Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.295
Filter
Add more filters

Publication year range
1.
Annu Rev Biochem ; 91: 423-447, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35363508

ABSTRACT

Biochemistry and molecular biology rely on the recognition of structural complementarity between molecules. Molecular interactions must be both quickly reversible, i.e., tenuous, and specific. How the cell reconciles these conflicting demands is the subject of this article. The problem and its theoretical solution are discussed within the wider theoretical context of the thermodynamics of stochastic processes (stochastic thermodynamics). The solution-an irreversible reaction cycle that decreases internal error at the expense of entropy export into the environment-is shown to be widely employed by biological processes that transmit genetic and regulatory information.


Subject(s)
Kinetics , Stochastic Processes , Thermodynamics
2.
Cell ; 185(2): 345-360.e28, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35063075

ABSTRACT

We present a whole-cell fully dynamical kinetic model (WCM) of JCVI-syn3A, a minimal cell with a reduced genome of 493 genes that has retained few regulatory proteins or small RNAs. Cryo-electron tomograms provide the cell geometry and ribosome distributions. Time-dependent behaviors of concentrations and reaction fluxes from stochastic-deterministic simulations over a cell cycle reveal how the cell balances demands of its metabolism, genetic information processes, and growth, and offer insight into the principles of life for this minimal cell. The energy economy of each process including active transport of amino acids, nucleosides, and ions is analyzed. WCM reveals how emergent imbalances lead to slowdowns in the rates of transcription and translation. Integration of experimental data is critical in building a kinetic model from which emerges a genome-wide distribution of mRNA half-lives, multiple DNA replication events that can be compared to qPCR results, and the experimentally observed doubling behavior.


Subject(s)
Cells/cytology , Computer Simulation , Adenosine Triphosphate/metabolism , Cell Cycle/genetics , Cell Proliferation/genetics , Cells/metabolism , DNA Replication/genetics , Gene Expression Regulation , Imaging, Three-Dimensional , Kinetics , Lipids/chemistry , Metabolic Networks and Pathways , Metabolome , Molecular Sequence Annotation , Nucleotides/metabolism , Thermodynamics , Time Factors
3.
Immunity ; 57(2): 256-270.e10, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38354703

ABSTRACT

Antibodies can block immune receptor engagement or trigger the receptor machinery to initiate signaling. We hypothesized that antibody agonists trigger signaling by sterically excluding large receptor-type protein tyrosine phosphatases (RPTPs) such as CD45 from sites of receptor engagement. An agonist targeting the costimulatory receptor CD28 produced signals that depended on antibody immobilization and were sensitive to the sizes of the receptor, the RPTPs, and the antibody itself. Although both the agonist and a non-agonistic anti-CD28 antibody locally excluded CD45, the agonistic antibody was more effective. An anti-PD-1 antibody that bound membrane proximally excluded CD45, triggered Src homology 2 domain-containing phosphatase 2 recruitment, and suppressed systemic lupus erythematosus and delayed-type hypersensitivity in experimental models. Paradoxically, nivolumab and pembrolizumab, anti-PD-1-blocking antibodies used clinically, also excluded CD45 and were agonistic in certain settings. Reducing these agonistic effects using antibody engineering improved PD-1 blockade. These findings establish a framework for developing new and improved therapies for autoimmunity and cancer.


Subject(s)
Protein Tyrosine Phosphatases , Signal Transduction , Protein Tyrosine Phosphatases/metabolism , CD28 Antigens , Receptors, Immunologic
4.
Cell ; 174(1): 131-142.e13, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29958103

ABSTRACT

Macrophages protect the body from damage and disease by targeting antibody-opsonized cells for phagocytosis. Though antibodies can be raised against antigens with diverse structures, shapes, and sizes, it is unclear why some are more effective at triggering immune responses than others. Here, we define an antigen height threshold that regulates phagocytosis of both engineered and cancer-specific antigens by macrophages. Using a reconstituted model of antibody-opsonized target cells, we find that phagocytosis is dramatically impaired for antigens that position antibodies >10 nm from the target surface. Decreasing antigen height drives segregation of antibody-bound Fc receptors from the inhibitory phosphatase CD45 in an integrin-independent manner, triggering Fc receptor phosphorylation and promoting phagocytosis. Our work shows that close contact between macrophage and target is a requirement for efficient phagocytosis, suggesting that therapeutic antibodies should target short antigens in order to trigger Fc receptor activation through size-dependent physical segregation.


Subject(s)
Antibodies, Monoclonal/immunology , Antigens/chemistry , Macrophages/immunology , Opsonin Proteins/metabolism , Phagocytosis , Animals , Antibodies, Monoclonal/chemistry , Antigens/genetics , Antigens/immunology , Carcinoembryonic Antigen/chemistry , Carcinoembryonic Antigen/genetics , Carcinoembryonic Antigen/immunology , Gene Editing , Integrins/metabolism , Leukocyte Common Antigens/chemistry , Leukocyte Common Antigens/genetics , Leukocyte Common Antigens/immunology , Macrophages/cytology , Mice , Opsonin Proteins/chemistry , Phosphorylation , RAW 264.7 Cells , Receptors, Fc/immunology , Receptors, Fc/metabolism , Unilamellar Liposomes/chemistry
5.
Cell ; 171(3): 683-695.e18, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-28988771

ABSTRACT

Epidermal growth factor receptor (EGFR) regulates many crucial cellular programs, with seven different activating ligands shaping cell signaling in distinct ways. Using crystallography and other approaches, we show how the EGFR ligands epiregulin (EREG) and epigen (EPGN) stabilize different dimeric conformations of the EGFR extracellular region. As a consequence, EREG or EPGN induce less stable EGFR dimers than EGF-making them partial agonists of EGFR dimerization. Unexpectedly, this weakened dimerization elicits more sustained EGFR signaling than seen with EGF, provoking responses in breast cancer cells associated with differentiation rather than proliferation. Our results reveal how responses to different EGFR ligands are defined by receptor dimerization strength and signaling dynamics. These findings have broad implications for understanding receptor tyrosine kinase (RTK) signaling specificity. Our results also suggest parallels between partial and/or biased agonism in RTKs and G-protein-coupled receptors, as well as new therapeutic opportunities for correcting RTK signaling output.


Subject(s)
Epigen/chemistry , Epiregulin/chemistry , ErbB Receptors/chemistry , ErbB Receptors/metabolism , Crystallography, X-Ray , Epigen/metabolism , Epiregulin/metabolism , Fluorescence Resonance Energy Transfer , Humans , Kinetics , Ligands , Models, Molecular , Protein Multimerization
6.
Mol Cell ; 84(15): 2918-2934.e11, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39025072

ABSTRACT

The RNA-induced silencing complex (RISC), which powers RNA interference (RNAi), consists of a guide RNA and an Argonaute protein that slices target RNAs complementary to the guide. We find that, for different guide-RNA sequences, slicing rates of perfectly complementary bound targets can be surprisingly different (>250-fold range), and that faster slicing confers better knockdown in cells. Nucleotide sequence identities at guide-RNA positions 7, 10, and 17 underlie much of this variation in slicing rates. Analysis of one of these determinants implicates a structural distortion at guide nucleotides 6-7 in promoting slicing. Moreover, slicing directed by different guide sequences has an unanticipated, 600-fold range in 3'-mismatch tolerance, attributable to guides with weak (AU-rich) central pairing requiring extensive 3' complementarity (pairing beyond position 16) to more fully populate the slicing-competent conformation. Together, our analyses identify sequence determinants of RISC activity and provide biochemical and conformational rationale for their action.


Subject(s)
Argonaute Proteins , Nucleic Acid Conformation , RNA, Guide, CRISPR-Cas Systems , RNA-Induced Silencing Complex , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , Argonaute Proteins/chemistry , Humans , RNA-Induced Silencing Complex/metabolism , RNA-Induced Silencing Complex/genetics , RNA-Induced Silencing Complex/chemistry , Kinetics , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , RNA Interference , Base Sequence , HEK293 Cells
7.
Mol Cell ; 84(14): 2765-2784.e16, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38964322

ABSTRACT

Dissecting the regulatory mechanisms controlling mammalian transcripts from production to degradation requires quantitative measurements of mRNA flow across the cell. We developed subcellular TimeLapse-seq to measure the rates at which RNAs are released from chromatin, exported from the nucleus, loaded onto polysomes, and degraded within the nucleus and cytoplasm in human and mouse cells. These rates varied substantially, yet transcripts from genes with related functions or targeted by the same transcription factors and RNA-binding proteins flowed across subcellular compartments with similar kinetics. Verifying these associations uncovered a link between DDX3X and nuclear export. For hundreds of RNA metabolism genes, most transcripts with retained introns were degraded by the nuclear exosome, while the remaining molecules were exported with stable cytoplasmic lifespans. Transcripts residing on chromatin for longer had extended poly(A) tails, whereas the reverse was observed for cytoplasmic mRNAs. Finally, machine learning identified molecular features that predicted the diverse life cycles of mRNAs.


Subject(s)
Cell Nucleus , Chromatin , DEAD-box RNA Helicases , RNA, Messenger , Animals , Humans , Mice , RNA, Messenger/metabolism , RNA, Messenger/genetics , Cell Nucleus/metabolism , Cell Nucleus/genetics , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Chromatin/metabolism , Chromatin/genetics , Cytoplasm/metabolism , Cytoplasm/genetics , RNA Stability , Active Transport, Cell Nucleus , Polyribosomes/metabolism , Polyribosomes/genetics , Machine Learning , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Exosomes/metabolism , Exosomes/genetics
8.
Mol Cell ; 83(11): 1936-1952.e7, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37267908

ABSTRACT

Non-native conformations drive protein-misfolding diseases, complicate bioengineering efforts, and fuel molecular evolution. No current experimental technique is well suited for elucidating them and their phenotypic effects. Especially intractable are the transient conformations populated by intrinsically disordered proteins. We describe an approach to systematically discover, stabilize, and purify native and non-native conformations, generated in vitro or in vivo, and directly link conformations to molecular, organismal, or evolutionary phenotypes. This approach involves high-throughput disulfide scanning (HTDS) of the entire protein. To reveal which disulfides trap which chromatographically resolvable conformers, we devised a deep-sequencing method for double-Cys variant libraries of proteins that precisely and simultaneously locates both Cys residues within each polypeptide. HTDS of the abundant E. coli periplasmic chaperone HdeA revealed distinct classes of disordered hydrophobic conformers with variable cytotoxicity depending on where the backbone was cross-linked. HTDS can bridge conformational and phenotypic landscapes for many proteins that function in disulfide-permissive environments.


Subject(s)
Escherichia coli Proteins , Protein Folding , Escherichia coli/genetics , Escherichia coli/metabolism , Protein Conformation , Disulfides/metabolism , High-Throughput Nucleotide Sequencing , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism
9.
Mol Cell ; 83(5): 770-786.e9, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36805027

ABSTRACT

E3 ligase recruitment of proteins containing terminal destabilizing motifs (degrons) is emerging as a major form of regulation. How those E3s discriminate bona fide substrates from other proteins with terminal degron-like sequences remains unclear. Here, we report that human KLHDC2, a CRL2 substrate receptor targeting C-terminal Gly-Gly degrons, is regulated through interconversion between two assemblies. In the self-inactivated homotetramer, KLHDC2's C-terminal Gly-Ser motif mimics a degron and engages the substrate-binding domain of another protomer. True substrates capture the monomeric CRL2KLHDC2, driving E3 activation by neddylation and subsequent substrate ubiquitylation. Non-substrates such as NEDD8 bind KLHDC2 with high affinity, but its slow on rate prevents productive association with CRL2KLHDC2. Without substrate, neddylated CRL2KLHDC2 assemblies are deactivated via distinct mechanisms: the monomer by deneddylation and the tetramer by auto-ubiquitylation. Thus, substrate specificity is amplified by KLHDC2 self-assembly acting like a molecular timer, where only bona fide substrates may bind before E3 ligase inactivation.


Subject(s)
Proteins , Ubiquitin-Protein Ligases , Humans , Carrier Proteins , Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
10.
Mol Cell ; 82(10): 1878-1893.e10, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35537448

ABSTRACT

Transcription factors (TFs) consist of a DNA-binding domain and an activation domain (AD) that are frequently considered to be independent and exchangeable modules. However, recent studies report that the physicochemical properties of the AD can control TF assembly at chromatin by driving phase separation into transcriptional condensates. Here, we dissected transcription activation by comparing different synthetic TFs at a reporter gene array with real-time single-cell fluorescence microscopy. In these experiments, binding site occupancy, residence time, and coactivator recruitment in relation to multivalent TF interactions were compared. While phase separation propensity and activation strength of the AD were linked, the actual formation of liquid-like TF droplets had a neutral or inhibitory effect on transcription activation. We conclude that multivalent AD-mediated interactions enhance the transcription activation capacity of a TF by increasing its residence time in the chromatin-bound state and facilitating the recruitment of coactivators independent of phase separation.


Subject(s)
Chromatin , Transcription Factors , Binding Sites , Chromatin/genetics , Protein Domains , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation
11.
Mol Cell ; 81(11): 2403-2416.e5, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33852892

ABSTRACT

The activation of cap-dependent translation in eukaryotes requires multisite, hierarchical phosphorylation of 4E-BP by the 1 MDa kinase mammalian target of rapamycin complex 1 (mTORC1). To resolve the mechanism of this hierarchical phosphorylation at the atomic level, we monitored by NMR spectroscopy the interaction of intrinsically disordered 4E binding protein isoform 1 (4E-BP1) with the mTORC1 subunit regulatory-associated protein of mTOR (Raptor). The N-terminal RAIP motif and the C-terminal TOR signaling (TOS) motif of 4E-BP1 bind separate sites in Raptor, resulting in avidity-based tethering of 4E-BP1. This tethering orients the flexible central region of 4E-BP1 toward the mTORC1 kinase site for phosphorylation. The structural constraints imposed by the two tethering interactions, combined with phosphorylation-induced conformational switching of 4E-BP1, explain the hierarchy of 4E-BP1 phosphorylation by mTORC1. Furthermore, we demonstrate that mTORC1 recognizes both free and eIF4E-bound 4E-BP1, allowing rapid phosphorylation of the entire 4E-BP1 pool and efficient activation of translation. Finally, our findings provide a mechanistic explanation for the differential rapamycin sensitivity of the 4E-BP1 phosphorylation sites.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Cell Cycle Proteins/chemistry , Eukaryotic Initiation Factor-4E/chemistry , Mechanistic Target of Rapamycin Complex 1/chemistry , Regulatory-Associated Protein of mTOR/chemistry , TOR Serine-Threonine Kinases/chemistry , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Binding Sites , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chaetomium/chemistry , Chaetomium/genetics , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Kinetics , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Models, Molecular , Phosphorylation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Processing, Post-Translational , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Regulatory-Associated Protein of mTOR/genetics , Regulatory-Associated Protein of mTOR/metabolism , Signal Transduction , Structural Homology, Protein , Substrate Specificity , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
12.
EMBO J ; 43(16): 3450-3465, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38937634

ABSTRACT

Members of the SLC25 mitochondrial carrier family link cytosolic and mitochondrial metabolism and support cellular maintenance and growth by transporting compounds across the mitochondrial inner membrane. Their monomeric or dimeric state and kinetic mechanism have been a matter of long-standing debate. It is believed by some that they exist as homodimers and transport substrates with a sequential kinetic mechanism, forming a ternary complex where both exchanged substrates are bound simultaneously. Some studies, in contrast, have provided evidence indicating that the mitochondrial ADP/ATP carrier (SLC25A4) functions as a monomer, has a single substrate binding site, and operates with a ping-pong kinetic mechanism, whereby ADP is imported before ATP is exported. Here we reanalyze the oligomeric state and kinetic properties of the human mitochondrial citrate carrier (SLC25A1), dicarboxylate carrier (SLC25A10), oxoglutarate carrier (SLC25A11), and aspartate/glutamate carrier (SLC25A13), all previously reported to be dimers with a sequential kinetic mechanism. We demonstrate that they are monomers, except for dimeric SLC25A13, and operate with a ping-pong kinetic mechanism in which the substrate import and export steps occur consecutively. These observations are consistent with a common transport mechanism, based on a functional monomer, in which a single central substrate-binding site is alternately accessible.


Subject(s)
Dicarboxylic Acid Transporters , Humans , Kinetics , Dicarboxylic Acid Transporters/metabolism , Dicarboxylic Acid Transporters/genetics , Mitochondria/metabolism , Mitochondria/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Protein Multimerization , Amino Acid Transport Systems, Acidic/metabolism , Amino Acid Transport Systems, Acidic/genetics , Anion Transport Proteins/metabolism , Anion Transport Proteins/genetics , Anion Transport Proteins/chemistry , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Antiporters/metabolism , Antiporters/genetics , Antiporters/chemistry , Mitochondrial ADP, ATP Translocases/metabolism , Mitochondrial ADP, ATP Translocases/genetics , Biological Transport , Organic Anion Transporters/metabolism , Organic Anion Transporters/genetics , Organic Anion Transporters/chemistry , Adenosine Triphosphate/metabolism , Carrier Proteins , Membrane Transport Proteins
13.
Physiol Rev ; 100(4): 1779-1837, 2020 10 01.
Article in English | MEDLINE | ID: mdl-31999509

ABSTRACT

The evolution of the circulatory system from invertebrates to mammals has involved the passage from an open system to a closed in-parallel system via a closed in-series system, accompanying the increasing complexity and efficiency of life's biological functions. The archaic heart enables pulsatile motion waves of hemolymph in invertebrates, and the in-series circulation in fish occurs with only an endothelium, whereas mural smooth muscle cells appear later. The present review focuses on evolution of the circulatory system. In particular, we address how and why this evolution took place from a closed, flowing, longitudinal conductance at low pressure to a flowing, highly pressurized and bifurcating arterial compartment. However, although arterial pressure was the latest acquired hemodynamic variable, the general teleonomy of the evolution of species is the differentiation of individual organ function, supported by specific fueling allowing and favoring partial metabolic autonomy. This was achieved via the establishment of an active contractile tone in resistance arteries, which permitted the regulation of blood supply to specific organ activities via its localized function-dependent inhibition (active vasodilation). The global resistance to viscous blood flow is the peripheral increase in frictional forces caused by the tonic change in arterial and arteriolar radius, which backscatter as systemic arterial blood pressure. Consequently, the arterial pressure gradient from circulating blood to the adventitial interstitium generates the unidirectional outward radial advective conductance of plasma solutes across the wall of conductance arteries. This hemodynamic evolution was accompanied by important changes in arterial wall structure, supported by smooth muscle cell functional plasticity, including contractility, matrix synthesis and proliferation, endocytosis and phagocytosis, etc. These adaptive phenotypic shifts are due to epigenetic regulation, mainly related to mechanotransduction. These paradigms actively participate in cardio-arterial pathologies such as atheroma, valve disease, heart failure, aneurysms, hypertension, and physiological aging.


Subject(s)
Cardiovascular Diseases/genetics , Cardiovascular Physiological Phenomena/genetics , Genetic Predisposition to Disease , Hemodynamics , Muscle, Smooth, Vascular/cytology , Humans
14.
EMBO J ; 42(15): e113079, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37303231

ABSTRACT

Acetate, a major by-product of glycolytic metabolism in Escherichia coli and many other microorganisms, has long been considered a toxic waste compound that inhibits microbial growth. This counterproductive auto-inhibition represents a major problem in biotechnology and has puzzled the scientific community for decades. Recent studies have however revealed that acetate is also a co-substrate of glycolytic nutrients and a global regulator of E. coli metabolism and physiology. Here, we used a systems biology strategy to investigate the mutual regulation of glycolytic and acetate metabolism in E. coli. Computational and experimental analyses demonstrate that decreasing the glycolytic flux enhances co-utilization of acetate with glucose. Acetate metabolism thus compensates for the reduction in glycolytic flux and eventually buffers carbon uptake so that acetate, rather than being toxic, actually enhances E. coli growth under these conditions. We validated this mechanism using three orthogonal strategies: chemical inhibition of glucose uptake, glycolytic mutant strains, and alternative substrates with a natively low glycolytic flux. In summary, acetate makes E. coli more robust to glycolytic perturbations and is a valuable nutrient, with a beneficial effect on microbial growth.


Subject(s)
Escherichia coli , Glycolysis , Escherichia coli/metabolism , Acetates/metabolism , Carbon/metabolism , Biotechnology , Glucose/metabolism
15.
Proc Natl Acad Sci U S A ; 121(7): e2315447121, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38315856

ABSTRACT

The kinetic resolution of racemic amino acids mediated by dipeptides and pyridoxal provides a prebiotically plausible route to enantioenriched proteinogenic amino acids. The enzymatic transamination cycles that are key to modern biochemical formation of enantiopure amino acids may have evolved from this half of the reversible reaction couple. Kinetic resolution of racemic precursors emerges as a general route to enantioenrichment under prebiotic conditions.


Subject(s)
Amino Acids , Peptides , Amino Acids/chemistry , Peptides/chemistry
16.
Proc Natl Acad Sci U S A ; 121(21): e2401567121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38748573

ABSTRACT

Nearly all circadian clocks maintain a period that is insensitive to temperature changes, a phenomenon known as temperature compensation (TC). Yet, it is unclear whether there is any common feature among different systems that exhibit TC. From a general timescale invariance, we show that TC relies on the existence of certain period-lengthening reactions wherein the period of the system increases strongly with the rates in these reactions. By studying several generic oscillator models, we show that this counterintuitive dependence is nonetheless a common feature of oscillators in the nonlinear (far-from-onset) regime where the oscillation can be separated into fast and slow phases. The increase of the period with the period-lengthening reaction rates occurs when the amplitude of the slow phase in the oscillation increases with these rates while the progression speed in the slow phase is controlled by other rates of the system. The positive dependence of the period on the period-lengthening rates balances its inverse dependence on other kinetic rates in the system, which gives rise to robust TC in a wide range of parameters. We demonstrate the existence of such period-lengthening reactions and their relevance for TC in all four model systems we considered. Theoretical results for a model of the Kai system are supported by experimental data. A study of the energy dissipation also shows that better TC performance requires higher energy consumption. Our study unveils a general mechanism by which a biochemical oscillator achieves TC by operating in parameter regimes far from the onset where period-lengthening reactions exist.

17.
Proc Natl Acad Sci U S A ; 121(19): e2403384121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38691585

ABSTRACT

Macromolecular complexes are often composed of diverse subunits. The self-assembly of these subunits is inherently nonequilibrium and must avoid kinetic traps to achieve high yield over feasible timescales. We show how the kinetics of self-assembly benefits from diversity in subunits because it generates an expansive parameter space that naturally improves the "expressivity" of self-assembly, much like a deeper neural network. By using automatic differentiation algorithms commonly used in deep learning, we searched the parameter spaces of mass-action kinetic models to identify classes of kinetic protocols that mimic biological solutions for productive self-assembly. Our results reveal how high-yield complexes that easily become kinetically trapped in incomplete intermediates can instead be steered by internal design of rate-constants or external and active control of subunits to efficiently assemble. Internal design of a hierarchy of subunit binding rates generates self-assembly that can robustly avoid kinetic traps for all concentrations and energetics, but it places strict constraints on selection of relative rates. External control via subunit titration is more versatile, avoiding kinetic traps for any system without requiring molecular engineering of binding rates, albeit less efficiently and robustly. We derive theoretical expressions for the timescales of kinetic traps, and we demonstrate our optimization method applies not just for design but inference, extracting intersubunit binding rates from observations of yield-vs.-time for a heterotetramer. Overall, we identify optimal kinetic protocols for self-assembly as a powerful mechanism to achieve efficient and high-yield assembly in synthetic systems whether robustness or ease of "designability" is preferred.


Subject(s)
Algorithms , Kinetics , Macromolecular Substances/chemistry , Macromolecular Substances/metabolism
18.
Proc Natl Acad Sci U S A ; 121(15): e2316662121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38557187

ABSTRACT

Drug resistance in HIV type 1 (HIV-1) is a pervasive problem that affects the lives of millions of people worldwide. Although records of drug-resistant mutations (DRMs) have been extensively tabulated within public repositories, our understanding of the evolutionary kinetics of DRMs and how they evolve together remains limited. Epistasis, the interaction between a DRM and other residues in HIV-1 protein sequences, is key to the temporal evolution of drug resistance. We use a Potts sequence-covariation statistical-energy model of HIV-1 protein fitness under drug selection pressure, which captures epistatic interactions between all positions, combined with kinetic Monte-Carlo simulations of sequence evolutionary trajectories, to explore the acquisition of DRMs as they arise in an ensemble of drug-naive patient protein sequences. We follow the time course of 52 DRMs in the enzymes protease, RT, and integrase, the primary targets of antiretroviral therapy. The rates at which DRMs emerge are highly correlated with their observed acquisition rates reported in the literature when drug pressure is applied. This result highlights the central role of epistasis in determining the kinetics governing DRM emergence. Whereas rapidly acquired DRMs begin to accumulate as soon as drug pressure is applied, slowly acquired DRMs are contingent on accessory mutations that appear only after prolonged drug pressure. We provide a foundation for using computational methods to determine the temporal evolution of drug resistance using Potts statistical potentials, which can be used to gain mechanistic insights into drug resistance pathways in HIV-1 and other infectious agents.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV Seropositivity , HIV-1 , Humans , HIV-1/genetics , Drug Resistance, Viral/genetics , Genotype , HIV Infections/drug therapy , HIV Infections/genetics , Mutation , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use
19.
Trends Biochem Sci ; 47(3): 194-205, 2022 03.
Article in English | MEDLINE | ID: mdl-34561149

ABSTRACT

Protein aggregation propensity is a pervasive and seemingly inescapable property of proteomes. Strikingly, a significant fraction of the proteome is supersaturated, meaning that, for these proteins, their native conformation is less stable than the aggregated state. Maintaining the integrity of a proteome under such conditions is precarious and requires energy-consuming proteostatic regulation. Why then is aggregation propensity maintained at such high levels over long evolutionary timescales? Here, we argue that the conformational stability of the native and aggregated states are correlated thermodynamically and that codon usage strengthens this correlation. As a result, the folding of stable proteins requires kinetic control to avoid aggregation, provided by aggregation gatekeepers. These unique residues are evolutionarily selected to kinetically favor native folding, either on their own or by coopting chaperones.


Subject(s)
Molecular Chaperones , Protein Folding , Kinetics , Molecular Chaperones/metabolism , Protein Aggregates , Protein Conformation , Proteome
20.
Mol Cell ; 72(2): 355-368.e4, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30270105

ABSTRACT

RIG-I has a remarkable ability to specifically select viral 5'ppp dsRNAs for activation from a pool of cytosolic self-RNAs. The ATPase activity of RIG-I plays a role in RNA discrimination and activation, but the underlying mechanism was unclear. Using transient-state kinetics, we elucidated the ATPase-driven "kinetic proofreading" mechanism of RIG-I activation and RNA discrimination, akin to DNA polymerases, ribosomes, and T cell receptors. Even in the autoinhibited state of RIG-I, the C-terminal domain kinetically discriminates against self-RNAs by fast off rates. ATP binding facilitates dsRNA engagement but, interestingly, makes RIG-I promiscuous, explaining the constitutive signaling by Singleton-Merten syndrome-linked mutants that bind ATP without hydrolysis. ATP hydrolysis dissociates self-RNAs faster than 5'ppp dsRNA but, more importantly, drives RIG-I oligomerization through translocation, which we show to be regulated by helicase motif IVa. RIG-I translocates directionally from the dsRNA end into the stem region, and the 5'ppp end "throttles" translocation to provide a mechanism for threading and building a signaling-active oligomeric complex.


Subject(s)
Adenosine Triphosphatases/metabolism , DEAD Box Protein 58/metabolism , RNA/metabolism , Adenosine Triphosphate/metabolism , Aortic Diseases/metabolism , Cell Line , DEAD-box RNA Helicases/metabolism , Dental Enamel Hypoplasia/metabolism , Female , HEK293 Cells , Humans , Hydrolysis , Kinetics , Metacarpus/abnormalities , Metacarpus/metabolism , Muscular Diseases/metabolism , Odontodysplasia/metabolism , Osteoporosis/metabolism , Protein Binding/physiology , RNA, Double-Stranded/metabolism , Receptors, Antigen, T-Cell/metabolism , Receptors, Immunologic , Ribosomes/metabolism , Signal Transduction/physiology , Vascular Calcification/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL