Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.089
Filter
1.
Cell ; 171(5): 1082-1093.e13, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29033127

ABSTRACT

In human mitochondria, transcription termination events at a G-quadruplex region near the replication origin are thought to drive replication of mtDNA by generation of an RNA primer. This process is suppressed by a key regulator of mtDNA-the transcription factor TEFM. We determined the structure of an anti-termination complex in which TEFM is bound to transcribing mtRNAP. The structure reveals interactions of the dimeric pseudonuclease core of TEFM with mobile structural elements in mtRNAP and the nucleic acid components of the elongation complex (EC). Binding of TEFM to the DNA forms a downstream "sliding clamp," providing high processivity to the EC. TEFM also binds near the RNA exit channel to prevent formation of the RNA G-quadruplex structure required for termination and thus synthesis of the replication primer. Our data provide insights into target specificity of TEFM and mechanisms by which it regulates the switch between transcription and replication of mtDNA.


Subject(s)
DNA Replication , DNA, Mitochondrial/genetics , G-Quadruplexes , Mitochondrial Proteins/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Amino Acid Sequence , DNA, Mitochondrial/chemistry , Humans , Mitochondria/metabolism , Mitochondrial Proteins/chemistry , Models, Molecular , Transcription Elongation, Genetic , Transcription Factors/chemistry , Transcription Termination, Genetic
2.
Mol Cell ; 83(17): 3064-3079.e5, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37552993

ABSTRACT

CTCF is a critical regulator of genome architecture and gene expression that binds thousands of sites on chromatin. CTCF genomic localization is controlled by the recognition of a DNA sequence motif and regulated by DNA modifications. However, CTCF does not bind to all its potential sites in all cell types, raising the question of whether the underlying chromatin structure can regulate CTCF occupancy. Here, we report that R-loops facilitate CTCF binding through the formation of associated G-quadruplex (G4) structures. R-loops and G4s co-localize with CTCF at many genomic regions in mouse embryonic stem cells and promote CTCF binding to its cognate DNA motif in vitro. R-loop attenuation reduces CTCF binding in vivo. Deletion of a specific G4-forming motif in a gene reduces CTCF binding and alters gene expression. Conversely, chemical stabilization of G4s results in CTCF gains and accompanying alterations in chromatin organization, suggesting a pivotal role for G4 structures in reinforcing long-range genome interactions through CTCF.


Subject(s)
G-Quadruplexes , Animals , Mice , R-Loop Structures , CCCTC-Binding Factor/metabolism , Chromatin/genetics , Genomics , Binding Sites
3.
Immunity ; 53(5): 952-970.e11, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33098766

ABSTRACT

Precise targeting of activation-induced cytidine deaminase (AID) to immunoglobulin (Ig) loci promotes antibody class switch recombination (CSR) and somatic hypermutation (SHM), whereas AID targeting of non-Ig loci can generate oncogenic DNA lesions. Here, we examined the contribution of G-quadruplex (G4) nucleic acid structures to AID targeting in vivo. Mice bearing a mutation in Aicda (AIDG133V) that disrupts AID-G4 binding modeled the pathology of hyper-IgM syndrome patients with an orthologous mutation, lacked CSR and SHM, and had broad defects in genome-wide AIDG133V chromatin localization. Genome-wide analyses also revealed that wild-type AID localized to MHCII genes, and AID expression correlated with decreased MHCII expression in germinal center B cells and diffuse large B cell lymphoma. Our findings indicate a crucial role for G4 binding in AID targeting and suggest that AID activity may extend beyond Ig loci to regulate the expression of genes relevant to the physiology and pathology of activated B cells.


Subject(s)
Chromatin/genetics , Chromatin/metabolism , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , G-Quadruplexes , Hyper-IgM Immunodeficiency Syndrome/etiology , Hyper-IgM Immunodeficiency Syndrome/metabolism , Mutation , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Computational Biology/methods , Disease Models, Animal , Disease Susceptibility , Enzyme Activation , Fluorescent Antibody Technique , Gene Expression Profiling , Genome-Wide Association Study , Germinal Center/immunology , Germinal Center/metabolism , HLA Antigens/genetics , HLA Antigens/immunology , Humans , Hyper-IgM Immunodeficiency Syndrome/diagnosis , Immunoglobulin Class Switching/genetics , Immunoglobulin Class Switching/immunology , Immunophenotyping , Lymphocyte Activation/genetics , Lymphoma, Large B-Cell, Diffuse/etiology , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Mice , Mice, Transgenic
4.
Trends Biochem Sci ; 48(10): 894-909, 2023 10.
Article in English | MEDLINE | ID: mdl-37422364

ABSTRACT

G-quadruplexes (G4s) are peculiar nucleic acid secondary structures formed by DNA or RNA and are considered as fundamental features of the genome. Many proteins can specifically bind to G4 structures. There is increasing evidence that G4-protein interactions involve in the regulation of important cellular processes, such as DNA replication, transcription, RNA splicing, and translation. Additionally, G4-protein interactions have been demonstrated to be potential targets for disease treatment. In order to unravel the detailed regulatory mechanisms of G4-binding proteins (G4BPs), biochemical methods for detecting G4-protein interactions with high specificity and sensitivity are highly demanded. Here, we review recent advances in screening and validation of new G4BPs and highlight both their features and limitations.


Subject(s)
G-Quadruplexes , DNA/chemistry , DNA Replication , RNA/chemistry
5.
EMBO J ; 42(22): e114334, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37781931

ABSTRACT

Sequences that form DNA secondary structures, such as G-quadruplexes (G4s) and intercalated-Motifs (iMs), are abundant in the human genome and play various physiological roles. However, they can also interfere with replication and threaten genome stability. Multiple lines of evidence suggest G4s inhibit replication, but the underlying mechanism remains unclear. Moreover, evidence of how iMs affect the replisome is lacking. Here, we reconstitute replication of physiologically derived structure-forming sequences to find that a single G4 or iM arrest DNA replication. Direct single-molecule structure detection within solid-state nanopores reveals structures form as a consequence of replication. Combined genetic and biophysical characterisation establishes that structure stability and probability of structure formation are key determinants of replisome arrest. Mechanistically, replication arrest is caused by impaired synthesis, resulting in helicase-polymerase uncoupling. Significantly, iMs also induce breakage of nascent DNA. Finally, stalled forks are only rescued by a specialised helicase, Pif1, but not Rrm3, Sgs1, Chl1 or Hrq1. Altogether, we provide a mechanism for quadruplex structure formation and resolution during replication and highlight G4s and iMs as endogenous sources of replication stress.


Subject(s)
DNA , G-Quadruplexes , Humans , Genome, Human , Nucleotidyltransferases , DNA Replication
6.
Proc Natl Acad Sci U S A ; 121(7): e2320240121, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38315865

ABSTRACT

DNA structure can regulate genome function. Four-stranded DNA G-quadruplex (G4) structures have been implicated in transcriptional regulation; however, previous studies have not directly addressed the role of an individual G4 within its endogenous cellular context. Using CRISPR to genetically abrogate endogenous G4 structure folding, we directly interrogate the G4 found within the upstream regulatory region of the critical human MYC oncogene. G4 loss leads to suppression of MYC transcription from the P1 promoter that is mediated by the deposition of a de novo nucleosome alongside alterations in RNA polymerase recruitment. We also show that replacement of the endogenous MYC G4 with a different G4 structure from the KRAS oncogene restores G4 folding and MYC transcription. Moreover, we demonstrate that the MYC G4 structure itself, rather than its sequence, recruits transcription factors and histone modifiers. Overall, our work establishes that G4 structures are important features of transcriptional regulation that coordinate recruitment of key chromatin proteins and the transcriptional machinery through interactions with DNA secondary structure, rather than primary sequence.


Subject(s)
G-Quadruplexes , Proto-Oncogene Proteins c-myc , Humans , DNA/metabolism , Gene Expression Regulation , Promoter Regions, Genetic/genetics , Transcription Factors/metabolism , Proto-Oncogene Proteins c-myc/genetics
7.
Proc Natl Acad Sci U S A ; 121(4): e2315401121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38232280

ABSTRACT

Biomacromolecular folding kinetics involves fast folding events and broad timescales. Current techniques face limitations in either the required time resolution or the observation window. In this study, we developed the TeZla micromixer, integrating Tesla and Zigzag microstructures with a multistage velocity descending strategy. TeZla achieves a significant short mixing dead time (40 µs) and a wide time window covering four orders of magnitude (up to 300 ms). Using this unique micromixer, we explored the folding landscape of c-Myc G4 and its noncanonical-G4 derivatives with different loop lengths or G-vacancy sites. Our findings revealed that c-Myc can bypass folding intermediates and directly adopt a G4 structure in the cation-deficient buffer. Moreover, we found that the loop length and specific G-vacancy site could affect the folding pathway and significantly slow down the folding rates. These results were also cross-validated with real-time NMR and circular dichroism. In conclusion, TeZla represents a versatile tool for studying biomolecular folding kinetics, and our findings may ultimately contribute to the design of drugs targeting G4 structures.


Subject(s)
G-Quadruplexes , Kinetics , Physics
8.
Proc Natl Acad Sci U S A ; 121(31): e2220020121, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39042693

ABSTRACT

Expansion of intronic GGGGCC repeats in the C9orf72 gene causes amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Transcription of the expanded repeats results in the formation of RNA-containing nuclear foci and altered RNA metabolism. In addition, repeat-associated non-AUG (RAN) translation of the expanded GGGGCC-repeat sequence results in the production of highly toxic dipeptide-repeat (DPR) proteins. GGGGCC repeat-containing transcripts form G-quadruplexes, which are associated with formation of RNA foci and RAN translation. Zfp106, an RNA-binding protein essential for motor neuron survival in mice, suppresses neurotoxicity in a Drosophila model of C9orf72 ALS. Here, we show that Zfp106 inhibits formation of RNA foci and significantly reduces RAN translation caused by GGGGCC repeats in cultured mammalian cells, and we demonstrate that Zfp106 coexpression reduces the levels of DPRs in C9orf72 patient-derived cells. Further, we show that Zfp106 binds to RNA G-quadruplexes and causes a conformational change in the G-quadruplex structure formed by GGGGCC repeats. Together, these data demonstrate that Zfp106 suppresses the formation of RNA foci and DPRs caused by GGGGCC repeats and suggest that the G-quadruplex RNA-binding function of Zfp106 contributes to its suppression of GGGGCC repeat-mediated cytotoxicity.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , G-Quadruplexes , RNA-Binding Proteins , RNA , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , DNA Repeat Expansion , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Protein Binding , Protein Biosynthesis , RNA/metabolism , RNA/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics
9.
Proc Natl Acad Sci U S A ; 121(33): e2401217121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39102544

ABSTRACT

X-linked dystonia-parkinsonism (XDP) is a severe neurodegenerative disorder resulting from an inherited intronic SINE-Alu-VNTR (SVA) retrotransposon in the TAF1 gene that causes dysregulation of TAF1 transcription. The specific mechanism underlying this dysregulation remains unclear, but it is hypothesized to involve the formation of G-quadruplexes (G4) structures within the XDP-SVA that impede transcription. In this study, we show that ZNF91, a critical repressor of SVA retrotransposons, specifically binds to G4-forming DNA sequences. Further, we found that genetic deletion of ZNF91 exacerbates the molecular phenotype associated with the XDP-SVA insertion in patient cells, while no difference was observed when ZNF91 was deleted from isogenic control cells. Additionally, we observed a significant age-related reduction in ZNF91 expression in whole blood and brain, indicating a progressive loss of repression of the XDP-SVA in XDP. These findings indicate that ZNF91 plays a crucial role in controlling the molecular phenotype associated with XDP. Since ZNF91 binds to G4-forming DNA sequences in SVAs, this suggests that interactions between ZNF91 and G4-forming sequences in the XDP-SVA minimize the severity of the molecular phenotype. Our results showing that ZNF91 expression levels significantly decrease with age provide a potential explanation for the age-related progressive neurodegenerative character of XDP. Collectively, our study provides important insights into the protective role of ZNF91 in XDP pathogenesis and suggests that restoring ZNF91 expression, destabilization of G4s, or targeted repression of the XDP-SVA could be future therapeutic strategies to prevent or treat XDP.


Subject(s)
Dystonic Disorders , Genetic Diseases, X-Linked , Phenotype , Humans , Dystonic Disorders/genetics , Dystonic Disorders/metabolism , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/metabolism , G-Quadruplexes , TATA-Binding Protein Associated Factors/genetics , TATA-Binding Protein Associated Factors/metabolism , Male , Transcription Factor TFIID/genetics , Transcription Factor TFIID/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Retroelements/genetics , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism
10.
Semin Cell Dev Biol ; 157: 3-23, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38088000

ABSTRACT

TERRA is a class of telomeric repeat-containing RNAs that are expressed from telomeres in multiple organisms. TERRA transcripts play key roles in telomere maintenance and their physiological levels are essential to maintain the integrity of telomeric DNA. Indeed, deregulated TERRA expression or its altered localization can impact telomere stability by multiple mechanisms including fueling transcription-replication conflicts, promoting resection of chromosome ends, altering the telomeric chromatin, and supporting homologous recombination. Therefore, a fine-tuned control of TERRA is important to maintain the integrity of the genome. Several studies have reported that different cell lines express substantially different levels of TERRA. Most importantly, TERRA levels markedly vary among telomeres of a given cell type, indicating the existence of telomere-specific regulatory mechanisms which may help coordinate TERRA functions. TERRA molecules contain distinct subtelomeric sequences, depending on their telomere of origin, which may instruct specific post-transcriptional modifications or mediate distinct functions. In addition, all TERRA transcripts share a repetitive G-rich sequence at their 3' end which can form DNA:RNA hybrids and fold into G-quadruplex structures. Both structures are involved in TERRA functions and can critically affect telomere stability. In this review, we examine the mechanisms controlling TERRA levels and the impact of their telomere-specific regulation on telomere stability. We compare evidence obtained in different model organisms, discussing recent advances as well as controversies in the field. Furthermore, we discuss the importance of DNA:RNA hybrids and G-quadruplex structures in the context of TERRA biology and telomere maintenance.


Subject(s)
RNA, Long Noncoding , RNA, Long Noncoding/genetics , Chromatin , DNA , Telomere/genetics
11.
Trends Genet ; 39(1): 59-73, 2023 01.
Article in English | MEDLINE | ID: mdl-36404192

ABSTRACT

Although the impact of telomeres on physiology stands well established, a question remains: how do telomeres impact cellular functions at a molecular level? This is because current understanding limits the influence of telomeres to adjacent subtelomeric regions despite the wide-ranging impact of telomeres. Emerging work in two distinct aspects offers opportunities to bridge this gap. First, telomere-binding factors were found with non-telomeric functions. Second, locally induced DNA secondary structures called G-quadruplexes are notably abundant in telomeres, and gene regulatory regions genome wide. Many telomeric factors bind to G-quadruplexes for non-telomeric functions. Here we discuss a more general model of how telomeres impact the non-telomeric genome - through factors that associate at telomeres and genome wide - and influence cell-intrinsic functions, particularly aging, cancer, and pluripotency.


Subject(s)
G-Quadruplexes , Telomere , Telomere/genetics , Telomere/metabolism , DNA/metabolism , Heterochromatin
12.
RNA ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918043

ABSTRACT

Telomere replication is essential for continued proliferation of human cells, such as stem cells and cancer cells. Telomerase lengthens the telomeric G-strand, while C-strand replication is accomplished by CST-polymerase α -primase (CST-PP). Replication of both strands is inhibited by formation of G-quadruplex (GQ) structures in the G-rich single-stranded DNA. TMPyP4 and pyridostatin (PDS), which stabilize GQ structures in both DNA and RNA, inhibit telomerase in vitro, and they cause telomere shortening in human cells that has been attributed to telomerase inhibition. Here, we show that TMPyP4 and PDS also inhibit C-strand synthesis by stabilizing DNA secondary structures and thereby preventing CST-PP from binding to telomeric DNA. We also show that these small molecules inhibit CST-PP binding to a DNA sequence containing no consecutive guanine residues, which is unlikely to form GQs. Thus, while these "telomerase inhibitors" indeed inhibit telomerase, they are also robust inhibitors of telomeric C-strand synthesis. Furthermore, given their limited specificity for GQ structures, they may disrupt many other protein-nucleic acid interactions in human cells.

13.
RNA ; 30(4): 392-403, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38282417

ABSTRACT

The Mango I and II RNA aptamers have been widely used in vivo and in vitro as genetically encodable fluorogenic markers that undergo large increases in fluorescence upon binding to their ligand, TO1-Biotin. However, while studying nucleic acid sequences, it is often desirable to have trans-acting probes that induce fluorescence upon binding to a target sequence. Here, we rationally design three types of light-up RNA Mango Beacons based on a minimized Mango core that induces fluorescence upon binding to a target RNA strand. Our first design is bimolecular in nature and uses a DNA inhibition strand to prevent folding of the Mango aptamer core until binding to a target RNA. Our second design is unimolecular in nature, and features hybridization arms flanking the core that inhibit G-quadruplex folding until refolding is triggered by binding to a target RNA strand. Our third design builds upon this structure, and incorporates a self-inhibiting domain into one of the flanking arms that deliberately binds to, and precludes folding of, the aptamer core until a target is bound. This design separates G-quadruplex folding inhibition and RNA target hybridization into separate modules, enabling a more universal unimolecular beacon design. All three Mango Beacons feature high contrasts and low costs when compared to conventional molecular beacons, with excellent potential for in vitro and in vivo applications.


Subject(s)
Aptamers, Nucleotide , Mangifera , RNA/genetics , Mangifera/genetics , Mangifera/metabolism , Fluorescent Dyes/chemistry , Aptamers, Nucleotide/chemistry , Nucleic Acid Hybridization
14.
EMBO Rep ; 25(2): 876-901, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38177925

ABSTRACT

FANCJ, a DNA helicase linked to Fanconi anemia and frequently mutated in cancers, counteracts replication stress by dismantling unconventional DNA secondary structures (such as G-quadruplexes) that occur at the DNA replication fork in certain sequence contexts. However, how FANCJ is recruited to the replisome is unknown. Here, we report that FANCJ directly binds to AND-1 (the vertebrate ortholog of budding yeast Ctf4), a homo-trimeric protein adaptor that connects the CDC45/MCM2-7/GINS replicative DNA helicase with DNA polymerase α and several other factors at DNA replication forks. The interaction between FANCJ and AND-1 requires the integrity of an evolutionarily conserved Ctf4-interacting protein (CIP) box located between the FANCJ helicase motifs IV and V. Disruption of the CIP box significantly reduces FANCJ association with the replisome, causing enhanced DNA damage, decreased replication fork recovery and fork asymmetry in cells unchallenged or treated with Pyridostatin, a G-quadruplex-binder, or Mitomycin C, a DNA inter-strand cross-linking agent. Cancer-relevant FANCJ CIP box variants display reduced AND-1-binding and enhanced DNA damage, a finding that suggests their potential role in cancer predisposition.


Subject(s)
DNA , Neoplasms , Humans , DNA/chemistry , DNA Replication , Genomic Instability , Minichromosome Maintenance Proteins
15.
Mol Cell ; 70(3): 449-461.e5, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29727617

ABSTRACT

Hard-to-replicate regions of chromosomes (e.g., pericentromeres, centromeres, and telomeres) impede replication fork progression, eventually leading, in the event of replication stress, to chromosome fragility, aging, and cancer. Our knowledge of the mechanisms controlling the stability of these regions is essentially limited to telomeres, where fragility is counteracted by the shelterin proteins. Here we show that the shelterin subunit TRF2 ensures progression of the replication fork through pericentromeric heterochromatin, but not centromeric chromatin. In a process involving its N-terminal basic domain, TRF2 binds to pericentromeric Satellite III sequences during S phase, allowing the recruitment of the G-quadruplex-resolving helicase RTEL1 to facilitate fork progression. We also show that TRF2 is required for the stability of other heterochromatic regions localized throughout the genome, paving the way for future research on heterochromatic replication and its relationship with aging and cancer.


Subject(s)
DNA Replication/genetics , Genome/genetics , Heterochromatin/genetics , Telomere/genetics , Telomeric Repeat Binding Protein 2/genetics , Cell Line, Tumor , Centromere/genetics , Chromatin/genetics , DNA Helicases/genetics , G-Quadruplexes , HeLa Cells , Humans , S Phase/genetics
16.
Bioessays ; 46(3): e2300099, 2024 03.
Article in English | MEDLINE | ID: mdl-38161240

ABSTRACT

3' untranslated regions (3' UTRs) of mRNAs have many functions, including mRNA processing and transport, translational regulation, and mRNA degradation and stability. These different functions require cis-elements in 3' UTRs that can be either sequence motifs or RNA structures. Here we review the role of secondary structures in the functioning of 3' UTRs and discuss some of the trans-acting factors that interact with these secondary structures in eukaryotic organisms. We propose potential participation of 3'-UTR secondary structures in cytoplasmic polyadenylation in the model organism Drosophila melanogaster. Because the secondary structures of 3' UTRs are essential for post-transcriptional regulation of gene expression, their disruption leads to a wide range of disorders, including cancer and cardiovascular diseases. Trans-acting factors, such as STAU1 and nucleolin, which interact with 3'-UTR secondary structures of target transcripts, influence the pathogenesis of neurodegenerative diseases and tumor metastasis, suggesting that they are possible therapeutic targets.


Subject(s)
Drosophila melanogaster , Drosophila , Animals , RNA, Messenger/genetics , RNA, Messenger/metabolism , 3' Untranslated Regions/genetics , Drosophila/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Polyadenylation , Trans-Activators/genetics
17.
Bioessays ; 46(8): e2300229, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38922965

ABSTRACT

In billion years of evolution, eukaryotes preserved the chromosome ends with arrays of guanine repeats surrounded by thymines and adenines, which can form stacks of four-stranded planar structure known as G-quadruplex (G4). The rationale behind the evolutionary conservation of the G4 structure at the telomere remained elusive. Our recent study has shed light on this matter by revealing that telomere G4 undergoes oscillation between at least two distinct folded conformations. Additionally, tumor suppressor BRCA2 exhibits a unique mode of interaction with telomere G4. To elaborate, BRCA2 directly interacts with G-triplex (G3)-derived intermediates that form during the interconversion of the two different G4 states. In doing so, BRCA2 remodels the G4, facilitating the restart of stalled replication forks. In this review, we succinctly summarize the findings regarding the dynamicity of telomeric G4, emphasize its importance in maintaining telomere replication homeostasis, and the physiological consequences of losing G4 dynamicity at the telomere.


Subject(s)
BRCA2 Protein , DNA Replication , G-Quadruplexes , Telomere , Humans , Telomere/metabolism , Telomere/genetics , BRCA2 Protein/metabolism , BRCA2 Protein/genetics , Animals
18.
J Biol Chem ; 300(4): 107138, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447794

ABSTRACT

Short tandem repeats are inherently unstable during DNA replication depending on repeat length, and the expansion of the repeat length in the human genome is responsible for repeat expansion disorders. Pentanucleotide AAGGG and ACAGG repeat expansions in intron 2 of the gene encoding replication factor C subunit 1 (RFC1) cause cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) and other phenotypes of late-onset cerebellar ataxia. Herein, we reveal the structural polymorphism of the RFC1 repeats associated with CANVAS in vitro. Single-stranded AAGGG repeat DNA formed a hybrid-type G-quadruplex, whereas its RNA formed a parallel-type G-quadruplex with three layers. The RNA of the ACAGG repeat formed hairpin structure comprising C-G and G-C base pairs with A:A and GA:AG mismatched repeats. Furthermore, both pathogenic repeat RNAs formed more rigid structures than those of the nonpathogenic repeat RNAs. These findings provide novel insights into the structural polymorphism of the RFC1 repeats, which may be closely related to the disease mechanism of CANVAS.


Subject(s)
Cerebellar Ataxia , DNA Repeat Expansion , Peripheral Nervous System Diseases , Replication Protein C , Vestibular Diseases , Humans , Cerebellar Ataxia/genetics , Cerebellar Ataxia/metabolism , G-Quadruplexes , Microsatellite Repeats , Polymorphism, Genetic , Replication Protein C/genetics , Replication Protein C/metabolism , Replication Protein C/chemistry , RNA/chemistry , RNA/genetics , RNA/metabolism , Peripheral Nervous System Diseases/genetics , Peripheral Nervous System Diseases/metabolism , Vestibular Diseases/genetics , Vestibular Diseases/metabolism
19.
J Biol Chem ; 300(7): 107453, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38852886

ABSTRACT

Identification of a conserved G-quadruplex in E165R of ASFVAfrican swine fever virus (ASFV) is a double-stranded DNA arbovirus with high transmissibility and mortality rates. It has caused immense economic losses to the global pig industry. Currently, no effective vaccines or medications are to combat ASFV infection. G-quadruplex (G4) structures have attracted increasing interest because of their regulatory role in vital biological processes. In this study, we identified a conserved G-rich sequence within the E165R gene of ASFV. Subsequently, using various methods, we verified that this sequence could fold into a parallel G4. In addition, the G4-stabilizers pyridostatin and 5,10,15,20-tetrakis-(N-methyl-4-pyridyl) porphin (TMPyP4) can bind and stabilize this G4 structure, thereby inhibiting E165R gene expression, and the inhibitory effect is associated with G4 formation. Moreover, the G4 ligand pyridostatin substantially impeded ASFV proliferation in Vero cells by reducing gene copy number and viral protein expression. These compelling findings suggest that G4 structures may represent a promising and novel antiviral target against ASFV.


Subject(s)
African Swine Fever Virus , Antiviral Agents , G-Quadruplexes , African Swine Fever Virus/genetics , African Swine Fever Virus/metabolism , Animals , Chlorocebus aethiops , Vero Cells , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Swine , African Swine Fever/virology , African Swine Fever/metabolism , Porphyrins/chemistry , Porphyrins/pharmacology , Picolinic Acids/chemistry , Picolinic Acids/pharmacology , Picolinic Acids/metabolism , Virus Replication/drug effects , Viral Proteins/genetics , Viral Proteins/metabolism , Viral Proteins/chemistry , Aminoquinolines
20.
J Biol Chem ; 300(1): 105567, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38103641

ABSTRACT

The role of RNA G-quadruplexes (rG4s) in bacteria remains poorly understood. High G-quadruplex densities have been linked to organismal stress. Here we investigate rG4s in mycobacteria, which survive highly stressful conditions within the host. We show that rG4-enrichment is a unique feature exclusive to slow-growing pathogenic mycobacteria, and Mycobacterium tuberculosis (Mtb) transcripts contain an abundance of folded rG4s. Notably, the PE/PPE family of genes, unique to slow-growing pathogenic mycobacteria, contain over 50% of rG4s within Mtb transcripts. We found that RNA oligonucleotides of putative rG4s in PE/PPE genes form G-quadruplex structures in vitro, which are stabilized by the G-quadruplex ligand BRACO19. Furthermore, BRACO19 inhibits the transcription of PE/PPE genes and selectively suppresses the growth of Mtb but not Mycobacterium smegmatis or other rapidly growing bacteria. Importantly, the stabilization of rG4s inhibits the translation of Mtb PE/PPE genes (PPE56, PPE67, PPE68, PE_PGRS39, and PE_PGRS41) ectopically expressed in M. smegmatis or Escherichia coli. In addition, the rG4-mediated reduction in PE/PPE protein levels attenuates proinflammatory response upon infection of THP-1 cells. Our findings shed new light on the regulation of PE/PPE genes and highlight a pivotal role for rG4s in Mtb transcripts as regulators of post-transcriptional translational control. The rG4s in mycobacterial transcripts may represent potential drug targets for newer therapies.


Subject(s)
Bacterial Proteins , G-Quadruplexes , Gene Expression Regulation, Bacterial , Mycobacterium tuberculosis , Protein Biosynthesis , RNA, Bacterial , RNA, Messenger , Humans , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Genes, Bacterial/genetics , Inflammation/microbiology , Ligands , Mycobacterium smegmatis/drug effects , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/growth & development , Mycobacterium smegmatis/metabolism , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/metabolism , Oligoribonucleotides/genetics , Oligoribonucleotides/metabolism , RNA Stability , RNA, Bacterial/genetics , RNA, Messenger/genetics , THP-1 Cells , Transcription, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL