasms/enzymology , Oxygen/metabolism , Signal Transduction , Adaptation, Physiological , Animals , Antineoplastic Agents/therapeutic use , Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors , Feedback, Physiological , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Signal Transduction/drug effects , Tumor Hypoxia
6.
Pflugers Arch ; 476(9): 1307-1337, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38509356

ABSTRACT

Oxygen sensors enable cells to adapt to limited oxygen availability (hypoxia), affecting various cellular and tissue responses. Prolyl-4-hydroxylase domain 1-3 (PHD1-3; also called Egln1-3, HIF-P4H 1-3, HIF-PH 1-3) proteins belong to the Fe2+- and 2-oxoglutarate-dependent dioxygenase superfamily and utilise molecular oxygen (O2) alongside 2-oxoglutarate as co-substrate to hydroxylate two proline residues of α subunits of the dimeric hypoxia inducible factor (HIF) transcription factor. PHD1-3-mediated hydroxylation of HIF-α leads to its degradation and inactivation. Recently, various PHD inhibitors (PHI) have entered the clinics for treatment of renal anaemia. Pre-clinical analyses indicate that PHI treatment may also be beneficial in numerous other hypoxia-associated diseases. Nonetheless, the underlying molecular mechanisms of the observed protective effects of PHIs are only partly understood, currently hindering their translation into the clinics. Moreover, the PHI-mediated increase of Epo levels is not beneficial in all hypoxia-associated diseases and PHD-selective inhibition may be advantageous. Here, we summarise the current knowledge about the relevance and function of each of the three PHD isoforms in vivo, based on the deletion or RNA interference-mediated knockdown of each single corresponding gene in rodents. This information is crucial for our understanding of the physiological relevance and function of the PHDs as well as for elucidating their individual impact on hypoxia-associated diseases. Furthermore, this knowledge highlights which diseases may best be targeted by PHD isoform-selective inhibitors in case such pharmacologic substances become available.


Subject(s)
Hypoxia-Inducible Factor-Proline Dioxygenases , Animals , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Oxygen/metabolism , Gene Deletion , Procollagen-Proline Dioxygenase/metabolism , Procollagen-Proline Dioxygenase/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia/metabolism
7.
Am J Physiol Regul Integr Comp Physiol ; 326(2): R184-R195, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38145292

ABSTRACT

The hypoxia-inducible factor (HIF) is considered key in the transcriptional response to low oxygen. Yet, the role of HIF in the absence of oxygen (anoxia) and in preparation for reoxygenation remains unclear. Recent studies suggest that mounting a HIF response may be counterproductive for anoxia survival. We here studied one of the champions of anoxia survival, the crucian carp (Carassius carassius), and hypothesized that expression of prolyl hydroxylase domains (PHDs; the upstream regulators of HIF) are upregulated to circumvent an energy-costly activation of HIF in anoxia and to prepare for reoxygenation. We measured whole brain mRNA and protein levels of the three isoforms PHD1, PHD2, and PHD3, coded for by multiple paralogs of the genes egln2, egln1, and egln3, using quantitative PCR and Western blotting in the brain of crucian carps exposed to 5 days normoxia or anoxia, and 5 days anoxia followed by 3 or 24 h of reoxygenation. The mRNA levels of most egln paralogs were increased in anoxia and upon reoxygenation, with egln3 showing the largest increase in mRNA level (up to 17-fold) and highest relative mRNA abundance (up to 75% of expressed egln). The protein level of all PHDs was maintained in anoxia and increased upon reoxygenation. We then explored PHD distribution in different brain regions and found PHD immunoreactivity to be associated with axonal branches and showing region-specific changes during anoxia-reoxygenation. Our results support an overall upregulation of egln under prolonged anoxia and PHDs upon reoxygenation in crucian carp, likely aimed at suppressing HIF responses, although regional differences are apparent in such a complex organ as the brain.NEW & NOTEWORTHY We report a profound upregulation of most egln paralog mRNA levels in anoxia and upon reoxygenation, with egln3ii showing the largest, a 17-fold increase, and highest relative mRNA abundance. The relative abundance of prolyl hydroxylase domain (PHD) proteins was maintained during anoxia and increased at reoxygenation. PHD immunoreactivity was localized to axonal branches with region-specific changes during anoxia-reoxygenation. These dynamic and regional changes in crucian carp, champion of anoxia tolerance, are most likely adaptive and call for further mechanistic studies.


Subject(s)
Carps , Prolyl Hydroxylases , Animals , Prolyl Hydroxylases/metabolism , Carps/metabolism , Hypoxia , Brain/metabolism , Oxygen/metabolism , RNA, Messenger/genetics
8.
Biochem Genet ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38568374

ABSTRACT

JAK2-unmutated erythrocytosis or non-polycythemia vera erythrocytosis is a rare condition comprising both acquired and hereditary forms. Although acquired erythrocytosis has been well-studied, hereditary erythrocytosis remains poorly studied. Genetic alterations associated with hereditary erythrocytosis include mutations in erythropoietin receptor and erythropoietin (EPO), altered oxygen affinity mutations, and variants associated with the oxygen-sensing pathway. We established a molecular diagnostic approach based on these genes and retrospectively evaluated. Peripheral blood from 56 erythrocytosis patients, lacking JAK2 mutation, were screened for oxygen-sensing pathway abnormalities. Two novel mutations were identified in the EGLN1 gene: NM_022051.2:c.712G > C (p.Gly238Arg) and NM_022051.2:c.122A > C (p.Tyr41Ser) in two patients separately. Notably, both reported heterozygous mutations were absent in the population database. Predictions using multiple computer software indicated that these two missense mutations were harmful and induced a highly conserved amino acid change in EGLN1. Patients with the two mutations exhibited normal serum EPO levels and high hemoglobin and hematocrit levels. Additionally, three other variants of genes were identified in the oxygen-sensing pathway, including endothelial PAS domain protein 1 (EPAS1) rs184760160(2/56), and EGLN1 rs186996510(2/56), rs555121182(2/56). These variants were categorized as benign or likely benign. Our findings provide a framework for etiological research and highlight the importance of screening for genetic mutations associated with erythrocytosis in clinical practice.

9.
J Biol Chem ; 298(6): 101961, 2022 06.
Article in English | MEDLINE | ID: mdl-35452683

ABSTRACT

Egg-laying defective nine 1 (EGLN1) functions as an oxygen sensor to catalyze prolyl hydroxylation of the transcription factor hypoxia-inducible factor-1 α under normoxia conditions, leading to its proteasomal degradation. Thus, EGLN1 plays a central role in the hypoxia-inducible factor-mediated hypoxia signaling pathway; however, the posttranslational modifications that control EGLN1 function remain largely unknown. Here, we identified that a lysine monomethylase, SET7, catalyzes EGLN1 methylation on lysine 297, resulting in the repression of EGLN1 activity in catalyzing prolyl hydroxylation of hypoxia-inducible factor-1 α. Notably, we demonstrate that the methylation mimic mutant of EGLN1 loses the capability to suppress the hypoxia signaling pathway, leading to the enhancement of cell proliferation and the oxygen consumption rate. Collectively, our data identify a novel modification of EGLN1 that is critical for inhibiting its enzymatic activity and which may benefit cellular adaptation to conditions of hypoxia.


Subject(s)
Histone-Lysine N-Methyltransferase , Hypoxia-Inducible Factor 1, alpha Subunit , Hypoxia-Inducible Factor-Proline Dioxygenases , Lysine , Animals , Catalysis , Humans , Hydroxylation , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Lysine/metabolism , Methylation , Oxygen/metabolism , Protein Processing, Post-Translational
10.
Proteins ; 91(11): 1510-1524, 2023 11.
Article in English | MEDLINE | ID: mdl-37449559

ABSTRACT

The hypoxia-inducible factor (HIF) prolyl-hydroxylases (human PHD1-3) catalyze prolyl hydroxylation in oxygen-dependent degradation (ODD) domains of HIFα isoforms, modifications that signal for HIFα proteasomal degradation in an oxygen-dependent manner. PHD inhibitors are used for treatment of anemia in kidney disease. Increased erythropoietin (EPO) in patients with familial/idiopathic erythrocytosis and pulmonary hypertension is associated with mutations in EGLN1 (PHD2) and EPAS1 (HIF2α); a drug inhibiting HIF2α activity is used for clear cell renal cell carcinoma (ccRCC) treatment. We report crystal structures of PHD2 complexed with the C-terminal HIF2α-ODD in the presence of its 2-oxoglutarate cosubstrate or N-oxalylglycine inhibitor. Combined with the reported PHD2.HIFα-ODD structures and biochemical studies, the results inform on the different PHD.HIFα-ODD binding modes and the potential effects of clinically observed mutations in HIFα and PHD2 genes. They may help enable new therapeutic avenues, including PHD isoform-selective inhibitors and sequestration of HIF2α by the PHDs for ccRCC treatment.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/chemistry , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Oxygen/metabolism , Procollagen-Proline Dioxygenase/chemistry , Procollagen-Proline Dioxygenase/genetics , Procollagen-Proline Dioxygenase/metabolism , Prolyl Hydroxylases , Protein Isoforms
11.
Proc Natl Acad Sci U S A ; 117(22): 12230-12238, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32414920

ABSTRACT

Tibetans have adapted to the chronic hypoxia of high altitude and display a distinctive suite of physiologic adaptations, including augmented hypoxic ventilatory response and resistance to pulmonary hypertension. Genome-wide studies have consistently identified compelling genetic signatures of natural selection in two genes of the Hypoxia Inducible Factor pathway, PHD2 and HIF2A The product of the former induces the degradation of the product of the latter. Key issues regarding Tibetan PHD2 are whether it is a gain-of-function or loss-of-function allele, and how it might contribute to high-altitude adaptation. Tibetan PHD2 possesses two amino acid changes, D4E and C127S. We previously showed that in vitro, Tibetan PHD2 is defective in its interaction with p23, a cochaperone of the HSP90 pathway, and we proposed that Tibetan PHD2 is a loss-of-function allele. Here, we report that additional PHD2 mutations at or near Asp-4 or Cys-127 impair interaction with p23 in vitro. We find that mice with the Tibetan Phd2 allele display augmented hypoxic ventilatory response, supporting this loss-of-function proposal. This is phenocopied by mice with a mutation in p23 that abrogates the PHD2:p23 interaction. Hif2a haploinsufficiency, but not the Tibetan Phd2 allele, ameliorates hypoxia-induced increases in right ventricular systolic pressure. The Tibetan Phd2 allele is not associated with hemoglobin levels in mice. We propose that Tibetans possess genetic alterations that both activate and inhibit selective outputs of the HIF pathway to facilitate successful adaptation to the chronic hypoxia of high altitude.


Subject(s)
Adaptation, Physiological , DNA-Binding Proteins/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/physiology , Hypoxia/physiopathology , Loss of Function Mutation , Alleles , Altitude , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , DNA-Binding Proteins/genetics , Humans , Mice , Mice, Knockout , Phenotype , Selection, Genetic , Tibet
12.
Anim Biotechnol ; 34(5): 1753-1762, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35289728

ABSTRACT

Egl-9 family hypoxia-inducible factor (egln), an oxygen-sensing enzyme family, has been thoroughly characterized in mammals and certain fishes, but there is few research on its involvement in reproductive development and hypoxic stress in rainbow trout. In this study, we investigated the gene structure, physicochemical properties, and evolutionary connection of the egln gene family. The expression profile of egln gene family and their regulatory mechanism were explored using bioinformatics analysis and hypoxia treatment experiments. Five egln genes were discovered in the rainbow trout genome in this investigation (egln1, egln2a, egln2b, egln3a, and egln3b). Domain prediction revealed that all egln proteins have p4hc conserved domains, and phylogenetic analysis revealed that rainbow trout egln2 and egln3 were closely related to Atlantic salmon. The results of real-time quantitative PCR (RT-qPCR) showed that egln genes were generally expressed in all detected tissues, and higher in the ovary, testis, and brain in normoxia. Under hypoxia, the expression level of eglns was significantly down-regulated in most tissues except the liver. Our research contributes to future research on the functional properties of egln genes, as well as the evolution of teleosts and the impact of hypoxia on biological immunity.


Subject(s)
Oncorhynchus mykiss , Male , Female , Animals , Oncorhynchus mykiss/genetics , Phylogeny , Hypoxia/genetics , Hypoxia/veterinary , Genome , Oxygen , Mammals/genetics , Mammals/metabolism
13.
Int J Mol Sci ; 24(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36768713

ABSTRACT

Pulmonary arterial hypertension (PAH) is a progressive and inevitably fatal disease characterized by the progressive increase of pulmonary vascular resistance and obliterative pulmonary vascular remodeling, which lead to right-sided heart failure and premature death. Many of the genetically modified mouse models do not develop severe PH and occlusive vascular remodeling. Egln1Tie2Cre mice with Tie2Cre-mediated deletion of Egln1, which encodes hypoxia-inducible factor (HIF) prolyl hydroxylase 2 (PHD2), is the only mouse model with severe PAH, progressive occlusive pulmonary vascular remodeling, and right-sided heart failure leading to 50-80% mortality from the age of 3-6 months, indicating that the Egln1Tie2Cre mice model is a long-sought-after murine PAH model. However, it is unknown if Egln1Tie2Cre mice respond to FDA-approved PAH drugs in a way similar to PAH patients. Here, we tested the therapeutic effects of the three vasodilators: sildenafil (targeting nitric oxide signaling), ambrisentan (endothelin receptor antagonist), and treprostinil (prostacyclin analog) on Egln1Tie2Cre mice. All of them attenuated right ventricular systolic pressure (RVSP) in Egln1Tie2Cre mice consistent with their role as vasodilators. However, these drugs have no beneficial effects on pulmonary arterial function. Cardiac output was also markedly improved in Egln1Tie2Cre mice by any of the drug treatments. They only partially improved RV function and reduced RV hypertrophy and pulmonary vascular remodeling as well as improving short-term survival in a drug-dependent manner. These data demonstrate that Egln1Tie2Cre mice exhibit similar responses to these drugs as PAH patients seen in clinical trials. Thus, our study provides further evidence that the Egln1Tie2Cre mouse model of severe PAH is an ideal model of PAH and is potentially useful for enabling identification of drug targets and preclinical testing of novel PAH drug candidates.


Subject(s)
Heart Failure , Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Mice , Animals , Sildenafil Citrate/pharmacology , Sildenafil Citrate/therapeutic use , Pulmonary Arterial Hypertension/drug therapy , Pulmonary Arterial Hypertension/genetics , Vascular Remodeling , Hypertension, Pulmonary/drug therapy , Familial Primary Pulmonary Hypertension , Vasodilator Agents/pharmacology , Hypoxia-Inducible Factor-Proline Dioxygenases , Heart Failure/drug therapy , Heart Failure/genetics , Pulmonary Artery
14.
Genes Dev ; 28(20): 2189-204, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25319824

ABSTRACT

Humans have adapted to the chronic hypoxia of high altitude in several locations, and recent genome-wide studies have indicated a genetic basis. In some populations, genetic signatures have been identified in the hypoxia-inducible factor (HIF) pathway, which orchestrates the transcriptional response to hypoxia. In Tibetans, they have been found in the HIF2A (EPAS1) gene, which encodes for HIF-2α, and the prolyl hydroxylase domain protein 2 (PHD2, also known as EGLN1) gene, which encodes for one of its key regulators, PHD2. High-altitude adaptation may be due to multiple genes that act in concert with one another. Unraveling their mechanism of action can offer new therapeutic approaches toward treating common human diseases characterized by chronic hypoxia.


Subject(s)
Adaptation, Physiological/genetics , Altitude , Hypoxia/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics
15.
Genes Dev ; 28(13): 1429-44, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24990963

ABSTRACT

The three EglN prolyl hydroxylases (EglN1, EglN2, and EglN3) regulate the stability of the HIF transcription factor. We recently showed that loss of EglN2, however, also leads to down-regulation of Cyclin D1 and decreased cell proliferation in a HIF-independent manner. Here we report that EglN2 can hydroxylate FOXO3a on two specific prolyl residues in vitro and in vivo. Hydroxylation of these sites prevents the binding of USP9x deubiquitinase, thereby promoting the proteasomal degradation of FOXO3a. FOXO transcription factors can repress Cyclin D1 transcription. Failure to hydroxylate FOXO3a promotes its accumulation in cells, which in turn suppresses Cyclin D1 expression. These findings provide new insights into post-transcriptional control of FOXO3a and provide a new avenue for pharmacologically altering Cyclin D1 activity.


Subject(s)
Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Ubiquitin Thiolesterase/metabolism , Animals , Cell Line , Cells, Cultured , Cyclin D1/genetics , Forkhead Box Protein O3 , Hydroxylation , MCF-7 Cells , Mice , Protein Binding , Protein Stability
16.
Semin Cancer Biol ; 67(Pt 2): 34-42, 2020 12.
Article in English | MEDLINE | ID: mdl-32209418

ABSTRACT

Inactivation of the von Hippel Lindau tumor suppressor protein (pVHL) is a hallmark of clear cell Renal Cell Carcinoma (ccRCC), which is the most common form of kidney cancer in adults. In complex with Elongin B/C, pVHL functions as the substrate recognition subunit of a ubiquitin ligase, perhaps best known to target the hypoxia inducible factor (HIF) transcription factor for ubiquitin-dependent proteolysis. Beyond kidney cancer, the pseudo-hypoxic state caused due to chronic HIF activation in pVHL-deficient cells has become a biological model to study hypoxia's profound effects on tumor angiogenesis, metabolism, and epigenetics. However, a number of HIF-independent substrates of pVHL, which function in a broad range of biological pathways, have also been discovered. Independently, the development of high-throughput chemical and genetic screening strategies have enabled the identification of novel, HIF-independent, targetable dependencies in ccRCC. In this review we summarize the history of pVHL and HIF mediated oxygen sensing, discuss the current status of this field, and identify critical challenges that need to be overcome. The confluence of historical discovery, development of unbiased screening strategies, and the evolution of medicinal chemistry has allowed us to begin therapeutically targeting vulnerabilities that emerge due to pVHL loss in ccRCC. Ongoing mechanistic studies on the biological consequences of pVHL loss, therefore, are likely to become the cornerstones of modern therapeutics in renal cancer.


Subject(s)
Kidney Neoplasms/metabolism , Molecular Targeted Therapy/methods , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Epigenesis, Genetic , Humans , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Oxygen/metabolism , von Hippel-Lindau Disease/etiology , von Hippel-Lindau Disease/genetics
17.
J Cell Mol Med ; 25(21): 10140-10151, 2021 11.
Article in English | MEDLINE | ID: mdl-34687132

ABSTRACT

Long non-coding RNA (lncRNA) MIAT (myocardial infarction associated transcript) has been characterized as a functional lncRNA modulating cerebral ischaemic/reperfusion (I/R) injury. However, the underlying mechanisms remain poorly understood. This study explored the functional partners of MIAT in primary rat neurons and their regulation on I/R injury. Sprague-Dawley rats were used to construct middle cerebral artery occlusion (MCAO) models. Their cerebral cortical neurons were used for in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) models. Results showed that MIAT interacted with EGLN2 in rat cortical neurons. MIAT overexpression or knockdown did not alter EGLN2 transcription. In contrast, MIAT overexpression increased EGLN2 stability after I/R injury via reducing its ubiquitin-mediated degradation. EGLN2 was a substrate of MDM2, a ubiquitin E3 ligase. MDM2 interacted with the N-terminal of EGLN2 and mediated its K48-linked poly-ubiquitination, thereby facilitating its proteasomal degradation. MIAT knockdown enhanced the interaction and reduced EGLN2 stability. MIAT overexpression enhanced infarct volume and induced a higher ratio of neuronal apoptosis. EGLN2 knockdown significantly reversed the injury. MIAT overexpression reduced oxidative pentose phosphate pathway flux and increased oxidized/reduced glutathione ratio, the effects of which were abrogated by EGLN2 knockdown. In conclusion, MIAT might act as a stabilizer of EGLN2 via reducing MDM2 mediated K48 poly-ubiquitination. MIAT-EGLN2 axis exacerbates I/R injury via altering redox homeostasis in neurons.


Subject(s)
Brain Ischemia/complications , Gene Expression Regulation , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , RNA, Long Noncoding/genetics , Reperfusion Injury/etiology , Reperfusion Injury/metabolism , Ubiquitin/metabolism , Animals , Biomarkers , Cells, Cultured , Disease Models, Animal , Disease Susceptibility , Models, Biological , Neurons/metabolism , Oxidative Stress , Protein Stability , Proteolysis , RNA-Binding Proteins/metabolism , Rats , Reperfusion Injury/pathology , Ubiquitination
18.
J Biomed Sci ; 28(1): 44, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34112167

ABSTRACT

BACKGROUND: Cholangiocarcinoma represents the second most common primary liver malignancy. The incidence rate has constantly increased over the last decades. Cholangiocarcinoma silent nature limits early diagnosis and prevents efficient treatment. METHODS: Immunoblotting and immunohistochemistry were used to assess the expression profiling of USP9X and EGLN3 in cholangiocarcinoma patients. ShRNA was used to silence gene expression. Cell apoptosis, cell cycle, CCK8, clone formation, shRNA interference and xenograft mouse model were used to explore biological function of USP9X and EGLN3. The underlying molecular mechanism of USP9X in cholangiocarcinoma was determined by immunoblotting, co-immunoprecipitation and quantitative real time PCR (qPCR). RESULTS: Here we demonstrated that USP9X is downregulated in cholangiocarcinoma which contributes to tumorigenesis. The expression of USP9X in cholangiocarcinoma inhibited cell proliferation and colony formation in vitro as well as xenograft tumorigenicity in vivo. Clinical data demonstrated that expression levels of USP9X were positively correlated with favorable clinical outcomes. Mechanistic investigations further indicated that USP9X was involved in the deubiquitination of EGLN3, a member of 2-oxoglutarate and iron-dependent dioxygenases. USP9X elicited tumor suppressor role by preventing degradation of EGLN3. Importantly, knockdown of EGLN3 impaired USP9X-mediated suppression of proliferation. USP9X positively regulated the expression level of apoptosis pathway genes de through EGLN3 thus involved in apoptosis of cholangiocarcinoma. CONCLUSION: These findings help to understand that USP9X alleviates the malignant potential of cholangiocarcinoma through upregulation of EGLN3. Consequently, we provide novel insight into that USP9X is a potential biomarker or serves as a therapeutic or diagnostic target for cholangiocarcinoma.


Subject(s)
Apoptosis/genetics , Cholangiocarcinoma/physiopathology , Gene Expression Regulation, Neoplastic , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Kinesins/genetics , Ubiquitin Thiolesterase/genetics , Animals , Cholangiocarcinoma/genetics , Female , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Kinesins/metabolism , Mice , Mice, Inbred BALB C , Ubiquitin Thiolesterase/metabolism , Ubiquitination
19.
J Proteome Res ; 19(1): 260-268, 2020 01 03.
Article in English | MEDLINE | ID: mdl-31763849

ABSTRACT

Prolyl hydroxylase domain-containing protein 2 (PHD2/EGLN1) is a key regulatory enzyme that plays a fundamental role in the cellular hypoxic response pathway, mediating proline hydroxylation-dependent protein degradation of selected target proteins. However, the regulation of PHD2 homeostasis at the protein level is not well understood. Here, we perform label-free quantitative interactome analysis through immunoprecipitation coupled with mass spectrometry analysis. To minimize the side effects caused by ectopic overexpression, in HeLa cells, we stably overexpressed Flag-tagged PHD2 while suppressing the endogenous PHD2 by using an shRNA targeting its 3' UTR region. We identified and validated Cullin 3 as a novel PHD2 interactor in vivo. Through candidate screening, we further identified CUL3-KEAP1 E3 ubiquitin ligase complex as the major enzyme that regulates PHD2 degradation. Overexpression of either CUL3, KEAP1, or both significantly increases PHD2 ubiquitination and reduces PHD2 protein abundance. The knockdown of CUL3 or KEAP1 decreased PHD2 ubiquitination and inhibited PHD2 degradation. Accordingly, loss of the CUL3-KEAP1 complex under hypoxia promoted PHD2 stabilization and led to significantly reduced abundance of the PHD2 target, hypoxia-inducible factor 1A (HIF1A). Thus, CUL3-KEAP1 is an essential pathway that regulates PHD2 ubiquitination and degradation in cells.


Subject(s)
Cullin Proteins/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Cell Hypoxia/physiology , Cullin Proteins/genetics , Gene Knockdown Techniques , HeLa Cells , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Protein Interaction Maps , Ubiquitination
20.
J Biol Chem ; 294(10): 3760-3771, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30617181

ABSTRACT

Most clear cell renal cell carcinomas (ccRCCs) have inactivation of the von Hippel-Lindau tumor suppressor protein (pVHL), resulting in the accumulation of hypoxia-inducible factor α-subunits (HIF-α) and their downstream targets. HIF-2α expression is particularly high in ccRCC and is associated with increased ccRCC growth and aggressiveness. In the canonical HIF signaling pathway, HIF-prolyl hydroxylase 3 (PHD3) suppresses HIF-2α protein by post-translational hydroxylation under sufficient oxygen availability. Here, using immunoblotting and immunofluorescence staining, qRT-PCR, and siRNA-mediated gene silencing, we show that unlike in the canonical pathway, PHD3 silencing in ccRCC cells leads to down-regulation of HIF-2α protein and mRNA. Depletion of other PHD family members had no effect on HIF-2α expression, and PHD3 knockdown in non-RCC cells resulted in the expected increase in HIF-2α protein expression. Accordingly, PHD3 knockdown decreased HIF-2α target gene expression in ccRCC cells and expression was restored upon forced HIF-2α expression. The effect of PHD3 depletion was pinpointed to HIF2A mRNA stability. In line with these in vitro results, a strong positive correlation of PHD3 and HIF2A mRNA expression in ccRCC tumors was detected. Our results suggest that in contrast to the known negative regulation of HIF-2α in most cell types, high PHD3 expression in ccRCC cells maintains elevated HIF-2α expression and that of its target genes, which may enhance kidney cancer aggressiveness.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Carcinoma, Renal Cell/pathology , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Kidney Neoplasms/pathology , Cell Line, Tumor , Down-Regulation , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Gene Silencing , Glucose Transporter Type 1/genetics , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/deficiency , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Protein Stability , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL