Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
J Sci Food Agric ; 103(11): 5231-5241, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37021557

ABSTRACT

BACKGROUND: Mesotrione is a triketone widely used as an inhibitor of the hydroxyphenylpyruvate deoxygenase (HPPD) enzyme. However, new agrochemicals should be developed continuously to tackle the problem of herbicide resistance. Two sets of mesotrione analogs have been synthesized recently and they have demonstrated successful phytotoxicity against weeds. In this study, these compounds were joined to form a single data set and the HPPD inhibition of this enlarged library of triketones was modeled using multivariate image analysis applied to quantitative structure-activity relationships (MIA-QSAR). Docking studies were also carried out to validate the MIA-QSAR findings and to aid the interpretation of ligand-enzyme interactions responsible for the bioactivity (pIC50 ). RESULTS: The MIA-QSAR models based on van der Waals radii (rvdW ), electronegativity (ε), and the rvdW /ε ratio as molecular descriptors were both predictive to an acceptable degree (r2 ≥ 0.80, q2 ≥ 0.68 and r2 pred ≥ 0.68). Subsequently, partial least squares (PLS) regression parameters were applied to predict the pIC50 values of newly proposed derivatives, yielding a few promising agrochemical candidates. The calculated log P for most of these derivatives was found to be higher than that of mesotrione and the library compounds, indicating that they should be less prone to leach out and contaminate groundwater. CONCLUSION: Multivariate image analysis descriptors corroborated by docking studies were capable of modeling the herbicidal activities of 68 triketones reliably. Due to the substituent effects at the triketone framework, particularly of a nitro group in R3 , promising analogs could be designed. The P9 proposal demonstrated higher calculated activity and log P than commercial mesotrione. © 2023 Society of Chemical Industry.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase , Quantitative Structure-Activity Relationship , Molecular Structure , Structure-Activity Relationship , Enzyme Inhibitors/chemistry , 4-Hydroxyphenylpyruvate Dioxygenase/chemistry , 4-Hydroxyphenylpyruvate Dioxygenase/metabolism
2.
SAR QSAR Environ Res ; 34(3): 231-246, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36951367

ABSTRACT

Triketones are suitable compounds for 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibition and are important compounds for eliminating agricultural weeds. We report herein quantitative structure-activity relationship (QSAR) modelling and docking studies for a series of triketone-quinoline hybrids and 2-(aryloxyacetyl)cyclohexane-1,3-diones with the aim of proposing new chemical candidates that exhibit improved performance as herbicides. The QSAR models obtained were reliable and predictive (average r2, q2, and r2pred of 0.72, 0.51, and 0.71, respectively). Guided by multivariate image analysis of the PLS regression coefficients and variable importance in projection scores, the substituent effects could be analysed, and a promising derivative with R1 = H, R2 = CN, and R3 = 5,7,8-triCl at the triketone-quinoline scaffold (P18) was proposed. Docking studies demonstrated that π-π stacking interactions and specific interactions between the substituents and amino acid residues in the binding site of the Arabidopsis thaliana HPPD (AtHPPD) enzyme support the desired bioactivity. In addition, compared to a benchmark commercial triketone (mesotrione), the proposed compounds are more lipophilic and less mobile in soil rich in organic matter and are less prone to contaminate groundwater.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase , Arabidopsis , Herbicides , Quinolines , Quantitative Structure-Activity Relationship , Models, Molecular , Herbicides/pharmacology , Herbicides/chemistry , Plant Weeds/metabolism , Arabidopsis/chemistry , 4-Hydroxyphenylpyruvate Dioxygenase/chemistry , 4-Hydroxyphenylpyruvate Dioxygenase/metabolism , Enzyme Inhibitors/chemistry
3.
J Agric Food Chem ; 70(29): 8986-8993, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35848390

ABSTRACT

A series of aryloxyacetic acid derivatives have demonstrated promising herbicidal performance by inhibition of the hydroxyphenylpyruvate deoxygenase (HPPD) enzyme. We hereby applied quantitative structure-activity relationship (QSAR) and docking strategies to model and chemically understand the bioactivities of these compounds and subsequently propose unprecedented analogues aiming at improving the herbicidal and environmental properties. Bulky halogens at the 2-, 3-, 4-, and 6-positions of an aromatic ring, CF3 in 4-position, and the 2-NO2 group in a phenyl ring appear to favor the HPPD inhibition. At the same time, Me and OMe substituents contribute to decreasing the pKi values. Accordingly, a few compounds were proposed and the candidate with 2,4,6-triBr substituents demonstrated an estimated pKi similar to those of the best library compounds. This finding was corroborated by the docking scores of the ligand-enzyme interactions. In addition, the high calculated lipophilicity of some proposed agrochemicals suggests that they should have low soil mobility and, therefore, are not prone to easily leach out and reach groundwater, despite causing other ecological issues.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase , Herbicides , Computers , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Herbicides/chemistry , Herbicides/pharmacology , Molecular Structure , Quantitative Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL