Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 312
Filter
1.
Curr Issues Mol Biol ; 46(6): 5909-5928, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38921024

ABSTRACT

Uropathogenic Escherichia coli (UPEC) is the main cause of urinary tract infections (UTIs) and carries virulence and resistance factors often found in mobilizable genetic elements, such as plasmids or pathogenicity islands (PAIs). UPEC is part of the extraintestinal pathogenic E. coli (ExPEC), but hybrid strains possessing both diarrheagenic E. coli (DEC) and ExPEC traits, termed "hypervirulent", present a significant health threat. This study assessed the prevalence of UPEC PAIs, ExPEC sequence types (ST), DEC genes, carbapenemase and extended-spectrum ß-lactamase (ESBL) phenotypes, resistance genotypes, and plasmids in 40 clinical isolates of UPEC. Results showed that 72.5% of isolates had PAIs, mainly PAI IV536 (53%). ESBL phenotypes were found in 65% of ß-lactam-resistant isolates, with 100% of carbapenem-resistant isolates producing carbapenemase. The predominant ESBL gene was blaCTX-M-2 (60%), and the most common resistance gene in fluoroquinolone and aminoglycoside-resistant isolates was aac(6')Ib (93%). Plasmids were present in 57% of isolates, and 70% belonged to the ST131 clonal group. Molecular markers for DEC pathotypes were detected in 20 isolates, with 60% classified as hybrid pathotypes. These findings indicate significant pathogenic potential and the presence of hybrid pathotypes in E. coli UTI clinical isolates in the Mexican population.

2.
BMC Microbiol ; 24(1): 136, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658819

ABSTRACT

OBJECTIVES: In the recent years, multidrug resistant (MDR) neonatal septicemia-causing Enterobacterales has been dramatically increased due to the extended-spectrum beta-lactamases (ESBLs) and AmpC enzymes. This study aimed to assess the antibiotic resistance pattern, prevalence of ESBLs/AmpC beta-lactamase genes, and Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) fingerprints in Enterobacterales isolated from neonatal sepsis. RESULTS: In total, 59 Enterobacterales isolates including 41 (69.5%) Enterobacter species, 15 (25.4%) Klebsiella pneumoniae and 3 (5.1%) Escherichia coli were isolated respectively. Resistance to ceftazidime and cefotaxime was seen in all of isolates. Furthermore, all of them were multidrug-resistant (resistant to three different antibiotic categories). The phenotypic tests showed that 100% of isolates were ESBL-positive. Moreover, AmpC production was observed in 84.7% (n = 50/59) of isolates. Among 59 ESBL-positive isolates, the highest percentage belonged to blaCTX-M-15 gene (66.1%) followed by blaCTX-M (45.8%), blaCTX-M-14 (30.5%), blaSHV (28.8%), and blaTEM (13.6%). The frequency of blaDHA, blaEBC, blaMOX and blaCIT genes were 24%, 24%, 4%, and 2% respectively. ERIC-PCR analysis revealed that Enterobacterales isolates were genetically diverse. The remarkable prevalence of MDR Enterobacterales isolates carrying ESBL and AmpC beta-lactamase genes emphasizes that efficient surveillance measures are essential to avoid the more expansion of drug resistance amongst isolates.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Drug Resistance, Multiple, Bacterial , Enterobacteriaceae Infections , Microbial Sensitivity Tests , Neonatal Sepsis , beta-Lactamases , beta-Lactamases/genetics , Humans , Iran/epidemiology , Infant, Newborn , Drug Resistance, Multiple, Bacterial/genetics , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Prevalence , Bacterial Proteins/genetics , Neonatal Sepsis/microbiology , Neonatal Sepsis/epidemiology , Enterobacteriaceae/genetics , Enterobacteriaceae/drug effects , Enterobacteriaceae/enzymology , Enterobacteriaceae/isolation & purification , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/enzymology , Enterobacter/genetics , Enterobacter/drug effects , Enterobacter/isolation & purification , Enterobacter/enzymology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification
3.
BMC Microbiol ; 24(1): 225, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926687

ABSTRACT

BACKGROUND: The incidence of hospital-acquired infections in extensively drug-resistant Pseudomonas aeruginosa (XDR-PA) has been increasing worldwide and is frequently associated with an increase in mortality and morbidity rates. The aim of this study was to characterize clinical XDR-PA isolates recovered during six months at three different hospitals in Egypt. RESULTS: Seventy hospital-acquired clinical isolates of P. aeruginosa were classified into multidrug-resistant (MDR), extensively drug-resistant (XDR) and pandrug-resistant (PDR), according to their antimicrobial resistance profile. In addition, the possession of genes associated with mobile genetic elements and genes encoding antimicrobial resistance determinants among isolates were detected using polymerase chain reaction. As a result, a significant percentage of the isolates (75.7%) were XDR, while 18.5% were MDR, however only 5.7% of the isolates were non-MDR. The phenotypic detection of carbapenemases, extended-spectrum ß-lactamases (ESBLs) and metallo ß-lactamase (MBL) enzymes showed that 73.6% of XDR-PA isolates were carbapenemases producers, whereas 75.5% and 88.7% of XDR-PA isolates produced ESBLs and MBL respectively. In addition, PCR screening showed that oxa gene was the most frequently detected gene of carbapenemases (91.4%), while aac(6')-lb gene was mostly detected (84.3%) among the screened aminoglycosides-resistance genes. Furthermore, the molecular detection of the colistin resistance gene showed that 12.9% of isolates harbored mcr-1 gene. Concerning mobile genetic element markers (intI, traA, tnp513, and merA), intI was the highest detected gene as it was amplified in 67 isolates (95.7%). Finally, phylogenetic and molecular typing of the isolates via ERIC-PCR analysis revealed 10 different ERIC fingerprints. CONCLUSION: The present study revealed a high prevalence of XDR-PA in hospital settings which were resistant to a variety of antibiotics due to several mechanisms. In addition, 98% of the XDR-PA clinical isolates contained at least one gene associated with movable genetic elements, which could have aided the evolution of these XDR-PA strains. To reduce spread of drug resistance, judicious use of antimicrobial agents and strict infection control measures are therefore essential.


Subject(s)
Anti-Bacterial Agents , Cross Infection , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Pseudomonas Infections , Pseudomonas aeruginosa , beta-Lactamases , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/isolation & purification , Humans , Pseudomonas Infections/microbiology , Pseudomonas Infections/epidemiology , Drug Resistance, Multiple, Bacterial/genetics , Cross Infection/microbiology , Cross Infection/epidemiology , Egypt/epidemiology , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Hospitals/statistics & numerical data , Interspersed Repetitive Sequences/genetics , Polymerase Chain Reaction
4.
BMC Microbiol ; 24(1): 17, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191309

ABSTRACT

BACKGROUND: Water is considered a source for the transmission of Arcobacter species to both humans and animals. This study was conducted to assess the prevalence, distribution, and pathogenicity of A. butzleri strains, which can potentially pose health risks to humans and animals. Cultures were isolated from surface waters of a mixed-use but predominately agricultural watershed in eastern Ontario, Canada. The detection of antimicrobial resistance (AMR) and virulence-associated genes (VAGs), as well as enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) assays were performed on 913 A. butzleri strains isolated from 11 agricultural sampling sites. RESULTS: All strains were resistant to one or more antimicrobial agents, with a high rate of resistance to clindamycin (99%) and chloramphenicol (77%), followed by azithromycin (48%) and nalidixic acid (49%). However, isolates showed a significantly (p < 0.05) high rate of susceptibility to tetracycline (1%), gentamycin (2%), ciprofloxacin (4%), and erythromycin (5%). Of the eight VAGs tested, ciaB, mviN, tlyA, and pldA were detected at high frequency (> 85%) compared to irgA (25%), hecB (19%), hecA (15%), and cj1349 (12%) genes. Co-occurrence analysis showed A. butzleri strains resistant to clindamycin, chloramphenicol, nalidixic acid, and azithromycin were positive for ciaB, tlyA, mviN and pldA VAGs. ERIC-PCR fingerprint analysis revealed high genetic similarity among strains isolated from three sites, and the genotypes were significantly associated with AMR and VAGs results, which highlight their potential environmental ubiquity and potential as pathogenic. CONCLUSIONS: The study results show that agricultural activities likely contribute to the contamination of A. butzleri in surface water. The findings underscore the importance of farm management practices in controlling the potential spread of A. butzleri and its associated health risks to humans and animals through contaminated water.


Subject(s)
Arcobacter , Animals , Humans , Arcobacter/genetics , Canada , Azithromycin , Clindamycin , Virulence , Nalidixic Acid/pharmacology , Chloramphenicol , Enterobacteriaceae
5.
Mol Biol Rep ; 51(1): 416, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38478145

ABSTRACT

INTRODUCTION: Klebsiella pneumoniae is an opportunistic pathogen which is an important cause of hospital-acquired and antibiotic resistance infections. Therefore, this study aimed to determine the frequency of resistance to antibiotics, as well as the molecular typing of the associated isolates, and compare multiple-locus VNTR analysis (MLVA) and Enterobacterial Repetitive Intergenic Consensus-Polymerase Chain Reaction (ERIC-PCR) methods to specify the degree to which distinctions can be separated from each other. METHODS AND MATERIALS: One hundred K. pneumoniae isolates were obtained from different sources of infections from patients admitted to hospitals. Antibiotic susceptibility testing was then performed by applying the Kirby-Bauer disk diffusion method. Typing of K. pneumoniae was done by utilizing MLVA and ERIC-PCR methods. RESULTS: Eighty-six multidrug-resistant (MDR) K. pneumoniae isolates were identified, which resistance to ampicillin, trimethoprim/sulfamethoxazole, and ceftriaxone was the most frequent in the considered isolates (100, 93, and 93%, respectively). A total of 50 different antibiotic susceptibility patterns were observed among the MDR K. pneumonia, with the most frequent pattern being resistance to all antibiotics (12.79%) and resistance to all antibiotics except amikacin (10.47%). The isolates were then divided into 37 different MLVA types and seven clonal complexes were obtained from the minimum spanning tree analysis. Finally, the isolates were assigned to 38 different ERIC types. The discriminatory power of MLVA and ERIC methods also showed a value of 0.958, and 0.974. CONCLUSION: Both PCR-typing methods with phenotypic patterns can be useful for the epidemiological typing of K. pneumoniae isolates with the highest performance in discriminating isolates.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Humans , Klebsiella pneumoniae/genetics , Klebsiella Infections/drug therapy , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Microbial Sensitivity Tests , Molecular Typing/methods , Anti-Bacterial Agents/pharmacology , Enterobacteriaceae
6.
Ann Clin Microbiol Antimicrob ; 23(1): 46, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790053

ABSTRACT

BACKGROUND: Proteus mirabilis is an opportunistic pathogen that has been held responsible for numerous nosocomial and community-acquired infections which are difficult to be controlled because of its diverse antimicrobial resistance mechanisms. METHODS: Antimicrobial susceptibility patterns of P. mirabilis isolates collected from different clinical sources in Mansoura University Hospitals, Egypt was determined. Moreover, the underlying resistance mechanisms and genetic relatedness between isolates were investigated. RESULTS: Antimicrobial susceptibility testing indicated elevated levels of resistance to different classes of antimicrobials among the tested P. mirabilis clinical isolates (n = 66). ERIC-PCR showed great diversity among the tested isolates. Six isolates (9.1%) were XDR while all the remaining isolates were MDR. ESBLs and AmpCs were detected in 57.6% and 21.2% of the isolates, respectively, where blaTEM, blaSHV, blaCTX-M, blaCIT-M and blaAmpC were detected. Carbapenemases and MBLs were detected in 10.6 and 9.1% of the isolates, respectively, where blaOXA-48 and blaNDM-1 genes were detected. Quinolone resistant isolates (75.8%) harbored acc(6')-Ib-cr, qnrD, qnrA, and qnrS genes. Resistance to aminoglycosides, trimethoprim-sulfamethoxazole and chloramphenicol exceeded 80%. Fosfomycin was the most active drug against the tested isolates as only 22.7% were resistant. Class I or II integrons were detected in 86.4% of the isolates. Among class I integron positive isolates, four different gene cassette arrays (dfrA17- aadA5, aadB-aadA2, aadA2-lnuF, and dfrA14-arr-3-blaOXA-10-aadA15) and two gene cassettes (dfrA7 and aadA1) were detected. While class II integron positive isolates carried four different gene cassette arrays (dfrA1-sat1-aadA1, estXVr-sat2-aadA1, lnuF- dfrA1-aadA1, and dfrA1-sat2). CONCLUSION: P. Mirabilis ability to acquire resistance determinants via integrons may be held responsible for the elevated rates of antimicrobial resistance and emergence of XDR or even PDR strains limiting the available therapeutic options for management of infections caused by those strains.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Proteus Infections , Proteus mirabilis , Egypt/epidemiology , Humans , Proteus mirabilis/genetics , Proteus mirabilis/drug effects , Proteus mirabilis/isolation & purification , Drug Resistance, Multiple, Bacterial/genetics , Proteus Infections/microbiology , Proteus Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Prevalence , beta-Lactamases/genetics , Integrons/genetics , Bacterial Proteins/genetics , Cross Infection/microbiology , Cross Infection/epidemiology , Male
7.
Ann Clin Microbiol Antimicrob ; 23(1): 20, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38402146

ABSTRACT

BACKGROUND: Uropathogenic Escherichia coli (UPEC) is the main etiological agent behind community-acquired and hospital-acquired urinary tract infections (UTIs), which are among the most prevalent human infections. The management of UPEC infections is becoming increasingly difficult owing to multi-drug resistance, biofilm formation, and the possession of an extensive virulence arsenal. This study aims to characterize UPEC isolates in Tanta, Egypt, with regard to their antimicrobial resistance, phylogenetic profile, biofilm formation, and virulence, as well as the potential associations among these factors. METHODS: One hundred UPEC isolates were obtained from UTI patients in Tanta, Egypt. Antimicrobial susceptibility was assessed using the Kirby-Bauer method. Extended-spectrum ß-lactamases (ESBLs) production was screened using the double disk synergy test and confirmed with PCR. Biofilm formation was evaluated using the microtiter-plate assay and microscopy-based techniques. The phylogenetic groups of the isolates were determined. The hemolytic activity, motility, siderophore production, and serum resistance of the isolates were also evaluated. The clonal relatedness of the isolates was assessed using ERIC-PCR. RESULTS: Isolates displayed elevated resistance to cephalosporins (90-43%), sulfamethoxazole-trimethoprim (63%), and ciprofloxacin (53%). Ninety percent of the isolates were multidrug-resistant (MDR)/ extensively drug-resistant (XDR) and 67% produced ESBLs. Notably, there was an inverse correlation between biofilm formation and antimicrobial resistance, and 31%, 29%, 32%, and 8% of the isolates were strong, moderate, weak, and non-biofilm producers, respectively. Beta-hemolysis, motility, siderophore production, and serum resistance were detected in 64%, 84%, 65%, and 11% of the isolates, respectively. Siderophore production was correlated to resistance to multiple antibiotics, while hemolysis was more prevalent in susceptible isolates and associated with stronger biofilms. Phylogroups B2 and D predominated, with lower resistance and stronger biofilms in group B2. ERIC-PCR revealed considerable diversity among the isolates. CONCLUSION: This research highlights the dissemination of resistance in UPEC in Tanta, Egypt. The evident correlation between biofilm and resistance suggests a resistance cost on bacterial cells; and that isolates with lower resistance may rely on biofilms to enhance their survival. This emphasizes the importance of considering biofilm formation ability during the treatment of UPEC infections to avoid therapeutic failure and/or infection recurrence.


Subject(s)
Escherichia coli Infections , Urinary Tract Infections , Uropathogenic Escherichia coli , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Egypt , Virulence/genetics , Phylogeny , Hemolysis , Drug Resistance, Bacterial/genetics , Virulence Factors/genetics , Urinary Tract Infections/microbiology , Escherichia coli Infections/drug therapy , Hospitals , Biofilms , Siderophores/therapeutic use
8.
BMC Vet Res ; 20(1): 129, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561778

ABSTRACT

BACKGROUND: Vibriosis is one of the most serious bacterial diseases and causes high morbidity and mortality among cultured sea breams. This study was undertaken to track the surveillance of Vibrio infection and its correlation to environmental factors. A total of 115 gilthead sea breams were collected seasonally from a private earthen pond fish farm in the Shatta area of Damietta, Egypt from September 2022 to July 2023. Physicochemical parameters of water were analyzed, and heavy metal levels were measured. The fish samples were subjected to clinical, bacteriological, Enterobacterial Repetitive Intergenic Consensus (ERIC) fingerprinting, and hematoxylin and Eosin histopathological staining. RESULTS: The results revealed significant variations in the water quality parameters over different seasons, in addition to an increase in heavy metals. Naturally infected fish showed external signs and postmortem lesions that were relevant to bacterial infection. Two dominant Vibrio subspecies of bacteria were identified: V. alginolyticus (205 isolates) and V. fluvialis (87 isolates). PCR confirmed the presence of V. alginolyticus using the species-specific primer collagenase at 737 bp. The highest prevalence of V. alginolyticus was detected during the summer season (57.72%), and the lowest prevalence was observed in autumn (39.75%). The correlation analysis revealed a positive relationship between V. alginolyticus and water temperature (r = 0.69). On the other hand, V. fluvialis showed a high prevalence during the autumn season (25.30%) and the lowest prevalence during the summer season (10.56%), where it was negatively correlated with water temperatures (r =-0.03). ERIC fingerprinting showed genetic variation within the Vibrio isolates. Antimicrobial susceptibility testing revealed sensitivity to ciprofloxacin and doxycycline, and resistance to amoxicillin and erythromycin. The multiple antibiotic resistance (MAR) index values for V. alginolyticus and V. fluvialis ranged from 0.3 to 0.7, with a multi-drug resistance pattern to at least three antibiotics. Histopathological alterations in the affected tissues revealed marked hemorrhage, vascular congestion, and hemosiderosis infiltration. CONCLUSION: This study provides insights into the potential propagation of waterborne diseases and antibiotic resistance in the environment. Ensuring that the environment does not serve as a reservoir for virulent and contagious Vibrio species is a critical concern for regional aquaculture industries. Therefore, we recommend implementing environmental context-specific monitoring and surveillance tools for microbial resistance.


Subject(s)
Sea Bream , Vibrio Infections , Vibrio , Animals , Sea Bream/microbiology , Prevalence , Egypt/epidemiology , Drug Resistance, Bacterial , Vibrio/genetics , Anti-Bacterial Agents/pharmacology , Vibrio Infections/veterinary , Genetic Variation
9.
BMC Health Serv Res ; 24(1): 915, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39123198

ABSTRACT

BACKGROUND: Implementation of the World Health Organization (WHO) recommended Advanced HIV Disease screening package, remains poor in most settings with limited resources. More than 50% of newly diagnosed-HIV clients are missed on screening as a result of implementation barriers. It is important to mitigate the existing barriers and leverage enablers' inorder to maximize uptake of the advanced HIV disease screening. This study aimed to identify strategies for scaling up implementation of advanced HIV disease screening among newly HIV-diagnosed clients in pre-ART phase using a Consolidated Framework for Implementation Research-Expert Recommendation for Implementing Change (CFIR-ERIC) guiding tool. METHODS: A qualitative study was conducted at Rumphi district hospital in Malawi (August - September, 2023). Two sessions of Focus group discussions (FDGs) involving key stakeholders were facilitated to identify specific strategies following the initial study on exploration of barriers and facilitators of advanced HIV disease screening package. Participants comprised healthcare providers, purposively selected from key hospital departments. A deductive approach was used to analyze FDG transcripts where emerging themes were mapped with ERIC list of strategies. CFIR-ERIC Matching tool version 1.0, was used to generate an output of the most to least expert-endorsed Level 1 and Level 2 strategies. FINDINGS: About 25 key healthcare workers participated in FDGs. Overall, 6 Level 1 strategies (≥ 50% expert endorsement score) and 4 Level 2 strategies (≥ 20%, ≤ 49% expert endorsement score) were identified, targeting barriers associated with availability of resources, intervention complexity, access to knowledge and information, communication; and implementation leads. Most of the reported strategies were cross-cutting and aimed at enhancing clinical knowledge of the intervention (distributing training materials, educational meetings), developing stakeholders' interrelations (network weaving) as well as improving clinical workflow (environmental restructuring). Use of evaluative and iterative strategies such as monthly data collection for evaluation were also recommended as part of continuous improvement while an AHD coordinator was recommended to be formally appointed inorder to spearhead coordination of AHD screening services. CONCLUSION: Through the involvement of key stakeholders and the use of CFIR-ERIC matching tool, this study has identified cross-cutting strategies that if well implemented, can help to mitigate contextual barriers and leverage enablers for an improved delivery of AHD screening package.


Subject(s)
Focus Groups , HIV Infections , Mass Screening , Qualitative Research , Humans , HIV Infections/diagnosis , Malawi , Mass Screening/methods , Male , Female , Adult , Referral and Consultation
10.
BMC Health Serv Res ; 24(1): 393, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38549108

ABSTRACT

BACKGROUND: Evidence-based care for acute myocardial infarction (AMI) reduces morbidity and mortality. Prior studies in Tanzania identified substantial gaps in the uptake of evidence-based AMI care. Implementation science has been used to improve uptake of evidence-based AMI care in high-income settings, but interventions to improve quality of AMI care have not been studied in sub-Saharan Africa. METHODS: Purposive sampling was used to recruit participants from key stakeholder groups (patients, providers, and healthcare administrators) in northern Tanzania. Semi-structured in-depth interviews were conducted using a guide informed by the Consolidated Framework for Implementation Research (CFIR). Interview transcripts were coded to identify barriers to AMI care, using the 39 CFIR constructs. Barriers relevant to emergency department (ED) AMI care were retained, and the Expert Recommendations for Implementing Change (ERIC) tool was used to match barriers with Level 1 recommendations for targeted implementation strategies. RESULTS: Thirty key stakeholders, including 10 patients, 10 providers, and 10 healthcare administrators were enrolled. Thematic analysis identified 11 barriers to ED-based AMI care: complexity of AMI care, cost of high-quality AMI care, local hospital culture, insufficient diagnostic and therapeutic resources, inadequate provider training, limited patient knowledge of AMI, need for formal implementation leaders, need for dedicated champions, failure to provide high-quality care, poor provider-patient communication, and inefficient ED systems. Seven of these barriers had 5 strong ERIC recommendations: access new funding, identify and prepare champions, conduct educational meetings, develop educational materials, and distribute educational materials. CONCLUSIONS: Multiple barriers across several domains limit the uptake of evidence-based AMI care in northern Tanzania. The CFIR-ERIC mapping approach identified several targeted implementation strategies for addressing these barriers. A multi-component intervention is planned to improve uptake of evidence-based AMI care in Tanzania.


Subject(s)
Delivery of Health Care , Myocardial Infarction , Humans , Tanzania , Myocardial Infarction/therapy , Implementation Science , Quality of Health Care
11.
Foodborne Pathog Dis ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38502798

ABSTRACT

Members of the Bacillus cereus group are well-known opportunistic foodborne pathogens. In this study, the prevalence, hemolytic activity, antimicrobial resistance profile, virulence factor genes, genetic diversity by enterobacterial repetitive intergenic consensus (ERIC)-polymerase chain reaction (PCR) genotyping, and adhesion potential were investigated in isolates from a Tunisian dairy farm environment and raw milk. A total of 200 samples, including bedding, feces, feed, liquid manure, and raw bovine milk, were examined. Based on PCR test targeting sspE gene, 59 isolates were detected. The prevalence of B. cereus group isolates in bedding, feces, liquid manure, feed, and raw milk was 48%, 37.8%, 20%, 17.1%, and 12.5%, respectively. Out of the tested strains, 81.4% showed ß-hemolytic on blood agar plates. An antimicrobial resistance test against 11 antibiotics showed that more than 50% of the isolates were resistant to ampicillin and novobiocin, while a high sensitivity to other antibiotics tested was observed in most isolates. The distribution of enterotoxigenic genes showed that 8.5% and 67.8% of isolates carried hblABCD and nheABC, respectively. In addition, the detection rate of cytotoxin K (cytk), enterotoxin T (bceT), and ces genes was 72.9%, 64.4%, and 5.1%, respectively. ERIC-PCR fingerprinting genotype analysis allowed discriminating 40 different profiles. The adhesion potential of B. cereus group on stainless steel showed that all isolates were able to adhere at various levels, from 1.5 ± 0.3 to 5.1 ± 0.1 log colony-forming unit (CFU)/cm2 for vegetative cells and from 2.6 ± 0.4 to 5.7 ± 0.3 log CFU/cm2 for spores. An important finding of the study is useful for updating the knowledge of the contamination status of B. cereus group in Tunisia, at the dairy farm level.

12.
J Clin Nurs ; 33(9): 3329-3354, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39020519

ABSTRACT

AIM: To assess barriers and facilitators to the implementation of guidelines for the prevention of inadvertent perioperative hypothermia in orthopaedic patients. DESIGN: Systematic review. DATA SOURCES: Nine databases: PubMed, Embase, CINAHL, Cochrane CENTRAL, PsycINFO, ProQuest Dissertations and Theses, Scopus, Web of Science and Trip Clinical Evidence Database. METHODS: Primary studies published in English between January 2008 to July 2022 were screened. Study selection, quality assessment, and data extraction were completed independently by researchers. Data were extracted using the Consolidated Framework for Implementation Research and mapped to the Expert Recommendations for Implementing Change strategies. RESULTS: Eighty-seven studies were included in the review. The most frequently reported barriers and facilitators related to evidence strength, relative advantage, and cost of implementing perioperative hypothermia prevention guidelines. The top four ERIC strategies were: Identify and prepare champions; Conduct educational meetings; Assess for readiness and identify barriers and facilitators; and Inform local opinion leaders. CONCLUSION: This review provides synthesized evidence regarding barriers and facilitators to perioperative hypothermia guidelines for patients undergoing orthopaedic surgery. IMPLICATIONS FOR THE PROFESSION AND PATIENT CARE: Our work provides theory guided strategies to promote implementation of perioperative hypothermia prevention to assist nurses caring for patients undergoing orthopaedic surgery. IMPACT: Findings provide professionals caring for patients undergoing orthopaedic surgery with theory-informed strategies to improve perioperative hypothermia prevention. Reducing perioperative hypothermia will improve outcomes for patients undergoing orthopaedic surgery. REPORTING METHOD: The review is reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020. NO PATIENT OR PUBLIC CONSULTATION: Due to the study design, no patient or public consultation took place.


Subject(s)
Hypothermia , Orthopedic Procedures , Perioperative Care , Humans , Hypothermia/prevention & control , Hypothermia/nursing , Perioperative Care/methods , Perioperative Care/standards
13.
World J Microbiol Biotechnol ; 40(4): 122, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441818

ABSTRACT

This study was conducted for identifying phylogenetic relationships between 15 scab-causing Streptomyces species including S. bottropensis, S. europaeiscabiei, S. scabiei, S. stelliscabiei and, other 11 Streptomyces sp. All of the strains were originally isolated from symptomatic potatoes in Erzurum Province, The Eastern Anatolia Region of Turkey. Some morphological and biochemical properties of the strains were defined in our former research. Then, 16 s rRNA regions of them were sequenced. After the sequence data assembly, phylogenetic analyzes were performed. The phylogenetic analyses revealed that the strains are involved in the same major group and, substantially similar to reference strains. Additionally, some subgroup formations were also recorded. Moreover, Repetitive element-based PCR (Rep-PCR), Enterobacterial repetitive intergenic consensus (ERIC-PCR), and BOX-PCR fingerprinting molecular typing methods were used for as molecular typing methods. According to our knowledge, this is the first report on phylogenetic relationships of scab-causing Streptomyces species from Turkey. However, the identification of most pathogenic strains remained at the species level.


Subject(s)
Enterobacteriaceae , Streptomyces , Turkey , Phylogeny , Molecular Typing , Streptomyces/genetics
14.
Rev Infirm ; 73(299): 43-44, 2024 Mar.
Article in French | MEDLINE | ID: mdl-38485404

ABSTRACT

Éric de Rosny's decentralized approach is of particular interest today for any caregiver who has to deal with people from cultures different from his own. He demonstrates the value of traditional care as a complement to techno-scientific medicine.

15.
Microb Pathog ; 182: 106223, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37423498

ABSTRACT

A total of 557 water samples were evaluated and of these, 23 were positive for the presence of Pseudomonas aeruginosa. Approximately 91.7% of them were weak biofilm formers. Only 4 isolates showed antimicrobial resistance. All isolates presented Twitching motility, a positive result for the production of pyocyanin, alkaline protease, and hemolysins. The genotypic tests showed: lasA, (95.6%) lasB (95.6%), exoS (95.6%), exoT (91.3%), toxA (91.3%), akgO (91.3%), plcN (91.3%) aprA (86.9%), phzM (78.3%), and pvdA (60.9%). For genes encoding metallo-beta-lactamase, it was found: blaVIM (56.6%), blaSPM (4.3%), and blaSIM (47.8%). A strong association was found between the metallo-beta-lactamase producing genes, nine genes of virulence factors and the motility (r = 0.6231). The very close clonal profile suggests a probable similarity between the isolates from different cities. Thus, P. aeruginosa can be present in water supplies with variable virulence capacities and can generate a huge concern for human, animal, and environmental health.

16.
J Appl Microbiol ; 134(10)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37838475

ABSTRACT

AIMS: Evaluate methods for identification and typing of Stenotrophomonas maltophilia isolated from a pharmaceutical facility. METHODS AND RESULTS: From 270 S. maltophilia strains identified by VITEK®2, 40 were selected and submitted to MALDI TOF-MS, 16S and 23S rRNA gene analysis, enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR), and an antimicrobial susceptibility profile. 16S rRNA sequencing was able to identify 39 (97.5%) strains as Stenotrophomonas spp. and one (2.5%) as Luteimonas huabeiensis. MALDI TOF-MS identified 37 (92.5%) strains as S. maltophilia, and three (7.5%) were not identified. PCR targeting 23S rRNA yielded a positive result for 39 (97.5%) strains. However, after sequencing, two strains were identified as Stenotrophomonas rhizophila, showing false-positive results. The confirmed S. maltophilia strains (n = 37) showed 35 distinct ERIC-PCR profiles and exhibited sensitivity to minocycline and levofloxacin, and six (16.3%) showed intermediate resistance to sulfamethoxazole-trimethoprim. CONCLUSION: Matrix-assisted laser desorption lonization-time of flight mass spectrometry (MALDI-TOF MS) was a satisfactory methodology for the identification of S. maltophilia, but expansion of the database is necessary for the identification of other species. 16S rDNA sequencing showed low resolution for Stenotrophomonas species differentiation. PCR targeting 23S rRNA could not differentiate S. maltophilia from S. rhizophila. ERIC-PCR was shown to be a useful tool for the microbial source tracking of S. maltophilia.


Subject(s)
Gram-Negative Bacterial Infections , Stenotrophomonas maltophilia , Humans , Stenotrophomonas maltophilia/genetics , RNA, Ribosomal, 16S/genetics , Trimethoprim, Sulfamethoxazole Drug Combination , Minocycline , Levofloxacin , Gram-Negative Bacterial Infections/microbiology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
17.
J Clin Lab Anal ; 37(4): e24850, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36808649

ABSTRACT

BACKGROUND: Burn injuries result in disruption of the skin barrier against opportunistic infections. Pseudomonas aeruginosa is one of the main infectious agents colonizing burn wounds and making severe infections. Biofilm production and other virulence factors along with antibiotic resistance limit appropriate treatment options and time. MATERIALS AND METHODS: Wound samples were collected from hospitalized burn patients. P. aeruginosa isolates and related virulence factors identified by the standard biochemical and molecular methods. Antibiotic resistance patterns were determined by the disc diffusion method and ß-lactamase genes were detected by polymerase chain reaction (PCR) assay. To determine the genetic relatedness amongst the isolates, enterobacterial repetitive intergenic consensus (ERIC)-PCR was also performed. RESULTS: Forty P. aeruginosa isolates were identified. All of these isolates were biofilm producers. Carbapenem resistance was detected in 40% of the isolates, and blaTEM (37/5%), blaVIM (30%), and blaCTX-M (20%) were the most common ß-lactamase genes. The highest resistance was detected to cefotaxime, ceftazidime, meropenem, imipenem and piperacillin, and 16 (40%) isolates were resistant to these antibiotics. The minimum inhibitory concentrations (MIC) of colistin was lower than 2 µg/mL and no resistance was observed. Isolates were categorized to 17 MDR, 13 mono-drug resistance, and 10 susceptible isolates. High genetic diversity was also observed among the isolates (28 ERIC types) and most carbapenem-resistant isolates were classified into four main types. CONCLUSION: Antibiotic resistance, particularly carbapenem resistance was considerable among the P. aeruginosa isolates colonizing burn wounds. Combining carbapenem resistance with biofilm production and virulence factors would result in severe and difficult-to-treat infections.


Subject(s)
Burns , Pseudomonas Infections , Wound Infection , Humans , Pseudomonas aeruginosa/genetics , Virulence , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenems/pharmacology , beta-Lactamases/genetics , Burns/complications , Microbial Sensitivity Tests , Drug Resistance, Microbial , Virulence Factors/genetics , Biofilms
18.
Br Poult Sci ; 64(1): 63-73, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36102939

ABSTRACT

1. The Shiga toxin-producing Escherichia coli (STEC) is a hazardous zoonotic agent for chicken meat consumers. This study determined the serogroups and evaluated the virulence genes, antibiotic resistance, biofilm-forming profiles and genetic relationships of STEC isolates in chicken meat.2. A total of 100 samples belonging to dressed-whole chicken and different parts of the chicken (wing, breast, thigh, drumstick) were collected between September and November 2019 from different retail markets in Kayseri, Türkiye.3. Phenotypic (identification, disc diffusion test, Congo red agar and microtitre plate tests) and molecular tests (identification, serogrouping, virulence factors, biofilm, antibiotic susceptibility, 16S rRNA sequencing and enterobacterial repetitive intergenic consensus-PCR for typing of the isolates) were carried out.4. E. coli was isolated from 35% of the samples and 35% of the samples harboured at least one STEC. Among 35 STEC isolates, 3 (8.5%), 6 (17.1%), 2 (5.7%) and 3 (8.5%) were found to be positive for fliCH2, fliCH8, fliCH11, fliCH19 genes, respectively. Out of 35 STEC positive isolates, 4 (11.4%) were identified as E. coli O157, from which 2 (5.7%) were E. coli O157:H7. E. coli O157 was detected in two (10%), one (5%), one (5%) of the thigh, drumstick and whole chicken samples, respectively.5. Biofilm-forming ability was reported in 33 (94.2%) of 35 E. coli isolates, whilst the biofilm-associated genes detected among 35 STEC isolates included csgA (88.5%), fimH (88.5%), bcsA (85.7%), agn43 (14.2%) and papC (8.5%). The STEC strains showed resistance against ampicillin (88.5%) and erythromycin (88.5%), followed by tetracycline (74.2%) and gentamicin (25.7%). However, the distribution of isolates harbouring blaCMY, ere(A), tet(A) and aac(3)-IV antibiotic resistance genes was found to be 17.1%, 11.4%, 85.7% and 5.7%, respectively.6. ERIC-PCR showed that E. coli strains obtained from different parts and whole of chicken samples had genetic diversities. ERIC-PCR patterns grouped strains of 35 STEC into eight clusters designated A-H, with 73% similarity. Proper hygiene measures and staff training are essential for public health during poultry processing and in retail stores to control STEC.


Subject(s)
Escherichia coli O157 , Escherichia coli Proteins , Shiga-Toxigenic Escherichia coli , Animals , Shiga-Toxigenic Escherichia coli/genetics , Chickens/genetics , Genotype , RNA, Ribosomal, 16S , Escherichia coli Proteins/genetics , Drug Resistance, Microbial , Escherichia coli O157/genetics , Meat/microbiology , Biofilms
19.
Entropy (Basel) ; 25(6)2023 May 30.
Article in English | MEDLINE | ID: mdl-37372217

ABSTRACT

The debate about what causes the generation of form and structure in embryological development goes back to antiquity. Most recently, it has focused on the divergent views as to whether the generation of patterns and form in development is a largely self-organized process or is mainly determined by the genome, in particular, complex developmental gene regulatory processes. This paper presents and analyzes pertinent models of pattern formation and form generation in a developing organism in the past and the present, with a special emphasis on Alan Turing's 1952 reaction-diffusion model. I first draw attention to the fact that Turing's paper remained, at first, without a noticeable impact on the community of biologists because purely physical-chemical models were unable to explain embryological development and often also simple repetitive patterns. I then show that from the year 2000 and onwards, Turing's 1952 paper was increasingly cited also by biologists. The model was updated to include gene products and now seemed able to account for the generation of biological patterns, though discrepancies between models and biological reality remained. I then point out Eric Davidson's successful theory of early embryogenesis based on gene-regulatory network analysis and its mathematical modeling that not only was able to provide a mechanistic and causal explanation for gene regulatory events controlling developmental cell fate specification but, unlike reaction-diffusion models, also addressed the effects of evolution and organisms' longstanding developmental and species stability. The paper concludes with an outlook on further developments of the gene regulatory network model.

20.
BMC Microbiol ; 22(1): 247, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36221063

ABSTRACT

BACKGROUND: Proteus mirabilis is an opportunistic pathogen, causing a variety of community-acquired and nosocomial illnesses. It poses a potential threat to patients via the production of ß-lactamases, which decrease the efficacy of antimicrobial treatment and impair the management of its pathogenicity. Hence, this study was established to determine the prevalence of extended-spectrum ß-lactamases (ESBLs), AmpC, and carbapenemases of P. mirabilis isolated from various clinical specimens. RESULTS: Proteus mirabilis was identified in 20.7% (58/280) of specimens. ESBL producers were present at a rate of 51.7% (30/58). All AmpC-positive isolates (n = 20) produced ESBLs as well, so 66.7% of ESBL-producing isolates coproduced AmpC enzymes. The modified Hodge test confirmed carbapenemase production in six out of seven imipenem nonsusceptible isolates. Of these, only two (5.7%) isolates were also ESBL-and AmpC-positive. Antibiotic resistance reached the highest level for cotrimoxazole (62.1%, n = 36/58 isolates) and the lowest for imipenem (12.1%, n = 7/58 isolates). The levels of multidrug-resistant (MDR) was 41.4% among the tested isolates. The blaSHV (83.3%), blaAmpC (80%), and blaVIM-1 (50%) were the most detected genes in phenotypically confirmed ESBL-, AmpC-, and carbapenemase-producing isolates, respectively. Besides, more than a half of the tested P. mirabilis strains (53%) coproduced ESBLs and AmpC. Moreover, two isolates coproduced ESBLs and AmpC together with carbapenemases. Furthermore, dendrogram analysis showed great genetic divergence based on the 21 different enterobacterial repetitive intergenic consensus (ERIC) patterns (P1-P21) through the 34 ß-lactamase producers. ERIC analysis distinguished clonal similarities between isolates 21 and 22 in P2 and 9 and 10 in P4, which were isolated from the same clinical source and possessed similar patterns of ß-lactamase-encoding genes. CONCLUSION: Hence, there is an urgent need to monitor hospitalized patients and improve healthcare in order to reduce the incidence of infection and outbreaks of infection with antibiotic-resistant Proteus.


Subject(s)
Proteus mirabilis , Trimethoprim, Sulfamethoxazole Drug Combination , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Enterobacteriaceae/genetics , Humans , Imipenem/pharmacology , Microbial Sensitivity Tests , Prevalence , Proteus mirabilis/genetics , beta-Lactamases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL