Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.110
Filter
1.
J Biol Chem ; 300(7): 107402, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38782207

ABSTRACT

Here, we describe pathological events potentially involved in the disease pathogenesis of Alexander disease (AxD). This is a primary genetic disorder of astrocyte caused by dominant gain-of-function mutations in the gene coding for an intermediate filament protein glial fibrillary acidic protein (GFAP). Pathologically, this disease is characterized by the upregulation of GFAP and its accumulation as Rosenthal fibers. Although the genetic basis linking GFAP mutations with Alexander disease has been firmly established, the initiating events that promote GFAP accumulation and the role of Rosenthal fibers (RFs) in the disease process remain unknown. Here, we investigate the hypothesis that disease-associated mutations promote GFAP aggregation through aberrant posttranslational modifications. We found high molecular weight GFAP species in the RFs of AxD brains, indicating abnormal GFAP crosslinking as a prominent pathological feature of this disease. In vitro and cell-based studies demonstrate that cystine-generating mutations promote GFAP crosslinking by cysteine-dependent oxidation, resulting in defective GFAP assembly and decreased filament solubility. Moreover, we found GFAP was ubiquitinated in RFs of AxD patients and rodent models, supporting this modification as a critical factor linked to GFAP aggregation. Finally, we found that arginine could increase the solubility of aggregation-prone mutant GFAP by decreasing its ubiquitination and aggregation. Our study suggests a series of pathogenic events leading to AxD, involving interplay between GFAP aggregation and abnormal modifications by GFAP ubiquitination and oxidation. More important, our findings provide a basis for investigating new strategies to treat AxD by targeting abnormal GFAP modifications.

2.
Brain ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940331

ABSTRACT

Increasing evidence shows that neuroinflammation is a possible modulator of tau spread effects on cognitive impairment in Alzheimer's disease. In this context, plasma levels of the glial fibrillary acidic protein (GFAP) have been suggested to have a robust association with Alzheimer's disease pathophysiology. This study aims to assess the correlation between plasma GFAP and Alzheimer's disease pathology, and their synergistic effect on cognitive performance and decline. A cohort of 122 memory clinic subjects with amyloid and tau positron emission tomography, MRI scans, plasma GFAP, and Mini-Mental State Examination (MMSE) was included in the study. A subsample of 94 subjects had a follow-up MMSE score at least one year after baseline. Regional and voxel-based correlations between Alzheimer's disease biomarkers and plasma GFAP were assessed. Mediation analyses were performed to evaluate the effects of plasma GFAP on the association between amyloid and tau PET, and tau PET and cognitive impairment and decline. GFAP was associated with increased tau PET ligand uptake in the lateral temporal and inferior temporal lobes in a strong left-sided pattern independently of age, gender, education, amyloid, and APOE status (ß=0.001, p < 0.01). The annual rate of MMSE change was significantly and independently correlated with both GFAP (ß=0.006, p < 0.01) and global tau SUVR (ß=4.33, p < 0.01), but not with amyloid burden. Partial mediation effects of GFAP were found on the association between amyloid and tau pathology (13.7%), and between tau pathology and cognitive decline (17.4%), but not on global cognition at baseline. Neuroinflammation measured by circulating GFAP is independently associated with tau Alzheimer's disease pathology and with cognitive decline, suggesting neuroinflammation as a potential target for future disease-modifying trials targeting tau pathology. Peretti et al. show that a circulatory marker of neuroinflammation-glial fibrillary acidic protein-is associated with tau pathology in lateral temporal and frontal regions in patients with Alzheimer's disease, independent of amyloid load. Neuroinflammation appears to modulate the association between amyloid and tau biomarkers.

3.
Eur J Immunol ; 53(8): e2250228, 2023 08.
Article in English | MEDLINE | ID: mdl-37194443

ABSTRACT

The advent of highly effective disease modifying therapy has transformed the landscape of multiple sclerosis (MS) care over the last two decades. However, there remains a critical, unmet need for sensitive and specific biomarkers to aid in diagnosis, prognosis, treatment monitoring, and the development of new interventions, particularly for people with progressive disease. This review evaluates the current data for several emerging imaging and liquid biomarkers in people with MS. MRI findings such as the central vein sign and paramagnetic rim lesions may improve MS diagnostic accuracy and evaluation of therapy efficacy in progressive disease. Serum and cerebrospinal fluid levels of several neuroglial proteins, such as neurofilament light chain and glial fibrillary acidic protein, show potential to be sensitive biomarkers of pathologic processes such as neuro-axonal injury or glial-inflammation. Additional promising biomarkers, including optical coherence tomography, cytokines and chemokines, microRNAs, and extracellular vesicles/exosomes, are also reviewed, among others. Beyond their potential integration into MS clinical care and interventional trials, several of these biomarkers may be informative of MS pathogenesis and help elucidate novel targets for treatment strategies.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/diagnostic imaging , Biomarkers , Prognosis , Magnetic Resonance Imaging/methods , Neurofilament Proteins/cerebrospinal fluid , Glial Fibrillary Acidic Protein/cerebrospinal fluid
4.
Hum Brain Mapp ; 45(1): e26566, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38224535

ABSTRACT

Both plasma biomarkers and brain network topology have shown great potential in the early diagnosis of Alzheimer's disease (AD). However, the specific associations between plasma AD biomarkers, structural network topology, and cognition across the AD continuum have yet to be fully elucidated. This retrospective study evaluated participants from the Sino Longitudinal Study of Cognitive Decline cohort between September 2009 and October 2022 with available blood samples or 3.0-T MRI brain scans. Plasma biomarker levels were measured using the Single Molecule Array platform, including ß-amyloid (Aß), phosphorylated tau181 (p-tau181), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL). The topological structure of brain white matter was assessed using network efficiency. Trend analyses were carried out to evaluate the alterations of the plasma markers and network efficiency with AD progression. Correlation and mediation analyses were conducted to further explore the relationships among plasma markers, network efficiency, and cognitive performance across the AD continuum. Among the plasma markers, GFAP emerged as the most sensitive marker (linear trend: t = 11.164, p = 3.59 × 10-24 ; quadratic trend: t = 7.708, p = 2.25 × 10-13 ; adjusted R2 = 0.475), followed by NfL (linear trend: t = 6.542, p = 2.9 × 10-10 ; quadratic trend: t = 3.896, p = 1.22 × 10-4 ; adjusted R2 = 0.330), p-tau181 (linear trend: t = 8.452, p = 1.61 × 10-15 ; quadratic trend: t = 6.316, p = 1.05 × 10-9 ; adjusted R2 = 0.346) and Aß42/Aß40 (linear trend: t = -3.257, p = 1.27 × 10-3 ; quadratic trend: t = -1.662, p = 9.76 × 10-2 ; adjusted R2 = 0.101). Local efficiency decreased in brain regions across the frontal and temporal cortex and striatum. The principal component of local efficiency within these regions was correlated with GFAP (Pearson's R = -0.61, p = 6.3 × 10-7 ), NfL (R = -0.57, p = 6.4 × 10-6 ), and p-tau181 (R = -0.48, p = 2.0 × 10-4 ). Moreover, network efficiency mediated the relationship between general cognition and GFAP (ab = -0.224, 95% confidence interval [CI] = [-0.417 to -0.029], p = .0196 for MMSE; ab = -0.198, 95% CI = [-0.42 to -0.003], p = .0438 for MOCA) or NfL (ab = -0.224, 95% CI = [-0.417 to -0.029], p = .0196 for MMSE; ab = -0.198, 95% CI = [-0.42 to -0.003], p = .0438 for MOCA). Our findings suggest that network efficiency mediates the association between plasma biomarkers, specifically GFAP and NfL, and cognitive performance in the context of AD progression, thus highlighting the potential utility of network-plasma approaches for early detection, monitoring, and intervention strategies in the management of AD.


Subject(s)
Alzheimer Disease , Connectome , White Matter , Humans , Alzheimer Disease/diagnostic imaging , White Matter/diagnostic imaging , Retrospective Studies , Amyloid beta-Peptides , Biomarkers , tau Proteins
5.
Clin Proteomics ; 21(1): 28, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580905

ABSTRACT

BACKGROUND: Certain demyelinating disorders, such as neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) exhibit serum autoantibodies against aquaporin-4 (αAQP4) and myelin oligodendrocyte glycoprotein (αMOG). The variability of the autoantibody presentation warrants further research into subtyping each case. METHODS: To elucidate the relationship between astroglial and neuronal protein concentrations in the peripheral circulation with occurrence of these autoantibodies, 86 serum samples were analyzed using immunoassays. The protein concentration of glial fibrillary acidic protein (GFAP), neurofilament light chain (NFL) and tau protein was measured in 3 groups of subcategories of suspected NMOSD: αAQP4 positive (n = 20), αMOG positive (n = 32) and αMOG/αAQP4 seronegative (n = 34). Kruskal-Wallis analysis, univariate predictor analysis, and multivariate logistic regression with ROC curves were performed. RESULTS: GFAP and NFL concentrations were significantly elevated in the αAQP4 positive group (p = 0.003; p = 0.042, respectively), and tau was elevated in the αMOG/αAQP4 seronegative group (p < 0.001). A logistic regression model to classify serostatus was able to separate αAQP4 seropositivity using GFAP + tau, and αMOG seropositivity using tau. The areas under the ROC curves (AUCs) were 0.77 and 0.72, respectively. Finally, a combined seropositivity versus negative status logistic regression model was generated, with AUC = 0.80. CONCLUSION: The 3 markers can univariately and multivariately classify with moderate accuracy the samples with seropositivity and seronegativity for αAQP4 and αMOG.

6.
Clin Proteomics ; 21(1): 41, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879494

ABSTRACT

BACKGROUND: Gliomas are aggressive malignant tumors, with poor prognosis. There is an unmet need for the discovery of new, non-invasive biomarkers for differential diagnosis, prognosis, and management of brain tumors. Our objective is to validate four plasma biomarkers - glial fibrillary acidic protein (GFAP), neurofilament light (NEFL), matrix metalloprotease 3 (MMP3) and fatty acid binding protein 4 (FABP4) - and compare them with established brain tumor molecular markers and survival. METHODS: Our cohort consisted of patients with benign and malignant brain tumors (GBM = 77, Astrocytomas = 26, Oligodendrogliomas = 23, Secondary tumors = 35, Meningiomas = 70, Schwannomas = 15, Pituitary adenomas = 15, Normal individuals = 30). For measurements, we used ultrasensitive electrochemiluminescence multiplexed immunoassays. RESULTS: High plasma GFAP concentration was associated with GBM, low GFAP and high FABP4 were associated with meningiomas, and low GFAP and low FABP4 were associated with astrocytomas and oligodendrogliomas. NEFL was associated with progression of disease. Several prognostic genetic alterations were significantly associated with all plasma biomarker levels. We found no independent associations between plasma GFAP, NEFL, FABP4 and MMP3, and overall survival. The candidate biomarkers could not reliably discriminate GBM from primary or secondary CNS lymphomas. CONCLUSIONS: GFAP, NEFL, FABP4 and MMP3 are useful for differential diagnosis and prognosis, and are associated with molecular changes in gliomas.

7.
Cytokine ; 177: 156565, 2024 05.
Article in English | MEDLINE | ID: mdl-38442443

ABSTRACT

BACKGROUND: Perinatal hypoxia triggers the release of cytokines and chemokines by neurons, astrocytes and microglia. In response to hypoxia-ischemia resting/ramified microglia proliferate and undergo activation, producing proinflammatory molecules. The brain damage extension seems to be related to both the severity of hypoxia and the balance between pro and anti-inflammatory response and can be explored with neuroimaging. AIMS: The aim of this preliminary study was to explore possible relationships between plasma levels of inflammatory cytokines/chemokines and the severe brain damage detectable by Magnetic Resonance Imaging (MRI), performed during the hospitalization. METHODS: In 10 full terms neonates with hypoxic ischemic encephalopathy (HIE) undergoing therapeutic hypothermia (TH), divided into cases and controls, according to MRI results, we measured and compared the plasma levels of CCL2/MCP-1, CXCL8, GFAP, IFN y, IL-10, IL-18, IL-6, CCL3, ENOLASE2, GM-CSF, IL-1b, IL-12p70, IL-33, TNFα, collected at four different time points during TH (24, 25-48, 49-72 h of life, and 7-10 days from birth). Five of enrolled babies had pathological brain MRI (cases) and 5 had a normal MRI examination (controls). Cytokines were measured by Magnetic Luminex Assay. MRI images were classified according to Barkovich's score. RESULTS: Mean levels of all cytokines and molecules at time T1 were not significantly different in the two groups. Comparing samples paired by day of collection, the greatest differences between cases and controls were found at times T2 and T3, during TH. At T4, levels tended to get closer again (except for IL-6, IL10 and IL18). Infants with worse MRI showed higher plasmatic GFAP levels than those with normal MRI, while their IL-18 was lower. The mean levels of CCL3MIP1alpha, GMCSF, IL1BETA overlapped throughout the observation period in both groups. CONCLUSION: In a small number of infants with worse brain MRI, we found higher levels of GFAP and of IL-10 at T4 and a trend toward low IL-18 levels than in infants with normal MRI, considered early biomarker of brain damage and a predictor of adverse outcome, respectively. The greatest, although not significant, difference between the levels of molecules was found in cases and controls at time points T2 and T3, during TH.


Subject(s)
Brain Injuries , Hypoxia-Ischemia, Brain , Infant, Newborn , Infant , Female , Pregnancy , Humans , Hypoxia-Ischemia, Brain/diagnostic imaging , Cytokines/metabolism , Interleukin-10/metabolism , Interleukin-18/metabolism , Glial Fibrillary Acidic Protein/metabolism , Interleukin-6/metabolism , Brain/metabolism , Magnetic Resonance Imaging/methods , Chemokines/metabolism , Neuroimaging
8.
Mult Scler ; 30(2): 156-165, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38145319

ABSTRACT

BACKGROUND: There are no specific, evidence-based recommendations for the management of individuals with radiologically isolated syndrome. Imaging and blood biomarkers may have prognostic utility. OBJECTIVE: To determine whether plasma neurofilament light protein (NfL) or glial fibrillary acidic protein (GFAP) levels in people with radiologically isolated syndrome correlate with imaging measures that have been shown to be associated with negative clinical outcomes in people with multiple sclerosis. METHODS: Cross-sectional analysis of people with radiologically isolated syndrome. Participants underwent magnetic resonance imaging (MRI) of the brain and cervical spinal cord, and plasma was collected. Plasma NfL and GFAP levels were measured with a single-molecule array, and correlations with MRI measures were assessed, including the number of: T1-black holes, white-matter lesions demonstrating the central vein sign, paramagnetic rim lesions, cervical spinal cord lesions and infratentorial lesions. RESULTS: Plasma GFAP levels, but not NfL levels, showed correlations with the number of T1-black holes, white matter lesions demonstrating the central vein sign and paramagnetic rim lesions (all p < 0.05). CONCLUSION: We found correlations between plasma GFAP levels and imaging measures associated with poor clinical outcomes and chronic inflammation in individuals with radiologically isolated syndrome. Plasma GFAP may have prognostic utility in clinical trials and clinical practice.


Subject(s)
Demyelinating Diseases , Multiple Sclerosis , Humans , Biomarkers , Cross-Sectional Studies , Demyelinating Diseases/diagnostic imaging , Glial Fibrillary Acidic Protein , Intermediate Filaments/pathology , Multiple Sclerosis/diagnosis , Neurofilament Proteins
9.
Am J Obstet Gynecol ; 2024 04 27.
Article in English | MEDLINE | ID: mdl-38685550

ABSTRACT

BACKGROUND: Brain injury and poor neurodevelopment have been consistently reported in infants and adults born before term. These changes occur, at least in part, prenatally and are associated with intra-amniotic inflammation. The pattern of brain changes has been partially documented by magnetic resonance imaging but not by neurosonography along with amniotic fluid brain injury biomarkers. OBJECTIVE: This study aimed to evaluate the prenatal features of brain remodeling and injury in fetuses from patients with preterm labor with intact membranes or preterm premature rupture of membranes and to investigate the potential influence of intra-amniotic inflammation as a risk mediator. STUDY DESIGN: In this prospective cohort study, fetal brain remodeling and injury were evaluated using neurosonography and amniocentesis in singleton pregnant patients with preterm labor with intact membranes or preterm premature rupture of membranes between 24.0 and 34.0 weeks of gestation, with (n=41) and without (n=54) intra-amniotic inflammation. The controls for neurosonography were outpatient pregnant patients without preterm labor or preterm premature rupture of membranes matched 2:1 by gestational age at ultrasound. Amniotic fluid controls were patients with an amniocentesis performed for indications other than preterm labor or preterm premature rupture of membranes without brain or genetic defects whose amniotic fluid was collected in our biobank for research purposes matched by gestational age at amniocentesis. The group with intra-amniotic inflammation included those with intra-amniotic infection (microbial invasion of the amniotic cavity and intra-amniotic inflammation) and those with sterile inflammation. Microbial invasion of the amniotic cavity was defined as a positive amniotic fluid culture and/or positive 16S ribosomal RNA gene. Inflammation was defined by amniotic fluid interleukin 6 concentrations of >13.4 ng/mL in preterm labor and >1.43 ng/mL in preterm premature rupture of membranes. Neurosonography included the evaluation of brain structure biometric parameters and cortical development. Neuron-specific enolase, protein S100B, and glial fibrillary acidic protein were selected as amniotic fluid brain injury biomarkers. Data were adjusted for cephalic biometrics, fetal growth percentile, fetal sex, noncephalic presentation, and preterm premature rupture of membranes at admission. RESULTS: Fetuses from mothers with preterm labor with intact membranes or preterm premature rupture of membranes showed signs of brain remodeling and injury. First, they had a smaller cerebellum. Thus, in the intra-amniotic inflammation, non-intra-amniotic inflammation, and control groups, the transcerebellar diameter measurements were 32.7 mm (interquartile range, 29.8-37.6), 35.3 mm (interquartile range, 31.2-39.6), and 35.0 mm (interquartile range, 31.3-38.3), respectively (P=.019), and the vermian height measurements were 16.9 mm (interquartile range, 15.5-19.6), 17.2 mm (interquartile range, 16.0-18.9), and 17.1 mm (interquartile range, 15.7-19.0), respectively (P=.041). Second, they presented a lower corpus callosum area (0.72 mm2 [interquartile range, 0.59-0.81], 0.71 mm2 [interquartile range, 0.63-0.82], and 0.78 mm2 [interquartile range, 0.71-0.91], respectively; P=.006). Third, they showed delayed cortical maturation (the Sylvian fissure depth-to-biparietal diameter ratios were 0.14 [interquartile range, 0.12-0.16], 0.14 [interquartile range, 0.13-0.16], and 0.16 [interquartile range, 0.15-0.17], respectively [P<.001], and the right parieto-occipital sulci depth ratios were 0.09 [interquartile range, 0.07-0.12], 0.11 [interquartile range, 0.09-0.14], and 0.11 [interquartile range, 0.09-0.14], respectively [P=.012]). Finally, regarding amniotic fluid brain injury biomarkers, fetuses from mothers with preterm labor with intact membranes or preterm premature rupture of membranes had higher concentrations of neuron-specific enolase (11,804.6 pg/mL [interquartile range, 6213.4-21,098.8], 8397.7 pg/mL [interquartile range, 3682.1-17,398.3], and 2393.7 pg/mL [interquartile range, 1717.1-3209.3], respectively; P<.001), protein S100B (2030.6 pg/mL [interquartile range, 993.0-4883.5], 1070.3 pg/mL [interquartile range, 365.1-1463.2], and 74.8 pg/mL [interquartile range, 44.7-93.7], respectively; P<.001), and glial fibrillary acidic protein (1.01 ng/mL [interquartile range, 0.54-3.88], 0.965 ng/mL [interquartile range, 0.59-2.07], and 0.24 mg/mL [interquartile range, 0.20-0.28], respectively; P=.002). CONCLUSION: Fetuses with preterm labor with intact membranes or preterm premature rupture of membranes had prenatal signs of brain remodeling and injury at the time of clinical presentation. These changes were more pronounced in fetuses with intra-amniotic inflammation.

10.
Nanotechnology ; 35(29)2024 May 01.
Article in English | MEDLINE | ID: mdl-38604130

ABSTRACT

Numerous efforts have been undertaken to mitigate the Debye screening effect of FET biosensors for achieving higher sensitivity. There are few reports that show sub-femtomolar detection of biomolecules by FET mechanisms but they either suffer from significant background noise or lack robust control. In this aspect, deformed/crumpled graphene has been recently deployed by other researchers for various biomolecule detection like DNA, COVID-19 spike proteins and immunity markers like IL-6 at sub-femtomolar levels. However, the chemical vapor deposition (CVD) approach for graphene fabrication suffers from various surface contamination while the transfer process induces structural defects. In this paper, an alternative fabrication methodology has been proposed where glass substrate has been initially texturized by wet chemical etching through the sacrificial layer of synthesized silver nanoparticles, obtained by annealing of thin silver films leading to solid state dewetting. Graphene has been subsequently deposited by thermal reduction technique from graphene oxide solution. The resulting deformed graphene structure exhibits higher sensor response towards glial fibrillary acidic protein (GFAP) detection with respect to flat graphene owing to the combined effect of reduced Debye screening and higher surface area for receptor immobilization. Additionally, another interesting aspect of the reported work lies in the biomolecule capture by dielectrophoretic (DEP) transport on the crests of the convex surfaces of graphene in a coplanar gated topology structure which has resulted in 10 aM and 28 aM detection limits of GFAP in buffer and undiluted plasma respectively, within 15 min of application of analyte. The detection limit in buffer is almost four decades lower than that documented for GFAP using biosensors which is is expected to pave way for advancing graphene FET based sensors towards ultrasensitive point-of-care diagnosis of GFAP, a biomarker for traumatic brain injury.


Subject(s)
Biosensing Techniques , Glial Fibrillary Acidic Protein , Graphite , Humans , Biosensing Techniques/methods , Electrophoresis/methods , Glass/chemistry , Glial Fibrillary Acidic Protein/analysis , Graphite/chemistry , Limit of Detection , Metal Nanoparticles/chemistry , Silver/chemistry , Transistors, Electronic
11.
Clin Chem Lab Med ; 62(4): 698-705, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-37882772

ABSTRACT

OBJECTIVES: Blood biomarkers have the potential to transform diagnosis and prognosis for multiple neurological indications. Establishing normative data is a critical benchmark in the analytical validation process. Normative data are important in children as little is known about how brain development may impact potential biomarkers. The objective of this study is to generate pediatric reference intervals (RIs) for serum neurofilament light (NfL), an axonal marker, and glial fibrillary acidic protein (GFAP), an astrocytic marker. METHODS: Serum from healthy children and adolescents aged 1 to <19 years were obtained from the Canadian Laboratory Initiative on Pediatric Reference Intervals (CALIPER) cohort. Serum NfL (n=300) and GFAP (n=316) were quantified using Simoa technology, and discrete RI (2.5th and 97.5th percentiles) and continuous RI (5th and 95th percentiles) were generated. RESULTS: While there was no association with sex, there was a statistically significant (p<0.0001) negative association between age and serum NfL (Rho -0.400) and GFAP (Rho -0.749). Two statistically significant age partitions were generated for NfL: age 1 to <10 years (lower, upper limit; 3.13, 20.6 pg/mL) and 10 to <19 years (1.82, 7.44 pg/mL). For GFAP, three statistically significant age partitions were generated: age 1 to <3.5 years (80.4, 601 pg/mL); 3.5 to <11 years (50.7, 224 pg/mL); and 11 to <19 years (26.2, 119 pg/mL). CONCLUSIONS: Taken together with the literature on adults, NfL and GFAP display U-shaped curves with high levels in infants, decreasing levels during childhood, a plateau during adolescence and early adulthood and increasing levels in seniors. These normative data are expected to inform future pediatric studies on the importance of age on neurological blood biomarkers.


Subject(s)
Intermediate Filaments , Serum , Adult , Adolescent , Humans , Child , Glial Fibrillary Acidic Protein , Prognosis , Biomarkers , Neurofilament Proteins
12.
Clin Chem Lab Med ; 62(7): 1376-1382, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38206121

ABSTRACT

OBJECTIVES: Data in literature indicate that in patients suffering a minor head injury (MHI), biomarkers serum levels could be effective to predict the absence of intracranial injury (ICI) on head CT scan. Use of these biomarkers in case of patients taking oral anticoagulants who experience MHI is very limited. We investigated biomarkers as predictors of ICI in anticoagulated patients managed in an ED. METHODS: We conducted a single-cohort, prospective, observational study in an ED. Our structured clinical pathway included a first head CT scan, 24 h observation and a second CT scan. The outcome was delayed ICI (dICI), defined as ICI on the second CT scan after a first negative CT scan. We assessed the sensitivity (SE), specificity (SP), negative predictive value (NNV) and positive predictive value (PPV) of the biomarkers S100B, NSE, GFAP, UCH-L1 and Alinity TBI in order to identify dICI. RESULTS: Our study population was of 234 patients with a negative first CT scan who underwent a second CT scan. The rate of dICI was 4.7 %. The NPV for the detection of dICI were respectively (IC 95 %): S100B 92.7 % (86.0-96.8 %,); ubiquitin C-terminal hydrolase-L1 (UCH-L1) 91.8 % (83.8-96.6 %); glial fibrillary protein (GFP) 100 % (83.2-100 %); TBI 100 % (66.4-100 %). The AUC for the detection of dICI was 0.407 for S100B, 0.563 for neuron-specific enolase (NSE), 0.510 for UCH-L1 and 0.720 for glial fibrillary acidic protein (GFAP), respectively. CONCLUSIONS: The NPV of the analyzed biomarkers were high and they potentially could limit the number of head CT scan for detecting dICI in anticoagulated patients suffering MHI. GFAP and Alinity TBI seem to be effective to rule out a dCI, but future trials are needed.


Subject(s)
Anticoagulants , Biomarkers , Craniocerebral Trauma , Glial Fibrillary Acidic Protein , Phosphopyruvate Hydratase , S100 Calcium Binding Protein beta Subunit , Tomography, X-Ray Computed , Ubiquitin Thiolesterase , Humans , S100 Calcium Binding Protein beta Subunit/blood , Prospective Studies , Ubiquitin Thiolesterase/blood , Biomarkers/blood , Glial Fibrillary Acidic Protein/blood , Male , Female , Phosphopyruvate Hydratase/blood , Aged , Craniocerebral Trauma/blood , Craniocerebral Trauma/diagnosis , Middle Aged , Anticoagulants/therapeutic use , Aged, 80 and over
13.
Brain ; 146(3): 1132-1140, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36626935

ABSTRACT

Emerging plasma biomarkers of Alzheimer's disease might be non-invasive tools to trace early Alzheimer's disease-related abnormalities such as the accumulation of amyloid-beta peptides, neurofibrillary tau tangles, glial activation and neurodegeneration. It is, however, unclear which pathological processes in the CNS can be adequately detected by peripheral measurements and whether plasma biomarkers are equally applicable in both clinical and preclinical phases. Here we aimed to explore the timing and performance of plasma biomarkers in mutation carriers compared to non-carriers in autosomal dominant Alzheimer's disease. Samples (n = 164) from mutation carriers (n = 33) and non-carriers (n = 42) in a Swedish cohort of autosomal dominant Alzheimer's disease (APP p.KM670/671NL, APP p.E693G and PSEN1 p.H163Y) were included in explorative longitudinal analyses. Plasma phosphorylated tau (P-tau181), total tau (T-tau), neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) concentrations were measured with a single-molecule array method as previously described. Plasma biomarkers were additionally correlated to Alzheimer's disease core biomarkers in the CSF. Results from the longitudinal analyses confirmed that plasma P-tau181, NfL and GFAP concentrations were higher in mutation carriers compared to non-carriers. This change was observed in the presymptomatic phase and detectable first as an increase in GFAP approximately 10 years before estimated symptom onset, followed by increased levels of P-tau181 and NfL closer to expected onset. Plasma P-tau181 levels were correlated to levels of P-tau181 and T-tau in the CSF. Altogether, plasma P-tau181, GFAP and NfL seem to be feasible biomarkers to detect different Alzheimer's disease-related pathologies already in presymptomatic individuals. Interestingly, changes in plasma GFAP concentrations were detected prior to P-tau181 and NfL. Our results suggest that plasma GFAP might reflect Alzheimer's disease pathology upstream to accumulation of tangles and neurodegeneration. The implications of these findings need additional validation, in particular because of the limited sample size.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides , Biomarkers , tau Proteins , Genes, Dominant
14.
Crit Care ; 28(1): 109, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38581002

ABSTRACT

BACKGROUND: Prehospital triage and treatment of patients with acute coma is challenging for rescue services, as the underlying pathological conditions are highly heterogenous. Recently, glial fibrillary acidic protein (GFAP) has been identified as a biomarker of intracranial hemorrhage. The aim of this prospective study was to test whether prehospital GFAP measurements on a point-of-care device have the potential to rapidly differentiate intracranial hemorrhage from other causes of acute coma. METHODS: This study was conducted at the RKH Klinikum Ludwigsburg, a tertiary care hospital in the northern vicinity of Stuttgart, Germany. Patients who were admitted to the emergency department with the prehospital diagnosis of acute coma (Glasgow Coma Scale scores between 3 and 8) were enrolled prospectively. Blood samples were collected in the prehospital phase. Plasma GFAP measurements were performed on the i-STAT Alinity® (Abbott) device (duration of analysis 15 min) shortly after hospital admission. RESULTS: 143 patients were enrolled (mean age 65 ± 20 years, 42.7% female). GFAP plasma concentrations were strongly elevated in patients with intracranial hemorrhage (n = 51) compared to all other coma etiologies (3352 pg/mL [IQR 613-10001] vs. 43 pg/mL [IQR 29-91.25], p < 0.001). When using an optimal cut-off value of 101 pg/mL, sensitivity for identifying intracranial hemorrhage was 94.1% (specificity 78.9%, positive predictive value 71.6%, negative predictive value 95.9%). In-hospital mortality risk was associated with prehospital GFAP values. CONCLUSION: Increased GFAP plasma concentrations in patients with acute coma identify intracranial hemorrhage with high diagnostic accuracy. Prehospital GFAP measurements on a point-of-care platform allow rapid stratification according to the underlying cause of coma by rescue services. This could have major impact on triage and management of these critically ill patients.


Subject(s)
Coma , Glial Fibrillary Acidic Protein , Intracranial Hemorrhages , Point-of-Care Systems , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Biomarkers , Coma/diagnosis , Emergency Service, Hospital , Glasgow Coma Scale , Glial Fibrillary Acidic Protein/analysis , Glial Fibrillary Acidic Protein/blood , Glial Fibrillary Acidic Protein/chemistry , Intracranial Hemorrhages/complications , Intracranial Hemorrhages/diagnosis , Prospective Studies
15.
Cell Biochem Funct ; 42(4): e4024, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38666564

ABSTRACT

Diabetic retinopathy (DR) is a significant complication of diabetes that often leads to blindness, impacting Müller cells, the primary retinal macroglia involved in DR pathogenesis. Reactive oxygen species (ROS) play a crucial role in the development of DR. The objective of this study was to investigate the involvement of sestrin2 in DR using a high-glucose (HG)-induced Müller cell model and assessing cell proliferation with 5-ethynyl-2-deoxyuridine (EdU) labeling. Following this, sestrin2 was upregulated in Müller cells to investigate its effects on ROS, tube formation, and inflammation both in vitro and in vivo, as well as its interaction with the nuclear factor erythroid2-related factor 2 (Nrf2) signaling pathway. The findings demonstrated a gradual increase in the number of EdU-positive cells over time, with a subsequent decrease after 72 h of exposure to high glucose levels. Additionally, the expression of sestrin2 exhibited a progressive increase over time, followed by a decrease at 72 h. The rh-sestrin2 treatment suppressed the injury of Müller cells, decreased ROS level, and inhibited the tube formation. Rh-sestrin2 treatment enhanced the expression of sestrin2, Nrf2, heme oxygenase-1 (HO-1), and glutamine synthetase (GS); however, the ML385 treatment reversed the protective effect of rh-sestrin2. Finally, we evaluated the effect of sestrin2 in a DR rat model. Sestrin2 overexpression treatment improved the pathological injury of retina and attenuated the oxidative damage and inflammatory reaction. Our results highlighted the inhibitory effect of sestrin2 in the damage of retina, thus presenting a novel therapeutic sight for DR.


Subject(s)
Diabetic Retinopathy , Reactive Oxygen Species , Sestrins , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Animals , Reactive Oxygen Species/metabolism , Rats , Male , Rats, Sprague-Dawley , NF-E2-Related Factor 2/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Glucose/metabolism , Cell Proliferation/drug effects , Ependymoglial Cells/metabolism , Ependymoglial Cells/drug effects , Ependymoglial Cells/pathology , Signal Transduction/drug effects , Peroxidases/metabolism , Cells, Cultured
16.
Neurol Sci ; 45(3): 1255-1261, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38141119

ABSTRACT

BACKGROUND: In the context of neuromyelitis optica spectrum disorder (NMOSD), there are several measures that serve as a biomarker. However, each of the methods has the intrinsic limitations. While neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) have emerged as an additional biomarker for NMOSD, a thorough investigation of their role remains incomplete. Our aim is to provide a comprehensive review of the current literature regarding NfL and GFAP as a biomarker and explore their potential utility in NMOSD. METHODS: We performed a comprehensive search using PubMed and Google Scholar to identify peer-reviewed articles investigating NfL and GFAP as a biomarker in NMOSD. RESULTS: Our search identified 13 relevant studies. NfL consistently showed promise in distinguishing NMOSD patients from healthy individuals, although it had limited specificity in distinguishing NMOSD from other demyelinating diseases. NfL offered certain advantages over GFAP, notably its ability to predict disability worsening during attacks. In contrast, GFAP provided valuable insight, particularly in distinguishing NMOSD from multiple sclerosis and identifying clinical relapses. In addition, GFAP showed predictive potential for future attacks. Some studies even suggested that NfL may serve as an indicator of treatment response in NMOSD. CONCLUSIONS: NfL and GFAP hold promise as biomarkers for NMOSD, demonstrating their usefulness in distinguishing patients from healthy individuals, assessing disease severity, and possibly reflecting treatment response. However, it is important to recognize that NfL and GFAP may, at some point, have different roles.


Subject(s)
Multiple Sclerosis , Neuromyelitis Optica , Humans , Neuromyelitis Optica/diagnosis , Glial Fibrillary Acidic Protein , Intermediate Filaments , Biomarkers , Multiple Sclerosis/diagnosis , Neurofilament Proteins
17.
Neurol Sci ; 45(3): 1031-1039, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37723371

ABSTRACT

INTRODUCTION AND AIM: NfL and GFAP are promising blood-based biomarkers for Alzheimer's disease. However, few studies have explored plasma GFAP in the prodromal and preclinical stages of AD. In our cross-sectional study, our aim is to investigate the role of these biomarkers in the earliest stages of AD. MATERIALS AND METHODS: We enrolled 40 patients (11 SCD, 21 MCI, 8 AD dementia). All patients underwent neurological and neuropsychological examinations, analysis of CSF biomarkers (Aß42, Aß42/Aß40, p-tau, t-tau), Apolipoprotein E (APOE) genotype analysis and measurement of plasma GFAP and NfL concentrations. Patients were categorized according to the ATN system as follows: normal AD biomarkers (NB), carriers of non-Alzheimer's pathology (non-AD), prodromal AD, or AD with dementia (AD-D). RESULTS: GFAP was lower in NB compared to prodromal AD (p = 0.003, d = 1.463) and AD-D (p = 0.002, d = 1.695). NfL was lower in NB patients than in AD-D (p = 0.011, d = 1.474). NfL demonstrated fair accuracy (AUC = 0.718) in differentiating between NB and prodromal AD, with a cut-off value of 11.65 pg/mL. GFAP showed excellent accuracy in differentiating NB from prodromal AD (AUC = 0.901) with a cut-off level of 198.13 pg/mL. CONCLUSIONS: GFAP exhibited excellent accuracy in distinguishing patients with normal CSF biomarkers from those with prodromal AD. Our results support the use of this peripheral biomarker for detecting AD in patients with subjective and objective cognitive decline.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/psychology , Amyloid beta-Peptides , Biomarkers , Cognitive Dysfunction/psychology , Cross-Sectional Studies , Glial Fibrillary Acidic Protein , Intermediate Filaments , tau Proteins
18.
Sleep Breath ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836924

ABSTRACT

PURPOSE: Hypoxia and sleep fragmentations that develop during sleep cause central nervous system damage in patients with obstructive sleep apnea (OSA). This study investigates the relationship between OSA severity and glial fibrillary acidic protein (GFAP) and c-Fos, which are considered indicators of neuronal damage. METHODS: The study included 84 participants (70 patients with OSA and 14 healthy individuals). All participants were evaluated with the Epworth Sleepiness Scale (ESS) before polysomnography (PSG), and serum GFAP and c-Fos values were measured after PSG. All participants were grouped according to the apnea-hypopnea index (AHI) score (control: AHI < 5, Mild OSA: 5 ≤ AHI < 15; moderate OSA: 15 ≤ AHI < 30; severe OSA: AHI ≥ 30). RESULTS: The average age of the participants was 48.5 ± 11.4 years. According to AHI scoring, 14 healthy individuals (16.7%) were in the control group, and 70 patients (83.3%) were in OSA groups. The serum GFAP levels and c-Fos levels were increased in the OSA groups (7.1 ± 5.7 ng/mL and 7.9 ± 7.5 pg/mL respectively) compared to the control group (1.3 ± 0.4 ng/mL and 2.7 ± 1.4 pg/mL p < 0.001 and p < 0.01, respectively). There was a significant positive correlation between AHI and oxygen desaturation index (ODI) values, which indicate disease severity, and serum c-Fos (r: 0.381 and r:0.931, p < 0.01, respectively) and GFAP (r: 0.793 and r:0.745, p < 0.01, respectively) values. CONCLUSION: Serum GFAP and c-Fos values, which are considered indicators of neuronal damage, can be used as a serum marker to determine disease severity in OSA.

19.
Neurocrit Care ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769253

ABSTRACT

BACKGROUND: This study investigated trajectory profiles and the association of concentrations of the biomarkers neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) in ventricular cerebrospinal fluid (CSF) with clinical outcome at 1 year and 10-15 years after a severe traumatic brain injury (sTBI). METHODS: This study included patients with sTBI at the Neurointensive Care Unit at Sahlgrenska University Hospital, Gothenburg, Sweden. The injury was regarded as severe if patients had a Glasgow Coma Scale ≤ 8 corresponding to Reaction Level Scale ≥ 4. CSF was collected from a ventricular catheter during a 2-week period. Concentrations of NfL and GFAP in CSF were analyzed with enzyme-linked immunosorbent assay. The Glasgow Outcome Scale (GOS) was used to assess the 1-year and 10-15-year outcomes. After adjustment for age and previous neurological diseases, logistic regression was performed for the outcomes GOS 1 (dead) or GOS 2-5 (alive) and GOS 1-3 (poor) or GOS 4-5 (good) versus the independent continuous variables (NfL and GFAP). RESULTS: Fifty-three patients with sTBI were investigated; forty-seven adults are presented in the article, and six children (aged 7-18 years) are described in Supplement 1. The CSF concentrations of NfL gradually increased over 2 weeks post trauma, whereas GFAP concentrations peaked on days 3-4. Increasing NfL and GFAP CSF concentrations increased the odds of GOS 1-3 outcome 1 year after trauma (odds ratio [OR] 1.73, 95% confidence interval [CI] 1.07-2.80, p = 0.025; and OR 1.61, 95% CI 1.09-2.37, p = 0.016, respectively). Similarly, increasing CSF concentrations of NfL and GFAP increased the odds for GOS 1-3 outcome 10-15 years after trauma (OR 2.04, 95% CI 1.05-3.96, p = 0.035; and OR 1.60, 95% CI 1.02-2.00, p = 0.040). CONCLUSIONS: This study shows that initial high concentrations of NfL and GFAP in CSF are both associated with higher odds for GOS 1-3 outcome 1 year and 10-15 years after an sTBI, implicating its potential usage as a prognostic marker in the future.

20.
Mikrochim Acta ; 191(6): 325, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38739279

ABSTRACT

Glial fibrillary acidic protein (GFAP) in serum has been shown as a biomarker of traumatic brain injury (TBI) which is a significant global public health concern. Accurate and rapid detection of serum GFAP is critical for TBI diagnosis. In this study, a time-resolved fluorescence immunochromatographic test strip (TRFIS) was proposed for the quantitative detection of serum GFAP. This TRFIS possessed excellent linearity ranging from 0.05 to 2.5 ng/mL for the detection of serum GFAP and displayed good linearity (Y = 598723X + 797198, R2 = 0.99), with the lowest detection limit of 16 pg/mL. This TRFIS allowed for quantitative detection of serum GFAP within 15 min and showed high specificity. The intra-batch coefficient of variation (CV) and the inter-batch CV were both < 4.0%. Additionally, this TRFIS was applied to detect GFAP in the serum samples from healthy donors and patients with cerebral hemorrhage, and the results of TRFIS could efficiently discern the patients with cerebral hemorrhage from the healthy donors. Our developed TRFIS has the characteristics of high sensitivity, high accuracy, and a wide linear range and is suitable for rapid and quantitative determination of serum GFAP on-site.


Subject(s)
Chromatography, Affinity , Glial Fibrillary Acidic Protein , Humans , Biomarkers/blood , Cerebral Hemorrhage/blood , Cerebral Hemorrhage/diagnosis , Chromatography, Affinity/methods , Glial Fibrillary Acidic Protein/blood , Limit of Detection , Reagent Strips
SELECTION OF CITATIONS
SEARCH DETAIL