Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Adv Exp Med Biol ; 1221: 807-819, 2020.
Article in English | MEDLINE | ID: mdl-32274739

ABSTRACT

Urofacial syndrome (UFS) is a rare but potentially devastating autosomal recessive disease. It comprises both incomplete urinary bladder emptying and a facial grimace upon smiling. A subset of individuals with the disease has biallelic mutations of HPSE2, coding for heparanase-2. Heparanase-2 and the classical heparanase are both detected in nerves in the maturing bladder, and mice mutant for Hpse2 have UFS-like bladder voiding defects and abnormally patterned bladder nerves. Other evidence suggests that the heparanase axis plays several roles in the peripheral and central nervous systems, quite apart from UFS-related biology. Some individuals with UFS lack HPSE2 mutations and instead carry biallelic variants of LRIG2, encoding leucine-rich-repeats and immunoglobulin-like-domains 2. Like heparanase-2, LRIG2 is detected in bladder nerves, and mutant Lrig2 mice have urination defects and abnormal patterns of bladder nerves. Further work is now needed to define the precise roles of heparanase-2 and LRIG2 in normal and abnormal neural differentiation.


Subject(s)
Glucuronidase/metabolism , Urologic Diseases/enzymology , Urologic Diseases/genetics , Animals , Facies , Humans
2.
J Transl Med ; 17(1): 103, 2019 03 29.
Article in English | MEDLINE | ID: mdl-30922347

ABSTRACT

BACKGROUND: Heparanase (HPSE) is an endo-beta-glucuronidase that degrades heparan sulfate (HS) chains on proteoglycans. The oligosaccharides generated by HPSE promote angiogenesis, tumor growth and metastasis. Heparanase-2 (HPSE2), a close homolog of HPSE, does not exhibit catalytic activity. Previous studies have demonstrated that serum or plasma from breast cancer patients showed increased expression of both heparanases in circulating lymphocytes. The aim of this study was to better understand the mechanisms involved in the upregulation of heparanases in circulating lymphocytes. METHODS: Lymphocytes collected from healthy women were incubated in the presence of MCF-7 breast cancer cells (co-culture) to stimulate HPSE and HPSE2 overexpression. The protein level of heparanases was evaluated by immunocytochemistry, while mRNA expression was determined by quantitative RT-PCR. RESULTS: The medium obtained from co-culture of MCF-7 cells and circulating lymphocytes stimulated the expression of HPSE and HPSE2. Previous treatment of the co-culture medium with an anti-heparan sulfate proteoglycan antibody or heparitinase II inhibited the upregulation of heparanases in circulating lymphocytes. The addition of exogenous heparan sulfate (HS) enhanced the expression of both heparanases. Moreover, the co-cultured cells, as well as MCF-7 cells, secreted a higher number of exosomes expressing an increased level of HS compared to that of the exosomes secreted by circulating lymphocytes from women who were not affected by cancer. CONCLUSIONS: The results revealed that HS is likely responsible for mediating the expression of heparanases in circulating lymphocytes. HS secreted by tumor cells might be carried by exosome particles, confirming the key role of tumor cells, as well as secreted HS, in upregulating the expression of heparanases, suggesting a possible mechanism of crosstalk between tumor cells and circulating lymphocytes.


Subject(s)
Breast Neoplasms/genetics , Cell Communication/physiology , Glucuronidase/genetics , Lymphocytes/physiology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Communication/drug effects , Cells, Cultured , Coculture Techniques , Culture Media, Conditioned/pharmacology , Female , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Glucuronidase/metabolism , Heparitin Sulfate/metabolism , Heparitin Sulfate/physiology , Humans , Lymphocyte Activation/genetics , Lymphocytes/metabolism , MCF-7 Cells , Receptor Cross-Talk/drug effects , Receptor Cross-Talk/immunology
3.
Elife ; 132024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990208

ABSTRACT

Rare early-onset lower urinary tract disorders include defects of functional maturation of the bladder. Current treatments do not target the primary pathobiology of these diseases. Some have a monogenic basis, such as urofacial, or Ochoa, syndrome (UFS). Here, the bladder does not empty fully because of incomplete relaxation of its outflow tract, and subsequent urosepsis can cause kidney failure. UFS is associated with biallelic variants of HPSE2, encoding heparanase-2. This protein is detected in pelvic ganglia, autonomic relay stations that innervate the bladder and control voiding. Bladder outflow tracts of Hpse2 mutant mice display impaired neurogenic relaxation. We hypothesized that HPSE2 gene transfer soon after birth would ameliorate this defect and explored an adeno-associated viral (AAV) vector-based approach. AAV9/HPSE2, carrying human HPSE2 driven by CAG, was administered intravenously into neonatal mice. In the third postnatal week, transgene transduction and expression were sought, and ex vivo myography was undertaken to measure bladder function. In mice administered AAV9/HPSE2, the viral genome was detected in pelvic ganglia. Human HPSE2 was expressed and heparanase-2 became detectable in pelvic ganglia of treated mutant mice. On autopsy, wild-type mice had empty bladders, whereas bladders were uniformly distended in mutant mice, a defect ameliorated by AAV9/HPSE2 treatment. Therapeutically, AAV9/HPSE2 significantly ameliorated impaired neurogenic relaxation of Hpse2 mutant bladder outflow tracts. Impaired neurogenic contractility of mutant detrusor smooth muscle was also significantly improved. These results constitute first steps towards curing UFS, a clinically devastating genetic disease featuring a bladder autonomic neuropathy.


Subject(s)
Dependovirus , Disease Models, Animal , Gene Transfer Techniques , Glucuronidase , Urinary Bladder , Animals , Mice , Humans , Urinary Bladder/physiopathology , Glucuronidase/genetics , Glucuronidase/metabolism , Dependovirus/genetics , Genetic Therapy/methods , Genetic Vectors , Intestinal Pseudo-Obstruction/genetics , Intestinal Pseudo-Obstruction/therapy , Intestinal Pseudo-Obstruction/physiopathology , Urologic Diseases , Facies
4.
Cells ; 12(6)2023 03 16.
Article in English | MEDLINE | ID: mdl-36980254

ABSTRACT

Multiple myeloma (MM) is a plasma cell malignancy that is accompanied by hypercalcemia, renal failure, anemia, and lytic bone lesions. Heparanase (HPSE) plays an important role in supporting and promoting myeloma progression, maintenance of plasma cell stemness, and resistance to therapy. Previous studies identified functional single nucleotide polymorphisms (SNPs) located in the HPSE gene. In the present study, 5 functional HPSE SNPs and 11 novel HPSE2 SNPs were examined. A very significant association between two enhancer (rs4693608 and rs4693084), and two insulator (rs4364254 and rs4426765) HPSE SNPs and primary paraskeletal disease (PS) was observed. SNP rs657442, located in intron 9 of the HPSE2 gene, revealed a significant protective association with primary paraskeletal disease and lytic bone lesions. The present study demonstrates a promoting (HPSE gene) and protective (HPSE2 gene) role of gene regulatory elements in the development of paraskeletal disease and bone morbidity. The effect of signal discrepancy between myeloma cells and normal cells of the tumor microenvironment is proposed as a mechanism for the involvement of heparanase in primary PS. We suggest that an increase in heparanase-2 expression can lead to effective suppression of heparanase activity in multiple myeloma accompanied by extramedullary and osteolytic bone disease.


Subject(s)
Glucuronidase , Multiple Myeloma , Humans , Bone Diseases/genetics , Glucuronidase/genetics , Introns , Multiple Myeloma/genetics , Polymorphism, Single Nucleotide/genetics , Tumor Microenvironment
5.
Front Genet ; 13: 896125, 2022.
Article in English | MEDLINE | ID: mdl-35812751

ABSTRACT

Urofacial (also called Ochoa) syndrome (UFS) is an autosomal recessive congenital disorder of the urinary bladder featuring voiding dysfunction and a grimace upon smiling. Biallelic variants in HPSE2, coding for the secreted protein heparanase-2, are described in around half of families genetically studied. Hpse2 mutant mice have aberrant bladder nerves. We sought to expand the genotypic spectrum of UFS and make insights into its pathobiology. Sanger sequencing, next generation sequencing and microarray analysis were performed in four previously unreported families with urinary tract disease and grimacing. In one, the proband had kidney failure and was homozygous for the previously described pathogenic variant c.429T>A, p.(Tyr143*). Three other families each carried a different novel HPSE2 variant. One had homozygous triplication of exons 8 and 9; another had homozygous deletion of exon 4; and another carried a novel c.419C>G variant encoding the missense p.Pro140Arg in trans with c.1099-1G>A, a previously reported pathogenic splice variant. Expressing the missense heparanase-2 variant in vitro showed that it was secreted as normal, suggesting that 140Arg has aberrant functionality after secretion. Bladder autonomic neurons emanate from pelvic ganglia where resident neural cell bodies derive from migrating neural crest cells. We demonstrated that, in normal human embryos, neuronal precursors near the developing hindgut and lower urinary tract were positive for both heparanase-2 and leucine rich repeats and immunoglobulin like domains 2 (LRIG2). Indeed, biallelic variants of LRIG2 have been implicated in rare UFS families. The study expands the genotypic spectrum in HPSE2 in UFS and supports a developmental neuronal pathobiology.

6.
J Pediatr Endocrinol Metab ; 34(5): 653-657, 2021 May 26.
Article in English | MEDLINE | ID: mdl-33647194

ABSTRACT

OBJECTIVES: Ochoa syndrome (UFS1; Urofacial syndrome-1) is a very rare autosomal recessive disorder caused by mutations in the HPSE2 gene that results bladder voiding dysfunction and somatic motor neuropathy affecting the VIIth cranial nerve. Niemann-Pick disease is a rare autosomal recessive lysosomal storage disorder with systemic involvement resulting from sphingomyelinase deficiency and generally occurs via mutation in the sphingomyelin phosphodiesterase-1 gene (SMPD1). CASE PRESENTATION: Here, we report a 6-year-old girl with symptoms such as urinary incontinence, recurrent urinary tract infections, peculiar facial expression, mainly when smiling, hypertelorism, constipation, incomplete closure of eyelids during sleep and splenomegaly. Homozygote mutations in two different genes responsible for two distinct syndromes were detected in the patient. Homozygous NM_000543.5:c.502G>A (p.Gly168Arg) mutation was found in the SMPD1 gene causing Niemann-Pick disease. In addition, some of the clinical features were due to a novel homozygous mutation identified in the HPSE2 gene, NM_021828.5:c.755delA (p.Lys252SerfsTer23). CONCLUSIONS: Here, we discuss about the importance of considering dual diagnosis in societies where consanguineous marriages are common. Accurate diagnosis of the patient is very important for the management of the diseases and prevention of complications.


Subject(s)
Glucuronidase/genetics , Mutation , Niemann-Pick Disease, Type B/diagnosis , Sphingomyelin Phosphodiesterase/genetics , Urologic Diseases/diagnosis , Child , Consanguinity , Facies , Female , Homozygote , Humans , Male , Niemann-Pick Disease, Type B/complications , Niemann-Pick Disease, Type B/genetics , Phenotype , Prognosis , Urologic Diseases/complications , Urologic Diseases/genetics
7.
J Pediatr Urol ; 17(2): 246-254, 2021 04.
Article in English | MEDLINE | ID: mdl-33558177

ABSTRACT

The Urofacial or Ochoa Syndrome (UFS or UFOS) is characterized by an inverted facial expression (those affected seem crying while smiling) associated with lower urinary tract dysfunction without evident obstructive or neurological cause. It is associated with autosomal recessive inheritance mutations in the HPSE2 gene, located at 10q23-q24, and the LRGI2 gene, located in 1p13.2; however, in up to 16% of patients, no associated mutations have been found. Recent evidence suggests that these genes are critical to an adequate neurological development to the lower urinary tract and that the origin of the disease seems to be due to peripheral neuropathy. There is clinical variability among patients with UFS and not all present the classic two components, and it has even been genetically confirmed in patients with a prior diagnosis of Hinman Syndrome or other bladder dysfunctions. Also, the presence of nocturnal lagophthalmos in these patients was recently described. Early recognition and timely diagnosis are critical to preventing complications such as urinary tract infections or chronic kidney disease. Next, the history of Urofacial Syndrome, the advances in its pathophysiology, and its clinical characteristics is reviewed.


Subject(s)
Urinary Bladder, Neurogenic , Facies , Humans , Mutation , Urologic Diseases
8.
Front Oncol ; 10: 108, 2020.
Article in English | MEDLINE | ID: mdl-32175269

ABSTRACT

MicroRNAs (miRNAs) can participate in many behaviors of various tumors. Prior studies have reported that miR-15b-5p in different tumors can either promote or inhibit tumor progression. In breast cancer, the role of miR-15b-5p is unclear. The main objective of this paper is to explore miR-15b-5p effects and their mechanisms in breast cancer using both in vitro and in vivo experiments. This study showed that miR-15b-5p expression was upregulated in breast cancer compared with normal breast tissue and was positively correlated with poor overall survival in patients. Knockdown of miR-15b-5p in MCF-7 and MD-MBA-231 breast cancer cells restrained cell growth and invasiveness and induced apoptosis, whereas overexpression of miR-15b-5p achieved the opposite effects. We next revealed a negative correlation between miR-15b-5p and heparanase-2 (HPSE2) expression in breast cancer. Knockdown of miR-15b-5p significantly increased HPSE2 expression at both mRNA and protein levels in breast cancer cells in vitro. The underlying mechanisms of miR-15-5p in breast cancer were investigated using luciferase activity reporter assay and rescue experiments. In addition, miR-15b-5p knockdown significantly inhibited tumor growth in a xenograft model in mice. In summary, we showed that miR-15b-5p promotes breast cancer cell proliferation, migration, and invasion by directly targeting HPSE2. Accordingly, miR-15b-5p may serve both as a tool for prognosis and as a target for therapy of breast cancer patients.

10.
Int J Clin Exp Pathol ; 7(5): 1842-8, 2014.
Article in English | MEDLINE | ID: mdl-24966895

ABSTRACT

The Urofacial (Ochoa) Syndrome (UFS) is a rare autosomal recessive disorder and over 100 patients have been reported thus far. UFS is characterized by the abnormal facial expression and dysfunctional voiding. The patients show a peculiar distortion of the facial expression (grimacing as if in pain or sadness when they tried to smile or laugh) along with urinary tract infection, enuresis, vesicoureteral reflux and hydronephrosis without any underlying neurological lesion and previous urinary obstruction. Some patients are also noted with nocturnal lagophthalmos. Until 2010, HPSE2, the gene encodes Heparanse 2 on chromosome 10, was thought to be the only culprit gene for this syndrome. However, another criminal gene, LRIG2, which encodes leucine-rich repeats and immunoglobulin-like domains 2, was also come into the light in 2012. Studies for dissecting the biological functions of HPSE2 and LRIG2 in urinary abnormalities are ongoing. In this minireview, we will update the discovery of novel clinical manifestations relevant to this syndrome and discuss with focus for the impact of HPSE2 on voiding dysfunction.


Subject(s)
Glucuronidase/genetics , Membrane Glycoproteins/genetics , Mutation , Urologic Diseases/genetics , Animals , Facial Expression , Facies , Genetic Predisposition to Disease , Humans , Phenotype , Risk Factors , Urinary Bladder/physiopathology , Urination Disorders/genetics , Urination Disorders/physiopathology , Urologic Diseases/diagnosis , Urologic Diseases/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL