Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Annu Rev Physiol ; 86: 123-147, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-37931168

ABSTRACT

In both excitable and nonexcitable cells, diverse physiological processes are linked to different calcium microdomains within nanoscale junctions that form between the plasma membrane and endo-sarcoplasmic reticula. It is now appreciated that the junctophilin protein family is responsible for establishing, maintaining, and modulating the structure and function of these junctions. We review foundational findings from more than two decades of research that have uncovered how junctophilin-organized ultrastructural domains regulate evolutionarily conserved biological processes. We discuss what is known about the junctophilin family of proteins. Our goal is to summarize the current knowledge of junctophilin domain structure, function, and regulation and to highlight emerging avenues of research that help our understanding of the transcriptional, translational, and post-translational regulation of this gene family and its roles in health and during disease.


Subject(s)
Membrane Proteins , Sarcoplasmic Reticulum , Humans , Membrane Proteins/physiology , Cell Membrane/metabolism , Sarcoplasmic Reticulum/metabolism , Calcium/metabolism , Myocytes, Cardiac/metabolism
2.
Circulation ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39291390

ABSTRACT

BACKGROUND: Excitation-contraction (E-C) coupling processes become disrupted in heart failure (HF), resulting in abnormal Ca2+ homeostasis, maladaptive structural and transcriptional remodeling, and cardiac dysfunction. Junctophilin-2 (JP2) is an essential component of the E-C coupling apparatus but becomes site-specifically cleaved by calpain, leading to disruption of E-C coupling, plasmalemmal transverse tubule degeneration, abnormal Ca2+ homeostasis, and HF. However, it is not clear whether preventing site-specific calpain cleavage of JP2 is sufficient to protect the heart against stress-induced pathological cardiac remodeling in vivo. METHODS: Calpain-resistant JP2 knock-in mice (JP2CR) were generated by deleting the primary JP2 calpain cleavage site. Stress-dependent JP2 cleavage was assessed through in vitro cleavage assays and in isolated cardiomyocytes treated with 1 µmol/L isoproterenol by immunofluorescence. Cardiac outcomes were assessed in wild-type and JP2CR mice 5 weeks after transverse aortic constriction compared with sham surgery using echocardiography, histology, and RNA-sequencing methods. E-C coupling efficiency was measured by in situ confocal microscopy. E-C coupling proteins were evaluated by calpain assays and Western blotting. The effectiveness of adeno-associated virus gene therapy with JP2CR, JP2, or green fluorescent protein to slow HF progression was evaluated in mice with established cardiac dysfunction. RESULTS: JP2 proteolysis by calpain and in response to transverse aortic constriction and isoproterenol was blocked in JP2CR cardiomyocytes. JP2CR hearts are more resistant to pressure-overload stress, having significantly improved Ca2+ homeostasis and transverse tubule organization with significantly attenuated cardiac dysfunction, hypertrophy, lung edema, fibrosis, and gene expression changes relative to wild-type mice. JP2CR preserves the integrity of calpain-sensitive E-C coupling-related proteins, including ryanodine receptor 2, CaV1.2, and sarcoplasmic reticulum calcium ATPase 2a, by attenuating transverse aortic constriction-induced increases in calpain activity. Furthermore, JP2CR gene therapy after the onset of cardiac dysfunction was found to be effective at slowing the progression of HF and superior to wild-type JP2. CONCLUSIONS: The data presented here demonstrate that preserving JP2-dependent E-C coupling by prohibiting the site-specific calpain cleavage of JP2 offers multifaceted beneficial effects, conferring cardiac protection against stress-induced proteolysis, hypertrophy, and HF. Our data also indicate that specifically targeting the primary calpain cleavage site of JP2 by gene therapy approaches holds great therapeutic potential as a novel precision medicine for treating HF.

3.
Proc Natl Acad Sci U S A ; 119(35): e2205425119, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35994651

ABSTRACT

Chorea-acanthocytosis (ChAc) and McLeod syndrome are diseases with shared clinical manifestations caused by mutations in VPS13A and XK, respectively. Key features of these conditions are the degeneration of caudate neurons and the presence of abnormally shaped erythrocytes. XK belongs to a family of plasma membrane (PM) lipid scramblases whose action results in exposure of PtdSer at the cell surface. VPS13A is an endoplasmic reticulum (ER)-anchored lipid transfer protein with a putative role in the transport of lipids at contacts of the ER with other membranes. Recently VPS13A and XK were reported to interact by still unknown mechanisms. So far, however, there is no evidence for a colocalization of the two proteins at contacts of the ER with the PM, where XK resides, as VPS13A was shown to be localized at contacts between the ER and either mitochondria or lipid droplets. Here we show that VPS13A can also localize at ER-PM contacts via the binding of its PH domain to a cytosolic loop of XK, that such interaction is regulated by an intramolecular interaction within XK, and that both VPS13A and XK are highly expressed in the caudate neurons. Binding of the PH domain of VPS13A to XK is competitive with its binding to intracellular membranes that mediate other tethering functions of VPS13A. Our findings support a model according to which VPS13A-dependent lipid transfer between the ER and the PM is coupled to lipid scrambling within the PM. They raise the possibility that defective cell surface exposure of PtdSer may be responsible for neurodegeneration.


Subject(s)
Carrier Proteins , Cell Membrane , Lipids , Vesicular Transport Proteins , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Membrane/metabolism , Endoplasmic Reticulum/enzymology , Endoplasmic Reticulum/metabolism , Humans , Neuroacanthocytosis/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
4.
J Mol Cell Cardiol ; 194: 85-95, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38960317

ABSTRACT

Coronary heart disease (CHD) is a prevalent cardiac disease that causes over 370,000 deaths annually in the USA. In CHD, occlusion of a coronary artery causes ischemia of the cardiac muscle, which results in myocardial infarction (MI). Junctophilin-2 (JPH2) is a membrane protein that ensures efficient calcium handling and proper excitation-contraction coupling. Studies have identified loss of JPH2 due to calpain-mediated proteolysis as a key pathogenic event in ischemia-induced heart failure (HF). Our findings show that calpain-2-mediated JPH2 cleavage yields increased levels of a C-terminal cleaved peptide (JPH2-CTP) in patients with ischemic cardiomyopathy and mice with experimental MI. We created a novel knock-in mouse model by removing residues 479-SPAGTPPQ-486 to prevent calpain-2-mediated cleavage at this site. Functional and molecular assessment of cardiac function post-MI in cleavage site deletion (CSD) mice showed preserved cardiac contractility and reduced dilation, reduced JPH2-CTP levels, attenuated adverse remodeling, improved T-tubular structure, and normalized SR Ca2+-handling. Adenovirus mediated calpain-2 knockdown in mice exhibited similar findings. Pulldown of CTP followed by proteomic analysis revealed valosin-containing protein (VCP) and BAG family molecular chaperone regulator 3 (BAG3) as novel binding partners of JPH2. Together, our findings suggest that blocking calpain-2-mediated JPH2 cleavage may be a promising new strategy for delaying the development of HF following MI.


Subject(s)
Calpain , Heart Failure , Membrane Proteins , Myocardial Infarction , Animals , Humans , Male , Mice , Calpain/metabolism , Disease Models, Animal , Disease Progression , Heart Failure/metabolism , Heart Failure/etiology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Muscle Proteins , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Proteolysis
5.
Article in English | MEDLINE | ID: mdl-39365674

ABSTRACT

Thyroid hormone dysfunction is frequently observed in patients with chronic illnesses including heart failure which increases risk of adverse events. This study examined effects of thyroid hormones (TH) on cardiac T-tubule (TT) integrity, Ca2+ sparks, and nanoscale organization of ion channels in excitation-contraction (EC)-coupling, including L-type calcium channel (Cav1.2), ryanodine receptor-type 2 (RyR2), and junctophilin-2 (Jph2). TH deficiency was established in adult female rats by propyl-thiouracil (PTU) ingestion for 8 weeks; followed by randomization to continued PTU without or with oral triiodo-L-thyronine (T3; 10 ug/kg/d) for two additional weeks (PTU+T3). Confocal microscopy of isolated cardiomyocytes (CM) showed significant misalignment of TTs, and increased Ca2+ sparks in thyroid-deficient CMs. Density-Based Spatial Clustering of Applications with Noise (DBSCAN) analysis of STochastic Optical Reconstruction Microscopy (STORM) images showed decreased (p<0.0001) RyR2 cluster number per cell area in PTU CMs compared to euthyroid (EU) control myocytes, and this was normalized by T3-treatment. Cav1.2 channels and Jph2 localized within 210 nm radius of the RyR2 clusters were significantly reduced in PTU myocytes, and these values were increased with T3 treatment. A significant percentage of the RyR2 clusters in the PTU myocytes had neither Cav1.2 or Jph2, suggesting fewer functional clusters in EC-coupling. Nearest neighbor distances between RyR2 clusters were greater (p<0.001) in PTU cells compared to EU and T3-treated CMs that corresponds to disarray of TTs at the sarcomere z-discs. These results support a regulatory role of T3 in the nanoscale organization of RyR2 clusters and co-localization of Cav1.2 and Jph2 in optimizing EC-coupling.

6.
Circ Res ; 130(9): 1306-1317, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35317607

ABSTRACT

BACKGROUND: Transcriptional remodeling is known to contribute to heart failure (HF). Targeting stress-dependent gene expression mechanisms may represent a clinically relevant gene therapy option. We recently uncovered a salutary mechanism in the heart whereby JP2 (junctophilin-2), an essential component of the excitation-contraction coupling apparatus, is site-specifically cleaved and releases an N-terminal fragment (JP2NT [N-terminal fragment of JP2]) that translocates into the nucleus and functions as a transcriptional repressor of HF-related genes. This study aims to determine whether JP2NT can be leveraged by gene therapy techniques for attenuating HF progression in a preclinical pressure overload model. METHODS: We intraventricularly injected adeno-associated virus (AAV) (2/9) vectors expressing eGFP (enhanced green fluorescent protein), JP2NT, or DNA-binding deficient JP2NT (JP2NTΔbNLS/ARR) into neonatal mice and induced cardiac stress by transaortic constriction (TAC) 9 weeks later. We also treated mice with established moderate HF from TAC stress with either AAV-JP2NT or AAV-eGFP. RNA-sequencing analysis was used to reveal changes in hypertrophic and HF-related gene transcription by JP2NT gene therapy after TAC. Echocardiography, confocal imaging, and histology were performed to evaluate heart function and pathological myocardial remodeling following stress. RESULTS: Mice preinjected with AAV-JP2NT exhibited ameliorated cardiac remodeling following TAC. The JP2NT DNA-binding domain is required for cardioprotection as its deletion within the AAV-JP2NT vector prevented improvement in TAC-induced cardiac dysfunction. Functional and histological data suggest that JP2NT gene therapy after the onset of cardiac dysfunction is effective at slowing the progression of HF. RNA-sequencing analysis further revealed a broad reversal of hypertrophic and HF-related gene transcription by JP2NT overexpression after TAC. CONCLUSIONS: Our prevention- and intervention-based approaches here demonstrated that AAV-mediated delivery of JP2NT into the myocardium can attenuate stress-induced transcriptional remodeling and the development of HF when administered either before or after cardiac stress initiation. Our data indicate that JP2NT gene therapy holds great potential as a novel therapeutic for treating hypertrophy and HF.


Subject(s)
Heart Failure , Animals , DNA , Dependovirus , Disease Models, Animal , Genetic Therapy , Heart Failure/genetics , Heart Failure/metabolism , Heart Failure/therapy , Membrane Proteins , Mice , Mice, Inbred C57BL , RNA , Ventricular Remodeling
7.
Circ Res ; 128(1): 92-114, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33092464

ABSTRACT

RATIONALE: Ca2+-induced Ca2+ release (CICR) in normal hearts requires close approximation of L-type calcium channels (LTCCs) within the transverse tubules (T-tubules) and RyR (ryanodine receptors) within the junctional sarcoplasmic reticulum. CICR is disrupted in cardiac hypertrophy and heart failure, which is associated with loss of T-tubules and disruption of cardiac dyads. In these conditions, LTCCs are redistributed from the T-tubules to disrupt CICR. The molecular mechanism responsible for LTCCs recruitment to and from the T-tubules is not well known. JPH (junctophilin) 2 enables close association between T-tubules and the junctional sarcoplasmic reticulum to ensure efficient CICR. JPH2 has a so-called joining region that is located near domains that interact with T-tubular plasma membrane, where LTCCs are housed. The idea that this joining region directly interacts with LTCCs and contributes to LTCC recruitment to T-tubules is unknown. OBJECTIVE: To determine if the joining region in JPH2 recruits LTCCs to T-tubules through direct molecular interaction in cardiomyocytes to enable efficient CICR. METHODS AND RESULTS: Modified abundance of JPH2 and redistribution of LTCC were studied in left ventricular hypertrophy in vivo and in cultured adult feline and rat ventricular myocytes. Protein-protein interaction studies showed that the joining region in JPH2 interacts with LTCC-α1C subunit and causes LTCCs distribution to the dyads, where they colocalize with RyRs. A JPH2 with induced mutations in the joining region (mutPG1JPH2) caused T-tubule remodeling and dyad loss, showing that an interaction between LTCC and JPH2 is crucial for T-tubule stabilization. mutPG1JPH2 caused asynchronous Ca2+-release with impaired excitation-contraction coupling after ß-adrenergic stimulation. The disturbed Ca2+ regulation in mutPG1JPH2 overexpressing myocytes caused calcium/calmodulin-dependent kinase II activation and altered myocyte bioenergetics. CONCLUSIONS: The interaction between LTCC and the joining region in JPH2 facilitates dyad assembly and maintains normal CICR in cardiomyocytes.


Subject(s)
Calcium Channels, L-Type/metabolism , Calcium Signaling , Calcium/metabolism , Hypertrophy, Left Ventricular/metabolism , Membrane Proteins/metabolism , Muscle Proteins/metabolism , Myocytes, Cardiac/metabolism , Animals , Calcium Channels, L-Type/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cats , Cells, Cultured , Disease Models, Animal , Excitation Contraction Coupling , Humans , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/physiopathology , Kinetics , Male , Membrane Proteins/genetics , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Muscle Proteins/genetics , Mutation , Myocytes, Cardiac/pathology , Organelle Biogenesis , Protein Binding , Protein Interaction Domains and Motifs , Rats, Sprague-Dawley , Ryanodine Receptor Calcium Release Channel
9.
Int J Mol Sci ; 24(11)2023 May 28.
Article in English | MEDLINE | ID: mdl-37298357

ABSTRACT

Calpain-3 (CAPN3) is a muscle-specific member of the calpain family of Ca2+-dependent proteases. It has been reported that CAPN3 can also be autolytically activated by Na+ ions in the absence of Ca2+, although this was only shown under non-physiological ionic conditions. Here we confirm that CAPN3 does undergo autolysis in the presence of high [Na+], but this only occurred if all K+ normally present in a muscle cell was absent, and it did not occur even in 36 mM Na+, higher than what would ever be reached in exercising muscle if normal [K+] was present. CAPN3 in human muscle homogenates was autolytically activated by Ca2+, with ~50% CAPN3 autolysing in 60 min in the presence of 2 µM Ca2+. In comparison, autolytic activation of CAPN1 required about 5-fold higher [Ca2+] in the same conditions and tissue. After it was autolysed, CAPN3 unbound from its tight binding on titin and became diffusible, but only if the autolysis led to complete removal of the IS1 inhibitory peptide within CAPN3, reducing the C-terminal fragment to 55 kDa. Contrary to a previous report, activation of CAPN3, either by raised [Ca2+] or Na+ treatment, did not cause proteolysis of the skeletal muscle Ca2+ release channel-ryanodine receptor, RyR1, in physiological ionic conditions. Treatment of human muscle homogenates with high [Ca2+] caused autolytic activation of CAPN1, accompanied by proteolysis of some titin and complete proteolysis of junctophilin (JP1, full length ~95 kDa), generating an equimolar amount of a diffusible ~75 kDa N-terminal JP1 fragment, but without any proteolysis of RyR1.


Subject(s)
Calpain , Peptide Hydrolases , Humans , Calcium/metabolism , Calcium, Dietary/metabolism , Calpain/metabolism , Connectin/metabolism , Muscle, Skeletal/metabolism , Peptide Hydrolases/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Sodium/metabolism
10.
Am J Physiol Cell Physiol ; 323(3): C885-C895, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35912995

ABSTRACT

The disruption of excitation-contraction (EC) coupling and subsequent reduction in Ca2+ release from the sarcoplasmic reticulum (SR) have been shown to account for muscle weakness seen in patients with Duchenne muscular dystrophy (DMD). Here, we examined the mechanisms underlying EC uncoupling in skeletal muscles from mdx52 and DMD-null/NSG mice, animal models for DMD, focusing on the SH3 and cysteine-rich domain 3 (STAC3) and junctophilin 1 (JP1), which link the dihydropyridine receptor (DHPR) in the transverse tubule and the ryanodine receptor 1 in the SR. The isometric plantarflexion torque normalized to muscle weight of whole plantar flexor muscles was depressed in mdx52 and DMD-null/NSG mice compared with their control mice. This was accompanied by increased autolysis of calpain-1, decreased levels of STAC3 and JP1 content, and dissociation of STAC3 and JP1 from DHPR-α1s in gastrocnemius muscles. Moreover, in vitro mechanistic experiments demonstrated that STAC3 and JP1 underwent Ca2+-dependent proteolysis that was less pronounced in dystrophin-deficient muscles where calpastatin, the endogenous calpain inhibitor, was upregulated. Eccentric contractions further enhanced autolysis of calpain-1 and proteolysis of STAC3 and JP1 that were associated with severe torque depression in gastrocnemius muscles from DMD-null/NSG mice. These data suggest that Ca2+-dependent proteolysis of STAC3 and JP1 may be an essential factor causing muscle weakness due to EC coupling failure in dystrophin-deficient muscles.NEW & NOTEWORTHY The mechanisms underlying the disruption of excitation-contraction (EC) coupling in dystrophin-deficient muscles are not well understood. Here, using animal models for Duchenne muscular dystrophies (DMD), we show a Ca2+-dependent protease (calpain-1)-mediated proteolysis of SH3 and cysteine-rich domain 3 (STAC3) and junctophilin 1 (JP1), essential EC coupling proteins, in dystrophin-deficient muscle, and highlighting the dissociation of STAC3 and JP1 from dihydropyridine receptor as a causative factor in EC uncoupling of dystrophic muscles.


Subject(s)
Calcium Channels, L-Type , Muscular Dystrophy, Duchenne , Adaptor Proteins, Signal Transducing/metabolism , Animals , Calcium/metabolism , Calcium Channels, L-Type/metabolism , Calpain/metabolism , Cysteine/metabolism , Dystrophin/genetics , Dystrophin/metabolism , Membrane Proteins , Mice , Mice, Inbred mdx , Muscle Weakness/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism
11.
Acta Pharmacol Sin ; 43(11): 2873-2884, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35986214

ABSTRACT

Calpains have been implicated in heart diseases. While calpain-1 has been detrimental to the heart, the role of calpain-2 in cardiac pathology remains controversial. In this study we investigated whether sustained over-expression of calpain-2 had any adverse effects on the heart and the underlying mechanisms. Double transgenic mice (Tg-Capn2/tTA) were generated, which express human CAPN2 restricted to cardiomyocytes. The mice were subjected to echocardiography at age 3, 6, 8 and 12 months, and their heart tissues and sera were collected for analyses. We showed that transgenic mice over-expressing calpain-2 restricted to cardiomyocytes had normal heart function with no evidence of cardiac pathological remodeling at age 3 months. However, they exhibited features of dilated cardiomyopathy including increased heart size, enlarged heart chambers and heart dysfunction from age 8 months; histological analysis revealed loss of cardiomyocytes replaced by myocardial fibrosis and cardiomyocyte hypertrophy in transgenic mice from age 8 months. These cardiac alterations closely correlated with aberrant autophagy evidenced by significantly increased LC3BII and p62 protein levels and accumulation of autophagosomes in the hearts of transgenic mice. Notably, injection of 3-methyladenine, a well-established inhibitor of autophagy (30 mg/kg, i.p. once every 3 days starting from age 6 months for 2 months) prevented aberrant autophagy, attenuated myocardial injury and improved heart function in the transgenic mice. In cultured cardiomyocytes, over-expression of calpain-2 blocked autophagic flux by impairing lysosomal function. Furthermore, over-expression of calpain-2 resulted in lower levels of junctophilin-2 protein in the heart of transgenic mice and in cultured cardiomyocytes, which was attenuated by 3-methyladenine. In addition, blockade of autophagic flux by bafilomycin A (100 nM) induced a reduction of junctophilin-2 protein in cardiomyocytes. In summary, transgenic over-expression of calpain-2 induces age-dependent dilated cardiomyopathy in mice, which may be mediated through aberrant autophagy and a reduction of junctophilin-2. Thus, a sustained increase in calpain-2 may be detrimental to the heart.


Subject(s)
Cardiomyopathy, Dilated , Mice , Animals , Humans , Infant , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , Calpain , Myocytes, Cardiac , Autophagy , Mice, Transgenic
12.
Biochem J ; 478(19): 3539-3553, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34524407

ABSTRACT

Calpain proteolysis contributes to the pathogenesis of heart failure but the calpain isoforms responsible and their substrate specificities have not been rigorously defined. One substrate, Junctophilin-2 (JP2), is essential for maintaining junctional cardiac dyads and excitation-contraction coupling. We previously demonstrated that mouse JP2 is cleaved by calpain-1 (CAPN1) between Arginine 565 (R565) and Threonine 566 (T566). Recently, calpain-2 (CAPN2) was reported to cleave JP2 at a novel site between Glycine 482 (G482) and Threonine 483 (T483). We aimed to directly compare the contributions of each calpain isoform, their Ca2+ sensitivity, and their cleavage site selection for JP2. We find CAPN1, CAPN2 and their requisite CAPNS1 regulatory subunit are induced by pressure overload stress that is concurrent with JP2 cleavage. Using in vitro calpain cleavage assays, we demonstrate that CAPN1 and CAPN2 cleave JP2 into similar 75 kD N-terminal (JP2NT) and 25 kD C-terminal fragments (JP2CT) with CAPNS1 co-expression enhancing proteolysis. Deletion mutagenesis shows both CAPN1 and CAPN2 require R565/T566 but not G482/T483. When heterologously expressed, the JP2CT peptide corresponding to R565/T566 cleavage approximates the 25 kD species found during cardiac stress while the C-terminal peptide from potential cleavage at G482/T483 produces a 35 kD product. Similar results were obtained for human JP2. Finally, we show that CAPN1 has higher Ca2+ sensitivity and cleavage efficacy than CAPN2 on JP2 and other cardiac substrates including cTnT, cTnI and ß2-spectrin. We conclude that CAPN2 cleaves JP2 at the same functionally conserved R565/T566 site as CAPN1 but with less efficacy and suggest heart failure may be targeted through specific inhibition of CAPN1.


Subject(s)
Calpain/metabolism , Heart Failure/metabolism , Membrane Proteins/metabolism , Muscle Proteins/metabolism , Proteolysis , Signal Transduction/genetics , Animals , Arginine/metabolism , Calpain/genetics , Disease Models, Animal , Glycine/metabolism , HEK293 Cells , Humans , Male , Membrane Proteins/genetics , Mice , Muscle Proteins/genetics , Mutagenesis, Site-Directed/methods , Myocytes, Cardiac/metabolism , Threonine/metabolism , Transfection
13.
J Mol Cell Cardiol ; 160: 1-14, 2021 11.
Article in English | MEDLINE | ID: mdl-34175303

ABSTRACT

Subclinical hypothyroidism and low T3 syndrome are commonly associated with an increased risk of cardiovascular disease (CVD) and mortality. We examined effects of T3 on T-tubule (TT) structures, Ca2+ mobilization and contractility, and clustering of dyadic proteins. Thyroid hormone (TH) deficiency was induced in adult female rats by propyl-thiouracil (PTU; 0.025%) treatment for 8 weeks. Rats were then randomized to continued PTU or triiodo-L-thyronine (T3; 10 µg/kg/d) treatment for 2 weeks (PTU + T3). After in vivo echocardiographic and hemodynamic recordings, cardiomyocytes (CM) were isolated to record Ca2+ transients and contractility. TT organization was assessed by confocal microscopy, and STORM images were captured to measure ryanodine receptor (RyR2) cluster number and size, and L-type Ca2+ channel (LTCC, Cav1.2) co-localization. Expressed genes including two integral TT proteins, junctophilin-2 (Jph-2) and bridging integrator-1 (BIN1), were analyzed in left ventricular (LV) tissues and cultured CM using qPCR and RNA sequencing. The T3 dosage used normalized serum T3, and reversed adverse effects of TH deficiency on in vivo measures of cardiac function. Recordings of isolated CM indicated that T3 increased rates of Ca2+ release and re-uptake, resulting in increased velocities of sarcomere shortening and re-lengthening. TT periodicity was significantly decreased, with reduced transverse tubules but increased longitudinal tubules in TH-deficient CMs and LV tissue, and these structures were normalized by T3 treatment. Analysis of STORM data of PTU myocytes showed decreased RyR2 cluster numbers and RyR localizations within each cluster without significant changes in Cav1.2 localizations within RyR clusters. T3 treatment normalized RyR2 cluster size and number. qPCR and RNAseq analyses of LV and cultured CM showed that Jph2 expression was T3-responsive, and its increase with treatment may explain improved TT organization and RyR-LTCC coupling.


Subject(s)
Calcium Signaling/drug effects , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Hypothyroidism/drug therapy , Triiodothyronine/administration & dosage , Animals , Calcium/metabolism , Calcium Channels, L-Type/metabolism , Cells, Cultured , Disease Models, Animal , Female , Gene Expression , Hypothyroidism/blood , Hypothyroidism/chemically induced , Membrane Proteins/genetics , Membrane Proteins/metabolism , Myocytes, Cardiac/metabolism , Rats , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcolemma/metabolism , Sarcomeres/metabolism , Treatment Outcome , Triiodothyronine/blood , Ventricular Function/drug effects
14.
Biochem Biophys Res Commun ; 563: 79-84, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34062390

ABSTRACT

Junctophilin-2 (JPH2) was conventionally considered as a structural membrane binding protein. Recently, it was shown that proteolytically truncated mouse JPH2 variants are imported into nucleus to exert alternative functions. However, the intranuclear behaviors of human JPH2 (hJPH2) and underlying molecular determinants have not been explored. Here, we demonstrate that full-length hJPH2 is imported into nucleus in human cells by two nuclear localization signals (NLSs), including a newly discovered one at the C-terminus. Importantly, unlike the JPH2 N-terminal truncation which diffuses throughout the nucleus, full-length hJPH2 forms nuclear bodies behaving like liquid-liquid phase separated droplets that are separated from chromatin. The C-terminal transmembrane domain is required for the formation of hJPH2 droplets. Oxidation mimicking substitution of residues C678 and M679 augments the formation of hJPH2 nuclear droplets, suggesting nuclear hJPH2 liquid-liquid phase separation could be modulated by oxidative stress. Mutation A405D, which introduces a negatively charged residue into an intrinsic disordered region (IDR) of hJPH2, turns liquid-like droplets into amyloid-like aggregates. Depletion of an Alanine Rich Region in the IDR recapitulates the liquid-amyloid phase transition. The MORN repeat regions of hJPH2 encodes intrinsic tendency to form amyloid-like structure. Together, these data revealed the novel intrinsic properties of hJPH2 to form nuclear liquid droplets, and identified critical functional domains encoding these properties. We propose that hJPH2 droplets could function as membrane-less organelles participating in nuclear regulatory processes.


Subject(s)
Cell Nucleus/chemistry , Membrane Proteins/genetics , Muscle Proteins/genetics , Amino Acid Sequence , Cell Nucleus/metabolism , Cloning, Molecular , Humans , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Muscle Proteins/chemistry , Muscle Proteins/metabolism , Particle Size , Sequence Alignment , Tumor Cells, Cultured
15.
Anim Genet ; 52(5): 714-719, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34231238

ABSTRACT

Progressive retinal atrophy (PRA), common autosomal recessive disorder affecting several dog breeds including Shih Tzu, is characterized by degeneration of photoreceptors leading to blindness. To identify PRA genetic variants, three affected and 15 unaffected Shih Tzu and 20 non-Shih Tzu were recruited. Dogs underwent ophthalmologic examination and electroretinography, revealing hallmark retina pathological changes and an abnormal electroretinography in all affected dogs but not in unaffected dogs. WGS was performed. Non-synonymous homozygous variants were searched in coding regions of genes involved in retinal diseases/development; the criterion was that variants should only be present in affected dogs and should be absent in both unaffected and 46 genomes of dogs (from an available evolutionary database). Only one out of the 109 identified variants is predicted to harbor a high-impact consequence, a nonsense c.452A>C (p.L151X) in the JPH2 gene. The genotype of JPH2 variant in all 38 dogs was determined with Sanger sequencing. All three affected dogs, but none of the 35 unaffected, were homozygous for the nonsense variant. JPH2 has been previously found to be expressed in several excitable cells/tissues including retina photoreceptors. Hence, JPH2 is a candidate gene for PRA in Shih Tzu.


Subject(s)
Codon, Nonsense , Dog Diseases/genetics , Dogs/genetics , Membrane Proteins/genetics , Muscle Proteins/genetics , Retinal Degeneration/veterinary , Animals , Breeding , Genotype , Homozygote , Retinal Degeneration/genetics , Whole Genome Sequencing
16.
Proc Natl Acad Sci U S A ; 115(17): 4507-4512, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29632175

ABSTRACT

Close physical association of CaV1.1 L-type calcium channels (LTCCs) at the sarcolemmal junctional membrane (JM) with ryanodine receptors (RyRs) of the sarcoplasmic reticulum (SR) is crucial for excitation-contraction coupling (ECC) in skeletal muscle. However, the molecular mechanism underlying the JM targeting of LTCCs is unexplored. Junctophilin 1 (JP1) and JP2 stabilize the JM by bridging the sarcolemmal and SR membranes. Here, we examined the roles of JPs in localization and function of LTCCs. Knockdown of JP1 or JP2 in cultured myotubes inhibited LTCC clustering at the JM and suppressed evoked Ca2+ transients without disrupting JM structure. Coimmunoprecipitation and GST pull-down assays demonstrated that JPs physically interacted with 12-aa residues in the proximal C terminus of the CaV1.1. A JP1 mutant lacking the C terminus including the transmembrane domain (JP1ΔCT) interacted with the sarcolemmal/T-tubule membrane but not the SR membrane. Expression of this mutant in adult mouse muscles in vivo exerted a dominant-negative effect on endogenous JPs, impairing LTCC-RyR coupling at triads without disrupting JM morphology, and substantially reducing Ca2+ transients without affecting SR Ca2+ content. Moreover, the contractile force of the JP1ΔCT-expressed muscle was dramatically reduced compared with the control. Taken together, JPs recruit LTCCs to the JM through physical interaction and ensure robust ECC at triads in skeletal muscle.


Subject(s)
Calcium Channels, L-Type/metabolism , Calcium Signaling/physiology , Membrane Proteins/metabolism , Muscle Contraction/physiology , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Animals , Calcium/metabolism , Calcium Channels, L-Type/genetics , Cell Line , Membrane Proteins/genetics , Mice , Muscle Proteins/genetics , Protein Domains , Sarcolemma/genetics , Sarcolemma/metabolism
17.
Basic Res Cardiol ; 115(4): 49, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32592107

ABSTRACT

Heart failure (HF) is a leading cause of morbidity and mortality worldwide. Patients with HF exhibit a loss of junctophilin-2 (JPH2), a structural protein critical in forming junctional membrane complexes in which excitation-contraction takes place. Several mechanisms have been proposed to mediate the loss of JPH2, one being cleavage by the calcium-dependent protease calpain. The downstream mechanisms underlying HF progression after JPH2 cleavage are presently poorly understood. In this study, we used Labcas to bioinformatically predict putative calpain cleavage sites on JPH2. We identified a cleavage site that produces a novel C-terminal JPH2 peptide (JPH2-CTP) using several domain-specific antibodies. Western blotting revealed elevated JPH2-CTP levels in hearts of patients and mice with HF, corresponding to increased levels of calpain-2. Moreover, immunocytochemistry demonstrated nuclear localization of JPH2-CTP within ventricular myocytes isolated from a murine model of pressure overload-induced HF as well as rat ventricular myocytes treated with isoproterenol. Nuclear localization of JPH2-CTP and cellular remodeling were abrogated by a genetic mutation of the nuclear localization sequence within JPH2-CTP. Taken together, our studies identified a novel C-terminal fragment of JPH2 (JPH2-CTP) generated by calpain-2 mediated cleavage which localizes within the cardiomyocyte nucleus during HF. Blocking nuclear localization of JPH2-CTP protects cardiomyocytes from isoproterenol-induced hypertrophy in vitro. Future in vivo studies of the nuclear role of JPH2-CTP may reveal a causal association with adverse remodeling during HF and establish CTP as a therapeutic target.


Subject(s)
Calpain/metabolism , Heart Failure/metabolism , Membrane Proteins/metabolism , Myocytes, Cardiac/metabolism , Animals , Cell Nucleus/metabolism , Female , Heart Failure/physiopathology , Humans , Male , Mice , Mice, Inbred C57BL
18.
Adv Exp Med Biol ; 1131: 281-320, 2020.
Article in English | MEDLINE | ID: mdl-31646515

ABSTRACT

In mammalian cardiomyocytes, Ca2+ influx through L-type voltage-gated Ca2+ channels (VGCCs) is amplified by release of Ca2+ via type 2 ryanodine receptors (RyR2) in the sarcoplasmic reticulum (SR): a process termed Ca2+-induced Ca2+-release (CICR). In mammalian skeletal muscles, VGCCs play a distinct role as voltage-sensors, physically interacting with RyR1 channels to initiate Ca2+ release in a mechanism termed depolarisation-induced Ca2+-release (DICR). In the current study, we surveyed the genomes of animals and their close relatives, to explore the evolutionary history of genes encoding three proteins pivotal for ECC: L-type VGCCs; RyRs; and a protein family that anchors intracellular organelles to plasma membranes, namely junctophilins (JPHs). In agreement with earlier studies, we find that non-vertebrate eukaryotes either lack VGCCs, RyRs and JPHs; or contain a single homologue of each protein. Furthermore, the molecular features of these proteins thought to be essential for DICR are only detectable within vertebrates and not in any other taxonomic group. Consistent with earlier physiological and ultrastructural observations, this suggests that CICR is the most basal form of ECC and that DICR is a vertebrate innovation. This development was accompanied by the appearance of multiple homologues of RyRs, VGCCs and junctophilins in vertebrates, thought to have arisen by 'whole genome replication' mechanisms. Subsequent gene duplications and losses have resulted in distinct assemblies of ECC components in different vertebrate clades, with striking examples being the apparent absence of RyR2 from amphibians, and additional duplication events for all three ECC proteins in teleost fish. This is consistent with teleosts possessing the most derived mode of DICR, with their Cav1.1 VGCCs completely lacking in Ca2+ channel activity.


Subject(s)
Calcium Channels, L-Type , Evolution, Molecular , Excitation Contraction Coupling , Ryanodine Receptor Calcium Release Channel , Animals , Calcium Channels, L-Type/metabolism , Excitation Contraction Coupling/genetics , Fishes/genetics , Fishes/metabolism , Genome/genetics , Muscle, Skeletal/physiology , Myocytes, Cardiac/physiology , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/physiology
19.
Proc Natl Acad Sci U S A ; 114(52): 13822-13827, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29229815

ABSTRACT

Skeletal muscle contraction is triggered by Ca2+ release from the sarcoplasmic reticulum (SR) in response to plasma membrane (PM) excitation. In vertebrates, this depends on activation of the RyR1 Ca2+ pore in the SR, under control of conformational changes of CaV1.1, located ∼12 nm away in the PM. Over the last ∼30 y, gene knockouts have revealed that CaV1.1/RyR1 coupling requires additional proteins, but leave open the possibility that currently untested proteins are also necessary. Here, we demonstrate the reconstitution of conformational coupling in tsA201 cells by expression of CaV1.1, ß1a, Stac3, RyR1, and junctophilin2. As in muscle, depolarization evokes Ca2+ transients independent of external Ca2+ entry and having amplitude with a saturating dependence on voltage. Moreover, freeze-fracture electron microscopy indicates that the five identified proteins are sufficient to establish physical links between CaV1.1 and RyR1. Thus, these proteins constitute the key elements essential for excitation-contraction coupling in skeletal muscle.


Subject(s)
Calcium Signaling/physiology , Calcium/metabolism , Caveolin 1/metabolism , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Cell Line , Humans
20.
Int Heart J ; 61(2): 355-363, 2020 Mar 28.
Article in English | MEDLINE | ID: mdl-32173700

ABSTRACT

Heart failure (HF) is a disease with high morbidity and mortality. In patients with HF, decreased cardiac output and blood redistribution results in decreased intestinal perfusion and destruction of intestinal barrier. Microorganisms and endotoxins can migrate into the blood circulation, aggravating systemic inflammation and HF. Trimethylamine N-oxide (TMAO) is highly closed to the occurrence of HF. However, the exact mechanism between TMAO and HF remains unclear.To investigate the role of TMAO in transverse-tubule (T-tubule) in the cultured cardiomyocytes.T-tubule imaging and analysis detected T-tubule network in cardiomyocytes. Ca2+ handling dysfunction was identified by confocal Ca2+ imaging. Tubulin densification and polymerization were assessed by western blot and immunofluorescent staining of cardiomyocytes.TMAO induced T-tubule network damage in cardiomyocytes and Ca2+ handling dysfunction in cardiomyocytes under the TMAO stress via promoting tubulin densification and polymerization and therefore Junctophilin-2 (JPH2) redistribution. Mice treated with TMAO represented cardiac dysfunction and T-tubule network disorganization.TMAO impairs cardiac function via the promotion of tubulin polymerization, subsequent translocation of JPH2, and T-tubule remodeling, which provides a novel mechanism for the relationship between HF and elevated TMAO.


Subject(s)
Heart Failure/metabolism , Methylamines/toxicity , Microtubules/metabolism , Myocytes, Cardiac/metabolism , Animals , Calcium/metabolism , Cells, Cultured , Excitation Contraction Coupling , Heart Failure/etiology , Male , Membrane Proteins/metabolism , Mice, Inbred C57BL , Microtubules/drug effects , Myocytes, Cardiac/drug effects , Tubulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL