Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 176
Filter
1.
J Proteome Res ; 23(1): 465-482, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38147655

ABSTRACT

Temozolomide (TMZ) is the first line of chemotherapy to treat primary brain tumors of the type glioblastoma multiforme (GBM). TMZ resistance (TMZR) is one of the main barriers to successful treatment and is a principal factor in relapse, resulting in a poor median survival of 15 months. The present paper focuses on proteomic analyses of cytosolic fractions from TMZ-resistant (TMZR) LN-18 cells. The experimental workflow includes an easy, cost-effective, and reproducible method to isolate subcellular fraction of cytosolic (CYTO) proteins, mitochondria, and plasma membrane proteins for proteomic studies. For this study, enriched cytoplasmic fractions were analyzed in replicates by nanoflow liquid chromatography tandem high-resolution mass spectrometry (nLC-MS/MS), and proteins identified were quantified using a label-free approach (LFQ). Statistical analysis of control (CTRL) and temozolomide-resistant (TMZR) proteomes revealed proteins that appear to be differentially controlled in the cytoplasm. The functions of these proteins are discussed as well as their roles in other cancers and TMZ resistance in GBM. Key proteins are also described through biological processes related to gene ontology (GO), molecular functions, and cellular components. For protein-protein interactions (PPI), network and pathway involvement analyses have been performed, highlighting the roles of key proteins in the TMZ resistance phenotypes. This study provides a detailed insight into methods of subcellular fractionation for proteomic analysis of TMZ-resistant GBM cells and the potential to apply this approach to future large-scale studies. Several key proteins, protein-protein interactions (PPI), and pathways have been identified, underlying the TMZ resistance phenotype and highlighting the proteins' biological functions.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/pathology , Proteomics , Tandem Mass Spectrometry , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Cell Line, Tumor , Neoplasm Recurrence, Local , Cytoplasm/metabolism , Drug Resistance, Neoplasm , Brain Neoplasms/genetics
2.
Cancer Sci ; 115(8): 2686-2700, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38877783

ABSTRACT

Application of physical forces, ranging from ultrasound to electric fields, is recommended in various clinical practice guidelines, including those for treating cancers and bone fractures. However, the mechanistic details of such treatments are often inadequately understood, primarily due to the absence of comprehensive study models. In this study, we demonstrate that an alternating magnetic field (AMF) inherently possesses a direct anti-cancer effect by enhancing oxidative phosphorylation (OXPHOS) and thereby inducing metabolic reprogramming. We observed that the proliferation of human glioblastoma multiforme (GBM) cells (U87 and LN229) was inhibited upon exposure to AMF within a specific narrow frequency range, including around 227 kHz. In contrast, this exposure did not affect normal human astrocytes (NHA). Additionally, in mouse models implanted with human GBM cells in the brain, daily exposure to AMF for 30 min over 21 days significantly suppressed tumor growth and prolonged overall survival. This effect was associated with heightened reactive oxygen species (ROS) production and increased manganese superoxide dismutase (MnSOD) expression. The anti-cancer efficacy of AMF was diminished by either a mitochondrial complex IV inhibitor or a ROS scavenger. Along with these observations, there was a decrease in the extracellular acidification rate (ECAR) and an increase in the oxygen consumption rate (OCR). This suggests that AMF-induced metabolic reprogramming occurs in GBM cells but not in normal cells. Our results suggest that AMF exposure may offer a straightforward strategy to inhibit cancer cell growth by leveraging oxidative stress through metabolic reprogramming.


Subject(s)
Brain Neoplasms , Cell Proliferation , Glioblastoma , Magnetic Field Therapy , Metabolic Reprogramming , Oxidative Phosphorylation , Reactive Oxygen Species , Animals , Humans , Mice , Astrocytes/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Glioblastoma/metabolism , Glioblastoma/pathology , Magnetic Field Therapy/methods , Magnetic Fields , Metabolic Reprogramming/radiation effects , Mitochondria/metabolism , Oxygen Consumption , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , Xenograft Model Antitumor Assays
3.
BMC Cancer ; 24(1): 140, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287266

ABSTRACT

Glioblastoma multiforme (GBM) is the most aggressive brain cancer with a poor prognosis. Therefore, the correlative molecular markers and molecular mechanisms should be explored to assess the occurrence and treatment of glioma.WB and qPCR assays were used to detect the expression of CXCL5 in human GBM tissues. The relationship between CXCL5 expression and clinicopathological features was evaluated using logistic regression analysis, Wilcoxon symbolic rank test, and Kruskal-Wallis test. Univariate, multivariate Cox regression and Kaplan-Meier methods were used to assess CXCL5 and other prognostic factors of GBM. Gene set enrichment analysis (GSEA) was used to identify pathways associated with CXCL5. The correlation between CXCL5 and tumor immunoinfiltration was investigated using single sample gene set enrichment analysis (ssGSEA) of TCGA data. Cell experiments and mouse subcutaneous transplanted tumor models were used to evaluate the role of CXCL5 in GBM. WB, qPCR, immunofluorescence, and immunohistochemical assays showed that CXCL5 expression was increased in human GBM tissues. Furthermore, high CXCL5 expression was closely related to poor disease-specific survival and overall survival of GBM patients. The ssGSEA suggested that CXCL5 is closely related to the cell cycle and immune response through PPAR signaling pathway. GSEA also showed that CXCL5 expression was positively correlated with macrophage cell infiltration level and negatively correlated with cytotoxic cell infiltration level. CXCL5 may be associated with the prognosis and immunoinfiltration of GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Animals , Mice , Humans , Glioblastoma/pathology , Prognosis , Neoplastic Processes , Brain Neoplasms/metabolism , Signal Transduction , Chemokine CXCL5/genetics
4.
J Adv Nurs ; 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39278630

ABSTRACT

AIM: To evaluate whether Preparedness Assessment for the Transition Home (PATH), a validated instrument assessing gaps in caregiver commitment and capacity to care for a patient with a disabling condition, would be helpful to identify gaps in preparing primary caregivers of patients with glioblastoma multiforme (GBM). DESIGN: A descriptive survey design with quantitative and qualitative data. METHODS: Former primary caregivers of patients with GBM were invited to complete a 17-question online survey during February and March 2023. Former caregivers, each having completed their caregiver journeys, are able to offer a unique perspective across the illness trajectory. Participants reviewed a copy of the PATH instrument and (a) responded to questions rating PATH helpfulness at each stage of the illness trajectory and (b) provided open-ended feedback on the instrument. RESULTS: One hundred seventeen of the 124 participants reported the PATH instrument would be helpful across all stages of the illness trajectory. While there were no statistically significant differences across the illness phases, response trends indicated using the PATH instrument earlier in the illness trajectory would have been more helpful to them as caregivers. Qualitative thematic analysis feedback indicated the most significant gap caregivers faced was education on the effects of the illness and treatment. CONCLUSION: It is vitally important to prepare and support caregivers. A validated instrument can identify unmet needs and inform care decisions. IMPLICATIONS FOR THE PROFESSION: Patient discharge plans should be guided by the needs and preferences of patients and caregivers. Identifying gaps in education and preparedness early in the illness trajectory may inform the care team of unmet needs, allowing them to tailor resources and support to improve outcomes for patients with GBM and their caregivers. IMPACT: Patient discharge plans should be guided by the needs and preferences of patients and caregivers. Identifying gaps in education and preparedness early in the illness trajectory may inform the care team of unmet needs, allowing them to tailor resources and support to improve outcomes for patients with GBM and their caregivers. PATH has the potential to inform healthcare professionals to develop customised care plans including education, resources and support for caregivers and patients with life-threatening illness. REPORTING METHOD: Study adheres to the STROBE reporting method. PATIENT OR PUBLIC CONTRIBUTION: Prior to deploying the survey to study participants, in addition to testing by study collaborators (authors), the survey was tested and feedback was received from graduate students and from administrators of the private Facebook group where the survey was promoted to study participants.

5.
Int J Mol Sci ; 25(18)2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39337267

ABSTRACT

Like most tumors, glioblastoma multiforme (GBM), the deadliest brain tumor in human adulthood, releases extracellular vesicles (EVs). Their content, reflecting that of the tumor of origin, can be donated to nearby and distant cells which, by acquiring it, become more aggressive. Therefore, the study of EV-transported molecules has become very important. Particular attention has been paid to EV proteins to uncover new GBM biomarkers and potential druggable targets. Proteomic studies have mainly been performed by "bottom-up" mass spectrometry (MS) analysis of EVs isolated by different procedures from conditioned media of cultured GBM cells and biological fluids from GBM patients. Although a great number of dysregulated proteins have been identified, the translation of these findings into clinics remains elusive, probably due to multiple factors, including the lack of standardized procedures for isolation/characterization of EVs and analysis of their proteome. Thus, it is time to change research strategies by adopting, in addition to harmonized EV selection techniques, different MS methods aimed at identifying selected tumoral protein mutations and/or isoforms due to post-translational modifications, which more deeply influence the tumor behavior. Hopefully, these data integrated with those from other "omics" disciplines will lead to the discovery of druggable pathways for novel GBM therapies.


Subject(s)
Biomarkers, Tumor , Brain Neoplasms , Extracellular Vesicles , Glioblastoma , Proteomics , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Extracellular Vesicles/metabolism , Proteomics/methods , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Biomarkers, Tumor/metabolism , Proteome/metabolism , Mass Spectrometry/methods
6.
J Integr Neurosci ; 22(3): 73, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37258452

ABSTRACT

Lesions of the central nervous system (CNS) can present with numerous and overlapping radiographical and clinical features that make diagnosis difficult based exclusively on history, physical examination, and traditional imaging modalities. Given that there are significant differences in optimal treatment protocols for these various CNS lesions, rapid and non-invasive diagnosis could lead to improved patient care. Recently, various advanced magnetic resonance imaging (MRI) techniques showed promising methods to differentiate between various tumors and lesions that conventional MRI cannot define by comparing their physiologic characteristics, such as vascularity, permeability, oxygenation, and metabolism. These advanced MRI techniques include dynamic susceptibility contrast MRI (DSC), diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE) MRI, Golden-Angle Radial Sparse Parallel imaging (GRASP), Blood oxygen level-dependent functional MRI (BOLD fMRI), and arterial spin labeling (ASL) MRI. In this article, a narrative review is used to discuss the current trends in advanced MRI techniques and potential future applications in identifying difficult-to-distinguish CNS lesions. Advanced MRI techniques were found to be promising non-invasive modalities to differentiate between paraganglioma, schwannoma, and meningioma. They are also considered promising methods to differentiate gliomas from lymphoma, post-radiation changes, pseudoprogression, demyelination, and metastasis. Advanced MRI techniques allow clinicians to take advantage of intrinsic biological differences in CNS lesions to better identify the etiology of these lesions, potentially leading to more effective patient care and a decrease in unnecessary invasive procedures. More clinical studies with larger sample sizes should be encouraged to assess the significance of each advanced MRI technique and the specificity and sensitivity of each radiologic parameter.


Subject(s)
Brain Neoplasms , Central Nervous System Neoplasms , Glioma , Meningeal Neoplasms , Humans , Brain Neoplasms/metabolism , Magnetic Resonance Imaging/methods , Glioma/metabolism
7.
Int J Mol Sci ; 24(14)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37511047

ABSTRACT

Glioblastoma multiforme (GBM) has high mortality and recurrence rates. Malignancy resilience is ascribed to Glioblastoma Stem Cells (GSCs), which are resistant to Temozolomide (TMZ), the gold standard for GBM post-surgical treatment. However, Nitric Oxide (NO) has demonstrated anti-cancer efficacy in GBM cells, but its potential impact on GSCs remains unexplored. Accordingly, we investigated the effects of NO, both alone and in combination with TMZ, on patient-derived GSCs. Experimentally selected concentrations of diethylenetriamine/NO adduct and TMZ were used through a time course up to 21 days of treatment, to evaluate GSC proliferation and death, functional recovery, and apoptosis. Immunofluorescence and Western blot analyses revealed treatment-induced effects in cell cycle and DNA damage occurrence and repair. Our results showed that NO impairs self-renewal, disrupts cell-cycle progression, and expands the quiescent cells' population. Consistently, NO triggered a significant but tolerated level of DNA damage, but not apoptosis. Interestingly, NO/TMZ cotreatment further inhibited cell cycle progression, augmented G0 cells, induced cell death, but also enhanced DNA damage repair activity. These findings suggest that, although NO administration does not eliminate GSCs, it stunts their proliferation, and makes cells susceptible to TMZ. The resulting cytostatic effect may potentially allow long-term control over the GSCs' subpopulation.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Temozolomide/therapeutic use , Glioblastoma/metabolism , Nitric Oxide/metabolism , Dacarbazine/therapeutic use , Cell Line, Tumor , Cell Proliferation , Cell Cycle , Stem Cells/metabolism , Brain Neoplasms/metabolism , Drug Resistance, Neoplasm , Neoplastic Stem Cells/metabolism , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use
8.
Int J Mol Sci ; 24(9)2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37175410

ABSTRACT

Glioblastoma (GBM) is a malignant brain tumor, commonly treated with temozolomide (TMZ). Upregulation of A disintegrin and metalloproteinases (ADAMs) is correlated to malignancy; however, whether ADAMs modulate TMZ sensitivity in GBM cells remains unclear. To explore the role of ADAMs in TMZ resistance, we analyzed changes in ADAM expression following TMZ treatment using RNA sequencing and noted that ADAM17 was markedly upregulated. Hence, we established TMZ-resistant cell lines to elucidate the role of ADAM17. Furthermore, we evaluated the impact of ADAM17 knockdown on TMZ sensitivity in vitro and in vivo. Moreover, we predicted microRNAs upstream of ADAM17 and transfected miRNA mimics into cells to verify their effects on TMZ sensitivity. Additionally, the clinical significance of ADAM17 and miRNAs in GBM was analyzed. ADAM17 was upregulated in GBM cells under serum starvation and TMZ treatment and was overexpressed in TMZ-resistant cells. In in vitro and in vivo models, ADAM17 knockdown conferred greater TMZ sensitivity. miR-145 overexpression suppressed ADAM17 and sensitized cells to TMZ. ADAM17 upregulation and miR-145 downregulation in clinical specimens are associated with disease progression and poor prognosis. Thus, miR-145 enhances TMZ sensitivity by inhibiting ADAM17. These findings offer insights into the development of therapeutic approaches to overcome TMZ resistance.


Subject(s)
Brain Neoplasms , Glioblastoma , MicroRNAs , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/pathology , Cell Line, Tumor , MicroRNAs/metabolism , Down-Regulation , Brain Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , ADAM17 Protein/genetics , ADAM17 Protein/metabolism
9.
Medicina (Kaunas) ; 59(2)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36837531

ABSTRACT

The coexistence of glioblastoma multiforme (GBM) and arteriovenous malformation (AVM) is rarely reported in the literature. According to the present literature, these GBM or glioma-related vascular malformations may present simultaneously in distinct regions of the brain or occur in the same area but at different times. So far, these distinct hypervascular glioblastomas have been described but are not classified as a separate pathological entities. Considering their heterogeneity and complexity, all the above mentioned cases remain challenging in diagnosis and therapeutic modality. Likewise, there is a paucity of data surrounding the simultaneous presentation of GBM with intracranial aneurysms. In the literature, the independent concurrence of these three intracranial lesions has never been reported. In this article, we present a case who suffered from intermittent headaches and dizziness initially and further radiographic examination revealed an internal carotid artery (ICA) aneurysm that occurred in the patient with coexisting GBM and AVM. Surgical intervention for tumor and AVM removal was performed smoothly. This patient underwent endovascular coiling for the ICA aneurysm 4 months postoperatively. In addition, we also review the current literature relating to this rare combination of medical conditions.


Subject(s)
Glioblastoma , Intracranial Aneurysm , Intracranial Arteriovenous Malformations , Humans , Intracranial Arteriovenous Malformations/complications , Intracranial Arteriovenous Malformations/diagnosis , Intracranial Arteriovenous Malformations/surgery , Triploidy , Brain
10.
Magn Reson Med ; 87(3): 1561-1573, 2022 03.
Article in English | MEDLINE | ID: mdl-34708417

ABSTRACT

PURPOSE: To develop a deep-learning model that leverages the spatial and temporal information from dynamic contrast-enhanced magnetic resonance (DCE MR) brain imaging in order to automatically estimate a vascular function (VF) for quantitative pharmacokinetic (PK) modeling. METHODS: Patients with glioblastoma multiforme were scanned post-resection approximately every 2 months using a high spatial and temporal resolution DCE MR imaging sequence ( ≈5 s and ≈2 cm3 ). A region over the transverse sinus was manually drawn in the dynamic T1-weighted images to provide a ground truth VF. The manual regions and their resulting VF curves were used to train a deep-learning model based on a 3D U-net architecture. The model concurrently utilized the spatial and temporal information in DCE MR images to predict the VF. In order to analyze the contribution of the spatial and temporal terms, different weighted combinations were examined. The manual and deep-learning predicted regions and VF curves were compared. RESULTS: Forty-three patients were enrolled in this study and 155 DCE MR scans were processed. The 3D U-net was trained using a loss function that combined the spatial and temporal information with different weightings. The best VF curves were obtained when both spatial and temporal information were considered. The predicted VF curve was similar to the manual ground truth VF curves. CONCLUSION: The use of spatial and temporal information improved VF curve prediction relative to when only the spatial information is used. The method generalized well for unseen data and can be used to automatically estimate a VF curve suitable for quantitative PK modeling. This method allows for a more efficient clinical pipeline and may improve automation of permeability mapping.


Subject(s)
Glioblastoma , Magnetic Resonance Imaging , Automation , Brain/diagnostic imaging , Contrast Media , Glioblastoma/diagnostic imaging , Humans , Magnetic Resonance Spectroscopy
11.
J Neurooncol ; 156(3): 579-588, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34981301

ABSTRACT

BACKGROUND: Quantitative image analysis using pre-operative magnetic resonance imaging (MRI) has been able to predict survival in patients with glioblastoma (GBM). The study explored the role of postoperative radiation (RT) planning MRI-based radiomics to predict the outcomes, with features extracted from the gross tumor volume (GTV) and clinical target volume (CTV). METHODS: Patients with IDH-wildtype GBM treated with adjuvant RT having MRI as a part of RT planning process were included in the study. 546 features were extracted from each GTV and CTV. A LASSO Cox model was applied, and internal validation was performed using leave-one-out cross-validation with overall survival as endpoint. Cross-validated time-dependent area under curve (AUC) was constructed to test the efficacy of the radiomics model, and clinical features were used to generate a combined model. Analysis was done for the entire group and in individual surgical groups-gross total excision (GTR), subtotal resection (STR), and biopsy. RESULTS: 235 patients were included in the study with 57, 118, and 60 in the GTR, STR, and biopsy subgroup, respectively. Using the radiomics model, binary risk groups were feasible in the entire cohort (p < 0.01) and biopsy group (p = 0.04), but not in the other two surgical groups individually. The integrated AUC (iAUC) was 0.613 for radiomics-based classification in the biopsy subgroup, which improved to 0.632 with the inclusion of clinical features. CONCLUSION: Imaging features extracted from the GTV and CTV regions can lead to risk-stratification of GBM undergoing biopsy, while the utility in other individual subgroups needs to be further explored.


Subject(s)
Brain Neoplasms , Glioblastoma , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Glioblastoma/diagnostic imaging , Glioblastoma/radiotherapy , Humans , Magnetic Resonance Imaging , Predictive Value of Tests , Radiotherapy, Adjuvant , Survival Analysis
12.
J Nanobiotechnology ; 20(1): 14, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34983539

ABSTRACT

BACKGROUND: The outcome of phototherapy, including photothermal therapy (PTT) and photodynamic therapy (PDT) for glioblastoma multiforme (GBM), is disappointing due to insufficient photoconversion efficiency and low targeting rate. The development of phototherapeutic agents that target GBM and generate high heat and potent ROS is important to overcome the weak anti-tumor effect. RESULTS: In this study, nanoconjugates composed of gold nanoparticles (AuNPs) and photosensitizers (PSs) were prepared by disulfide conjugation between Chlorin e6 (Ce6) and glutathione coated-AuNP. The maximum heat dissipation of the nanoconjugate was 64.5 ± 4.5 °C. Moreover, the proximate conjugation of Ce6 on the AuNP surface resulted in plasmonic crossover between Ce6 and AuNP. This improves the intrinsic ROS generating capability of Ce6 by 1.6-fold compared to that of unmodified-Ce6. This process is called generation of metal-enhanced reactive oxygen species (MERos). PEGylated-lactoferrin (Lf-PEG) was incorporated onto the AuNP surface for both oral absorption and GBM targeting of the nanoconjugate (denoted as Ce6-AuNP-Lf). In this study, we explored the mechanism by which Ce6-AuNP-Lf interacts with LfR at the intestinal and blood brain barrier (BBB) and penetrates these barriers with high efficiency. In the orthotopic GBM mice model, the oral bioavailability and GBM targeting amount of Ce6-AuNP-Lf significantly improved to 7.3 ± 1.2% and 11.8 ± 2.1 µg/kg, respectively. The order of laser irradiation, such as applying PDT first and then PTT, was significant for the treatment outcome due to the plasmonic advantages provided by AuNPs to enhance ROS generation capability. As a result, GBM-phototherapy after oral administration of Ce6-AuNP-Lf exhibited an outstanding anti-tumor effect due to GBM targeting and enhanced photoconversion efficiency. CONCLUSIONS: The designed nanoconjugates greatly improved ROS generation by plasmonic crossover between AuNPs and Ce6, enabling sufficient PDT for GBM as well as PTT. In addition, efficient GBM targeting through oral administration was possible by conjugating Lf to the nanoconjugate. These results suggest that Ce6-AuNP-Lf is a potent GBM phototherapeutic nanoconjugate that can be orally administered.


Subject(s)
Brain Neoplasms/therapy , Metal Nanoparticles , Nanoconjugates , Photochemotherapy/methods , Photosensitizing Agents , Animals , Chlorophyllides , Gold , Humans , Male , Mice , Mice, Nude , Rats , Rats, Sprague-Dawley , Theranostic Nanomedicine
13.
Int J Mol Sci ; 23(2)2022 Jan 09.
Article in English | MEDLINE | ID: mdl-35054889

ABSTRACT

Glioblastoma multiforme (GBM) is a particularly malignant primary brain tumor. Despite enormous advances in the surgical treatment of cancer, radio- and chemotherapy, the average survival of patients suffering from this cancer does not usually exceed several months. For obvious ethical reasons, the search and testing of the new drugs and therapies of GBM cannot be carried out on humans, and for this purpose, animal models of the disease are most often used. However, to assess the efficacy and safety of the therapy basing on these models, a deep knowledge of the pathological changes associated with tumor development in the animal brain is necessary. Therefore, as part of our study, the synchrotron radiation-based X-ray fluorescence microscopy was applied for multi-elemental micro-imaging of the rat brain in which glioblastoma develops. Elemental changes occurring in animals after the implantation of two human glioma cell lines as well as the cells taken directly from a patient suffering from GBM were compared. Both the extent and intensity of elemental changes strongly correlated with the regions of glioma growth. The obtained results showed that the observation of elemental anomalies accompanying tumor development within an animal's brain might facilitate our understanding of the pathogenesis and progress of GBM and also determine potential biomarkers of its extension. The tumors appearing in a rat's brain were characterized by an increased accumulation of Fe and Se, whilst the tissue directly surrounding the tumor presented a higher accumulation of Cu. Furthermore, the results of the study allow us to consider Se as a potential elemental marker of GBM progression.


Subject(s)
Brain Neoplasms/metabolism , Brain/metabolism , Glioblastoma/metabolism , Animals , Brain/pathology , Brain Neoplasms/diagnosis , Brain Neoplasms/pathology , Cell Line, Tumor , Disease Models, Animal , Glioblastoma/diagnosis , Glioblastoma/pathology , Humans , Male , Microscopy, Fluorescence , Rats
14.
Electrophoresis ; 42(19): 1965-1973, 2021 10.
Article in English | MEDLINE | ID: mdl-34272893

ABSTRACT

Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor in the central nervous system. GBM patients have a very low 5-year survival rate and most of them died within 1 year. Conventional histopathological examination for GBM diagnosis is complicated and time-consuming, which always blocks the development of more precise and effective treatments in resection operation. Rapid evaporative ionization mass spectrometry (REIMS) is a MS technique in clinical medicine research, which combines the common diathermy device with MS to acquire the lipid profiles of tissue specimens for lipidomic analysis and real-time tumor diagnosis. In this study, the REIMS method employing bipolar forceps was optimized and validated for high-throughput lipidomics and diagnosis of GBM for the first time. Total 42 lipid metabolites were tentatively identified and 12 out of 13 lipid biomarkers showed higher intensities in GBM, which were consistent with previous studies. After this, a statistic model was built with the lipidomic data for the diagnosis of GBM tumor in real-time. The diagnostic accuracy (94.74%), sensitivity (95.38%), and specificity (93.33%) were evaluated with histopathology validated brain tissue specimens that were not used in the training set. The proposed REIMS method for the lipidomic-analysis and diagnosis of GBM tumor provides a new direction for MS-based lipidomics and precision medicine and might be used to guide surgeons to precisely resect the GBM tissue and keep the normal brain tissue in operation.


Subject(s)
Glioblastoma , Lipidomics , Glioblastoma/diagnosis , Humans , Lipids , Mass Spectrometry , Models, Statistical
15.
BMC Cancer ; 21(1): 720, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34154559

ABSTRACT

BACKGROUND: The optimal treatment volume for Glioblastoma multiforme (GBM) is still a subject of debate worldwide. The current study was aimed to determine the distances between recurring tumors and the edge of primary lesions, and thereby provide evidence for accurate target area delineation. METHODS: Between October 2007 and March 2019, 68 recurrent patients with GBM were included in our study. We measured the distance from the initial tumor to the recurrent lesion of GBM patients by expanding the initial gross tumor volume (GTV) to overlap the center of recurrent lesion, with the help of the Pinnacle Treatment Planning System. RESULTS: Recurrences were local in 47(69.1%) patients, distant in 12(17.7%) patients, and both in 9(13.2%) patients. Factors significantly influencing local recurrence were age (P = 0.049), sex (P = 0.049), and the size of peritumoral edema (P = 0.00). A total number of 91 recurrent tumors were analyzed. All local recurrences occurred within 2 cm and 94.8% (55/58) occurred within 1 cm of the original GTV based on T1 enhanced imaging. All local recurrences occurred within 1.5 cm and 98.3%(57/58) occurred within 0.5 cm of the original GTV based on T2-FLAIR imaging. 90.9% (30/33) and 81.8% (27/33) distant recurrences occurred >3 cm of T1 enhanced and T2-Flair primary tumor margins, respectively. CONCLUSIONS: The 1 cm margin from T1 enhanced lesions and 0.5 cm margin from T2-Flair abnormal lesions could cover 94.8 and 98.3% local recurrences respectively, which deserves further prospective study as a limited but effective target area.


Subject(s)
Glioblastoma/radiotherapy , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Neoplasm Recurrence, Local , Young Adult
16.
J Neurooncol ; 155(2): 173-180, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34652553

ABSTRACT

PURPOSE: Up to 30% of patients with glioblastoma (GBM) develop venous thromboembolism (VTE) over the course of the disease. Although not as high, the risk for VTE is also increased in patients with meningioma. Direct measurement of peak thrombin generation (TG) allows quantitative assessment of systemic coagulation activation in patients with GBM and meningioma. Our aim was to determine the extent of systemic coagulation activation induced by brain tumors, to measure the shift between pre- and post-operative peak TG in patients with GBM, and to assess the relationship between pre-surgical peak TG and pre-operative brain tumor volume on imaging. METHODS: Pre- and post-surgical plasma samples were obtained from successive patients with GBM and once from patients with meningioma and healthy age- and sex-matched blood donor controls. TG was measured using the calibrated automated thrombogram (CAT) assay, and tumor volumes were measured in pre-surgical MRI scans. RESULTS: Pre-surgical peak TG was higher in patients with GBM than in controls (288.6 ± 54.1 nM vs 187.1 ± 41.7 nM, respectively, P < 0.001), and, in the nine patients with GBM and paired data available, peak TG was significantly reduced after surgery (323 ± 38 nM vs 265 ± 52 nM, respectively, P = 0.007). Similarly, subjects with meningioma demonstrated higher peak TG compared to controls (242.2 ± 54.9 nM vs 177.7 ± 57.0 nM, respectively, P < 0.001). There was no association between peak TG and pre-operative tumor volume or overall survival. CONCLUSION: Our results indicate that systemic coagulation activation occurs with both meningioma and GBM, but to a greater degree in the latter. Preoperative peak TG did not correlate with tumor volume, but removal of GBM caused a significant decrease in coagulation activation.


Subject(s)
Blood Coagulation , Brain Neoplasms , Glioblastoma , Meningeal Neoplasms , Meningioma , Blood Coagulation/physiology , Brain Neoplasms/blood , Glioblastoma/blood , Humans , Meningeal Neoplasms/blood , Meningioma/blood
17.
J Neurooncol ; 153(2): 251-261, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33905055

ABSTRACT

PURPOSE: The peritumoral region (PTR) in glioblastoma (GBM) represents a combination of infiltrative tumor and vasogenic edema, which are indistinguishable on magnetic resonance imaging (MRI). We developed a radiomic signature by using imaging data from low grade glioma (LGG) (marker of tumor) and PTR of brain metastasis (BM) (marker of edema) and applied it on the GBM PTR to generate probabilistic maps. METHODS: 270 features were extracted from T1-weighted, T2-weighted, and apparent diffusion coefficient maps in over 3.5 million voxels of LGG (36 segments) and BM (45 segments) scanned in a 1.5T MRI. A support vector machine classifier was used to develop the radiomics model from approximately 50% voxels (downsampled to 10%) and validated with the remaining. The model was applied to over 575,000 voxels of the PTR of 10 patients with GBM to generate a quantitative map using Platt scaling (infiltrative tumor vs. edema). RESULTS: The radiomics model had an accuracy of 0.92 and 0.79 in the training and test set, respectively (LGG vs. BM). When extrapolated on the GBM PTR, 9 of 10 patients had a higher percentage of voxels with a tumor-like signature over radiological recurrence areas. In 7 of 10 patients, the areas under curves (AUC) were > 0.50 confirming a positive correlation. Including all the voxels from the GBM patients, the infiltration signature had an AUC of 0.61 to predict recurrence. CONCLUSION: A radiomic signature can demarcate areas of microscopic tumors from edema in the PTR of GBM, which correlates with areas of future recurrence.


Subject(s)
Brain Neoplasms , Glioblastoma , Brain Neoplasms/diagnostic imaging , Edema , Glioblastoma/diagnostic imaging , Humans , Magnetic Resonance Imaging
18.
J Neurooncol ; 155(2): 181-191, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34694564

ABSTRACT

BACKGROUND: The peritumoral region (PTR) of glioblastoma (GBM) appears as a T2W-hyperintensity and is composed of microscopic tumor and edema. Infiltrative low grade glioma (LGG) comprises tumor cells that seem similar to GBM PTR on MRI. The work here explored if a radiomics-based approach can distinguish between the two groups (tumor and edema versus tumor alone). METHODS: Patients with GBM and LGG imaged using a 1.5 T MRI were included in the study. Image data from cases of GBM PTR, and LGG were manually segmented guided by T2W hyperintensity. A set of 91 first-order and texture features were determined from each of T1W-contrast, and T2W-FLAIR, diffusion-weighted imaging sequences. Applying filtration techniques, a total of 3822 features were obtained. Different feature reduction techniques were employed, and a subsequent model was constructed using four machine learning classifiers. Leave-one-out cross-validation was used to assess classifier performance. RESULTS: The analysis included 42 GBM and 36 LGG. The best performance was obtained using AdaBoost classifier using all the features with a sensitivity, specificity, accuracy, and area of curve (AUC) of 91%, 86%, 89%, and 0.96, respectively. Amongst the feature selection techniques, the recursive feature elimination technique had the best results, with an AUC ranging from 0.87 to 0.92. Evaluation with the F-test resulted in the most consistent feature selection with 3 T1W-contrast texture features chosen in over 90% of instances. CONCLUSIONS: Quantitative analysis of conventional MRI sequences can effectively demarcate GBM PTR from LGG, which is otherwise indistinguishable on visual estimation.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Magnetic Resonance Imaging , Brain Neoplasms/diagnostic imaging , Diagnosis, Differential , Glioblastoma/diagnostic imaging , Glioma/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Neoplasm Grading , Reproducibility of Results
19.
Mol Biol Rep ; 48(5): 4813-4835, 2021 May.
Article in English | MEDLINE | ID: mdl-34132942

ABSTRACT

Glioblastoma multiforme (GBM) is one of the aggressive brain cancers with patients having less survival period upto 12-15 months. Mammalian target of rapamycin (mTOR) is a serine/threonine kinase, belongs to the phosphatidylinositol 3-kinases (PI3K) pathway and is involved in various cellular processes of cancer cells. Cancer metabolism is regulated by mTOR and its components. mTOR forms two complexes as mTORC1 and mTORC2. Studies have identified the key component of the mTORC2 complex, Rapamycin-insensitive companion of mammalian target of rapamycin (Rictor) plays a prominent role in the regulation of cancer cell proliferation and metabolism. Apart, growth factor receptor signaling such as epidermal growth factor signaling mediated by epidermal growth factor receptor (EGFR) regulates cancer-related processes. In EGFR signaling various other signaling cascades such as phosphatidyl-inositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR pathway) and Ras/Raf/mitogen-activated protein kinase/ERK kinase (MEK)/extracellular-signal-regulated kinase (ERK) -dependent signaling cross-talk each other. From various studies about GBM, it is very well established that Rictor and EGFR mediated signaling pathways majorly playing a pivotal role in chemoresistance and tumor aggressiveness. Recent studies have shown that non-coding RNAs such as microRNAs (miRs) and long non-coding RNAs (lncRNAs) regulate the EGFR and Rictor and sensitize the cells towards chemotherapeutic agents. Thus, understanding of microRNA mediated regulation of EGFR and Rictor will help in cancer prevention and management as well as a future therapy.


Subject(s)
Carcinogenesis/metabolism , ErbB Receptors/metabolism , Glioblastoma , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , TOR Serine-Threonine Kinases/metabolism , Brain Neoplasms/metabolism , Cell Proliferation , Cell Transformation, Neoplastic , Glioblastoma/diagnosis , Glioblastoma/metabolism , Humans , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Signal Transduction
20.
Bioessays ; 41(7): e1800245, 2019 07.
Article in English | MEDLINE | ID: mdl-31188499

ABSTRACT

Increasing evidence indicates that extracellular vesicles (EVs) secreted from tumor cells play a key role in the overall progression of the disease state. EVs such as exosomes are secreted by a wide variety of cells and transport a varied population of proteins, lipids, DNA, and RNA species within the body. Gliomas constitute a significant proportion of all primary brain tumors and majority of brain malignancies. Glioblastoma multiforme (GBM) represents grade IV glioma and is associated with very poor prognosis despite the cumulative advances in diagnostic procedures and treatment strategies. Here, the authors describe the progress in understanding the role of EVs, especially exosomes, in overall glioma progression, and how new research is unraveling the utilities of exosomes in glioma diagnostics and development of next-generation therapeutic systems. Finally, based on an understanding of the latest scientific literature, a model for the possible working of therapeutic exosomes in glioma treatment is proposed.


Subject(s)
Brain Neoplasms/pathology , Brain Neoplasms/therapy , Exosomes/pathology , Glioblastoma/pathology , Glioblastoma/therapy , Antineoplastic Agents/therapeutic use , Blood-Brain Barrier/physiology , Brain Neoplasms/diagnosis , Cell Membrane/metabolism , Disease Progression , Glioblastoma/diagnosis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL