Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.888
Filter
1.
Annu Rev Biochem ; 87: 1-21, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29925256

ABSTRACT

My initial research experience involved studying how bacteria synthesize nucleotide sugars, the donors for the formation of cell wall polysaccharides. During this time, I became aware that mammalian cells also have a surface coat of sugars and was intrigued as to whether these sugars might be arranged in specific sequences that function as information molecules in biologic processes. Thus began a long journey that has taken me from glycan structural analysis and determination of plant lectin-binding preferences to the biosynthesis of Asn-linked oligosaccharides and the mannose 6-phosphate (Man-6-P) lysosomal enzyme targeting pathway. The Man-6-P system represents an early example of a glycan serving as an information molecule in a fundamental cellular function. The remarkable advances in the field of glycobiology since I entered have uncovered scores of additional examples of oligosaccharide-lectin interactions mediating critical biologic processes. It has been a rewarding experience to participate in the efforts that have established a central role for glycans in biology.


Subject(s)
Glycomics/history , Adaptor Proteins, Vesicular Transport/history , Adaptor Proteins, Vesicular Transport/metabolism , Animals , History, 20th Century , History, 21st Century , Humans , Mannosephosphates/history , Mannosephosphates/metabolism , Metabolic Networks and Pathways , Phosphoric Diester Hydrolases/history , Phosphoric Diester Hydrolases/metabolism , Receptor, IGF Type 2/history , Receptor, IGF Type 2/metabolism , Transferases (Other Substituted Phosphate Groups)/history , Transferases (Other Substituted Phosphate Groups)/metabolism , United States
2.
Immunity ; 57(4): 700-717, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38599166

ABSTRACT

C-type lectin receptors (CLRs) expressed by myeloid cells constitute a versatile family of receptors that play a key role in innate immune recognition. Myeloid CLRs exhibit a remarkable ability to recognize an extensive array of ligands, from carbohydrates and beyond, and encompass pattern-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), and markers of altered self. These receptors, classified into distinct subgroups, play pivotal roles in immune recognition and modulation of immune responses. Their intricate signaling pathways orchestrate a spectrum of cellular responses, influencing processes such as phagocytosis, cytokine production, and antigen presentation. Beyond their contributions to host defense in viral, bacterial, fungal, and parasitic infections, myeloid CLRs have been implicated in non-infectious diseases such as cancer, allergies, and autoimmunity. A nuanced understanding of myeloid CLR interactions with endogenous and microbial triggers is starting to uncover the context-dependent nature of their roles in innate immunity, with implications for therapeutic intervention.


Subject(s)
Lectins, C-Type , Neoplasms , Humans , Lectins, C-Type/metabolism , Immunity, Innate , Myeloid Cells/metabolism , Signal Transduction , Neoplasms/metabolism , Receptors, Pattern Recognition/metabolism
3.
Mol Cell ; 83(24): 4524-4537.e5, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38052210

ABSTRACT

N-glycans act as quality control tags by recruiting lectin chaperones to assist protein maturation in the endoplasmic reticulum. The location and composition of N-glycans (glyco-code) are key to the chaperone-selection process. Serpins, a class of serine protease inhibitors, fold non-sequentially to achieve metastable active states. Here, the role of the glyco-code in assuring successful maturation and quality control of two human serpins, alpha-1 antitrypsin (AAT) and antithrombin III (ATIII), is described. We find that AAT, which has glycans near its N terminus, is assisted by early lectin chaperone binding. In contrast, ATIII, which has more C-terminal glycans, is initially helped by BiP and then later by lectin chaperones mediated by UGGT reglucosylation. UGGT action is increased for misfolding-prone disease variants, and these clients are preferentially glucosylated on their most C-terminal glycan. Our study illustrates how serpins utilize N-glycan presence, position, and composition to direct their proper folding, quality control, and trafficking.


Subject(s)
Molecular Chaperones , Protein Folding , Humans , Molecular Chaperones/metabolism , Lectins/metabolism , Polysaccharides/chemistry , Quality Control
4.
Immunity ; 54(3): 484-498.e8, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33581044

ABSTRACT

Pathologic roles of innate immunity in neurologic disorders are well described, but their beneficial aspects are less understood. Dectin-1, a C-type lectin receptor (CLR), is largely known to induce inflammation. Here, we report that Dectin-1 limited experimental autoimmune encephalomyelitis (EAE), while its downstream signaling molecule, Card9, promoted the disease. Myeloid cells mediated the pro-resolution function of Dectin-1 in EAE with enhanced gene expression of the neuroprotective molecule, Oncostatin M (Osm), through a Card9-independent pathway, mediated by the transcription factor NFAT. Furthermore, we find that the Osm receptor (OsmR) functioned specifically in astrocytes to reduce EAE severity. Notably, Dectin-1 did not respond to heat-killed Mycobacteria, an adjuvant to induce EAE. Instead, endogenous Dectin-1 ligands, including galectin-9, in the central nervous system (CNS) were involved to limit EAE. Our study reveals a mechanism of beneficial myeloid cell-astrocyte crosstalk regulated by a Dectin-1 pathway and identifies potential therapeutic targets for autoimmune neuroinflammation.


Subject(s)
Astrocytes/immunology , Brain/pathology , CARD Signaling Adaptor Proteins/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Lectins, C-Type/metabolism , Multiple Sclerosis/immunology , Myeloid Cells/immunology , Neurogenic Inflammation/immunology , Receptors, Mitogen/metabolism , Animals , Cell Communication , Cells, Cultured , Disease Models, Animal , Galectins/metabolism , Gene Expression Regulation , Lectins, C-Type/genetics , Mice, Inbred C57BL , Mice, Knockout , Myelin-Oligodendrocyte Glycoprotein/immunology , Oncostatin M/genetics , Oncostatin M/metabolism , Oncostatin M Receptor beta Subunit/metabolism , Peptide Fragments/immunology , Receptors, Mitogen/genetics , Signal Transduction
5.
Immunity ; 52(1): 123-135.e6, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31859049

ABSTRACT

The immune system monitors the health of cells and is stimulated by necrosis. Here we examined the receptors and ligands driving this response. In a targeted screen of C-type lectin receptors, a Clec2d reporter responded to lysates from necrotic cells. Biochemical purification identified histones, both free and bound to nucleosomes or neutrophil extracellular traps, as Clec2d ligands. Clec2d recognized poly-basic sequences in histone tails and this recognition was sensitive to post-translational modifications of these sequences. As compared with WT mice, Clec2d-/- mice exhibited reduced proinflammatory responses to injected histones, and less tissue damage and improved survival in a hepatotoxic injury model. In macrophages, Clec2d localized to the plasma membrane and endosomes. Histone binding to Clec2d did not stimulate kinase activation or cytokine production. Rather, histone-bound DNA stimulated endosomal Tlr9-dependent responses in a Clec2d-dependent manner. Thus, Clec2d binds to histones released upon necrotic cell death, with functional consequences to inflammation and tissue damage.


Subject(s)
Histones/metabolism , Lectins, C-Type/immunology , Lectins, C-Type/metabolism , Liver/injuries , Necrosis/pathology , Receptors, Cell Surface/immunology , Receptors, Cell Surface/metabolism , Animals , Apoptosis/immunology , Endosomes/metabolism , HEK293 Cells , Humans , Jurkat Cells , Lectins, C-Type/genetics , Macrophages/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/immunology , Receptors, Cell Surface/genetics , Toll-Like Receptor 9/immunology
6.
Mol Cell ; 81(21): 4377-4397.e12, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34478647

ABSTRACT

Structural heterogeneity of nucleosomes in functional chromosomes is unknown. Here, we devise the template-, reference- and selection-free (TRSF) cryo-EM pipeline to simultaneously reconstruct cryo-EM structures of protein complexes from interphase or metaphase chromosomes. The reconstructed interphase and metaphase nucleosome structures are on average indistinguishable from canonical nucleosome structures, despite DNA sequence heterogeneity, cell-cycle-specific posttranslational modifications, and interacting proteins. Nucleosome structures determined by a decoy-classifying method and structure variability analyses reveal the nucleosome structural variations in linker DNA, histone tails, and nucleosome core particle configurations, suggesting that the opening of linker DNA, which is correlated with H2A C-terminal tail positioning, is suppressed in chromosomes. High-resolution (3.4-3.5 Å) nucleosome structures indicate DNA-sequence-independent stabilization of superhelical locations ±0-1 and ±3.5-4.5. The linker histone H1.8 preferentially binds to metaphase chromatin, from which chromatosome cryo-EM structures with H1.8 at the on-dyad position are reconstituted. This study presents the structural characteristics of nucleosomes in chromosomes.


Subject(s)
Chromosomes/chemistry , Interphase , Metaphase , Nucleosomes/metabolism , Animals , Cell Communication , Cell Cycle , Cell Division , Chromatin/chemistry , Computer Simulation , Cryoelectron Microscopy , DNA/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Nucleosomes/chemistry , Protein Conformation , Protein Domains , Protein Processing, Post-Translational , Xenopus
7.
Mol Cell ; 75(2): 394-407.e5, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31227230

ABSTRACT

The structural diversity of glycans on cells-the glycome-is vast and complex to decipher. Glycan arrays display oligosaccharides and are used to report glycan hapten binding epitopes. Glycan arrays are limited resources and present saccharides without the context of other glycans and glycoconjugates. We used maps of glycosylation pathways to generate a library of isogenic HEK293 cells with combinatorially engineered glycosylation capacities designed to display and dissect the genetic, biosynthetic, and structural basis for glycan binding in a natural context. The cell-based glycan array is self-renewable and reports glycosyltransferase genes required (or blocking) for interactions through logical sequential biosynthetic steps, which is predictive of structural glycan features involved and provides instructions for synthesis, recombinant production, and genetic dissection strategies. Broad utility of the cell-based glycan array is demonstrated, and we uncover higher order binding of microbial adhesins to clustered patches of O-glycans organized by their presentation on proteins.


Subject(s)
Genetic Engineering , Metabolic Networks and Pathways/genetics , Polysaccharides/chemistry , Proteins/genetics , Epitopes/genetics , Epitopes/immunology , Glycosylation , Glycosyltransferases/genetics , HEK293 Cells , Humans , Oligosaccharides/genetics , Polysaccharides/classification , Polysaccharides/genetics , Polysaccharides/immunology , Proteins/immunology
8.
Immunol Rev ; 313(1): 15-24, 2023 01.
Article in English | MEDLINE | ID: mdl-36316810

ABSTRACT

Complement factor D (FD) is a serine protease that plays an essential role in the activation of the alternative pathway (AP) by cleaving complement factor B (FB) and generating the C3 convertases C3(H2 O)Bb and C3bBb. FD is produced mainly from adipose tissue and circulates in an activated form. On the contrary, the other serine proteases of the complement system are mainly synthesized in the liver. The activation mechanism of FD has long been unknown. Recently, a serendipitous discovery in the mechanism of FD activation has been provided by a generation of Masp1 gene knockout mice lacking both the serine protease MASP-1 and its alternative splicing variant MASP-3, designated MASP-1/3-deficient mice. Sera from the MASP-1/3-deficient mice had little-to-no lectin pathway (LP) and AP activity with circulating zymogen or proenzyme FD (pro-FD). Sera from patients with 3MC syndrome carrying mutations in the MASP1 gene also had circulating pro-FD, suggesting that MASP-1 and/or MASP-3 are involved in activation of FD. Here, we summarize the current knowledge of the mechanism of FD activation that was finally elucidated using the sera of mice monospecifically deficient for MASP-1 or MASP-3. Sera of the MASP-1-deficient mice lacked LP activity, but those of the MASP-3-deficient mice lacked AP activity with pro-FD. This review illustrates the pivotal role of MASP-3 in the physiological activation of the AP via activation of FD.


Subject(s)
Complement Factor D , Complement Pathway, Alternative , Humans , Animals , Mice , Complement Factor D/genetics , Complement Factor D/metabolism , Complement Pathway, Alternative/physiology , Mannose-Binding Protein-Associated Serine Proteases/genetics , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Complement System Proteins , Mice, Knockout
9.
Mol Cell ; 70(3): 516-530.e6, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29706535

ABSTRACT

Glycoproteins engaged in unproductive folding in the ER are marked for degradation by a signal generated by progressive demannosylation of substrate N-glycans that is decoded by ER lectins, but how the two lectins, OS9 and XTP3B, contribute to non-glycosylated protein triage is unknown. We generated cell lines with homozygous deletions of both lectins individually and in combination. We found that OS9 and XTP3B redundantly promote glycoprotein degradation and stabilize the SEL1L/HRD1 dislocon complex, that XTP3B profoundly inhibits the degradation of non-glycosylated proteins, and that OS9 antagonizes this inhibition. The relative expression of OS9 and XTP3B and the distribution of glycan and non-glycan degrons within the same protein contribute to the fidelity and processivity of glycoprotein triage and, therefore, determine the fates of newly synthesized proteins in the early secretory pathway.


Subject(s)
Endoplasmic Reticulum-Associated Degradation/physiology , Endoplasmic Reticulum/metabolism , Lectins/metabolism , Neoplasm Proteins/metabolism , Polysaccharides/metabolism , Cell Line , Cell Line, Tumor , Glycoproteins/metabolism , Glycosylation , HEK293 Cells , Humans , K562 Cells , Protein Folding , Protein Translocation Systems/metabolism
10.
Mol Cell Proteomics ; 23(4): 100732, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38336175

ABSTRACT

O-GlcNAcylation is a critical post-translational modification of proteins observed in both plants and animals and plays a key role in growth and development. While considerable knowledge exists about over 3000 substrates in animals, our understanding of this modification in plants remains limited. Unlike animals, plants possess two putative homologs: SECRET AGENT (SEC) and SPINDLY, with SPINDLY also exhibiting O-fucosylation activity. To investigate the role of SEC as a major O-GlcNAc transferase in plants, we utilized lectin-weak affinity chromatography enrichment and stable isotope labeling in Arabidopsis labeling, quantifying at both MS1 and MS2 levels. Our findings reveal a significant reduction in O-GlcNAc levels in the sec mutant, indicating the critical role of SEC in mediating O-GlcNAcylation. Through a comprehensive approach, combining higher-energy collision dissociation and electron-transfer high-energy collision dissociation fragmentation with substantial fractionations, we expanded our GlcNAc profiling, identifying 436 O-GlcNAc targets, including 227 new targets. The targets span diverse cellular processes, suggesting broad regulatory functions of O-GlcNAcylation. The expanded targets also enabled exploration of crosstalk between O-GlcNAcylation and O-fucosylation. We also examined electron-transfer high-energy collision dissociation fragmentation for site assignment. This report advances our understanding of O-GlcNAcylation in plants, facilitating further research in this field.


Subject(s)
Arabidopsis Proteins , N-Acetylglucosaminyltransferases , Acetylglucosamine/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Glycosylation , N-Acetylglucosaminyltransferases/metabolism , Protein Processing, Post-Translational/genetics
11.
Proc Natl Acad Sci U S A ; 120(10): e2214561120, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36853940

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped positive stranded RNA virus which has caused the recent deadly pandemic called COVID-19. The SARS-CoV-2 virion is coated with a heavily glycosylated Spike glycoprotein which is responsible for attachment and entry into target cells. One, as yet unexploited strategy for preventing SARS-CoV-2 infections, is the targeting of the glycans on Spike. Lectins are carbohydrate-binding proteins produced by plants, algae, and cyanobacteria. Some lectins can neutralize enveloped viruses displaying external glycoproteins, offering an alternative therapeutic approach for the prevention of infection with virulent ß-coronaviruses, such as SARS-CoV-2. Here we show that the cyanobacterial lectin cyanovirin-N (CV-N) can selectively target SARS-CoV-2 Spike oligosaccharides and inhibit SARS-CoV-2 infection in vitro and in vivo. CV-N neutralizes Delta and Omicron variants in vitro better than earlier circulating viral variants. CV-N binds selectively to Spike with a Kd as low as 15 nM and a stoichiometry of 2 CV-N: 1 Spike but does not bind to the receptor binding domain (RBD). Further mapping of CV-N binding sites on Spike shows that select high-mannose oligosaccharides in the S1 domain of Spike are targeted by CV-N. CV-N also reduced viral loads in the nares and lungs in vivo to protect hamsters against a lethal viral challenge. In summary, we present an anti-coronavirus agent that works by an unexploited mechanism and prevents infection by a broad range of SARS-CoV-2 strains.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Oligosaccharides/pharmacology , Lectins
12.
Proc Natl Acad Sci U S A ; 120(33): e2211019120, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37552757

ABSTRACT

Polymorphisms in immunity genes can have large effects on susceptibility to infection. To understand the origins of this variation, we have investigated the genetic basis of resistance to the parasitoid wasp Leptopilina boulardi in Drosophila melanogaster. We found that increased expression of the gene lectin-24A after infection by parasitic wasps was associated with a faster cellular immune response and greatly increased rates of killing the parasite. lectin-24A encodes a protein that is strongly up-regulated in the fat body after infection and localizes to the surface of the parasite egg. In certain susceptible lines, a deletion upstream of the lectin-24A has largely abolished expression. Other mutations predicted to abolish the function of this gene have arisen recurrently in this gene, with multiple loss-of-expression alleles and premature stop codons segregating in natural populations. The frequency of these alleles varies greatly geographically, and in some southern African populations, natural selection has driven them near to fixation. We conclude that natural selection has favored the repeated loss of an important component of the immune system, suggesting that in some populations, a pleiotropic cost to lectin-24A expression outweighs the benefits of resistance.


Subject(s)
Parasites , Wasps , Animals , Drosophila/genetics , Drosophila melanogaster/genetics , Host-Parasite Interactions , Wasps/physiology , Lectins/genetics , Selection, Genetic
13.
J Biol Chem ; 300(3): 105765, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38367667

ABSTRACT

CLEC12A, a member of the C-type lectin receptor family involved in immune homeostasis, recognizes MSU crystals released from dying cells. However, the molecular mechanism underlying the CLEC12A-mediated recognition of MSU crystals remains unclear. Herein, we reported the crystal structure of the human CLEC12A-C-type lectin-like domain (CTLD) and identified a unique "basic patch" site on CLEC12A-CTLD that is necessary for the binding of MSU crystals. Meanwhile, we determined the interaction strength between CLEC12A-CTLD and MSU crystals using single-molecule force spectroscopy. Furthermore, we found that CLEC12A clusters at the cell membrane and seems to serve as an internalizing receptor of MSU crystals. Altogether, these findings provide mechanistic insights for understanding the molecular mechanisms underlying the interplay between CLEC12A and MSU crystals.


Subject(s)
Lectins, C-Type , Receptors, Mitogen , Uric Acid , Humans , Gout/metabolism , Lectins, C-Type/chemistry , Lectins, C-Type/immunology , Receptors, Mitogen/chemistry , Receptors, Mitogen/immunology , Uric Acid/chemistry , Uric Acid/immunology , Protein Domains , Crystallography, X-Ray , Single Molecule Imaging , Cell Line
14.
J Biol Chem ; : 107697, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39173950

ABSTRACT

To elucidate the dynamic evolution of cancer cell characteristics within the tumor microenvironment (TME), we developed an integrative approach combining single-cell tracking, cell fate simulation, and three-dimensional (3D) TME modeling. We began our investigation by analyzing the spatiotemporal behavior of individual cancer cells in cultured pancreatic (MiaPaCa2) and cervical (HeLa) cancer cell lines, with a focus on the α2-6 sialic acid (α2-6Sia) modification on glycans, which is associated with cell stemness. Our findings revealed that MiaPaCa2 cells exhibited significantly higher levels of α2-6Sia modification, correlating with enhanced reproductive capabilities, whereas HeLa cells showed less prevalence of this modification. To accommodate the in vivo variability of α2-6Sia levels, we employed a cell fate simulation algorithm that digitally generates cell populations based on our observed data while varying the level of sialylation, thereby simulating cell growth patterns. Subsequently, we performed a 3D TME simulation with these deduced cell populations, considering the microenvironment that could impact cancer cell growth. Immune cell landscape information derived from 193 cervical and 172 pancreatic cancer cases was used to estimate the degree of the positive or negative impact. Our analysis suggests that the deduced cells generated based on the characteristics of MiaPaCa2 cells are less influenced by the immune cell landscape within the TME compared to those of HeLa cells, highlighting that the fate of cancer cells is shaped by both the surrounding immune landscape and the intrinsic characteristics of the cancer cells.

15.
Plant J ; 119(2): 1091-1111, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38642374

ABSTRACT

Green feather algae (Bryopsidales) undergo a unique life cycle in which a single cell repeatedly executes nuclear division without cytokinesis, resulting in the development of a thallus (>100 mm) with characteristic morphology called coenocyte. Bryopsis is a representative coenocytic alga that has exceptionally high regeneration ability: extruded cytoplasm aggregates rapidly in seawater, leading to the formation of protoplasts. However, the genetic basis of the unique cell biology of Bryopsis remains poorly understood. Here, we present a high-quality assembly and annotation of the nuclear genome of Bryopsis sp. (90.7 Mbp, 27 contigs, N50 = 6.7 Mbp, 14 034 protein-coding genes). Comparative genomic analyses indicate that the genes encoding BPL-1/Bryohealin, the aggregation-promoting lectin, are heavily duplicated in Bryopsis, whereas homologous genes are absent in other ulvophyceans, suggesting the basis of regeneration capability of Bryopsis. Bryopsis sp. possesses >30 kinesins but only a single myosin, which differs from other green algae that have multiple types of myosin genes. Consistent with this biased motor toolkit, we observed that the bidirectional motility of chloroplasts in the cytoplasm was dependent on microtubules but not actin in Bryopsis sp. Most genes required for cytokinesis in plants are present in Bryopsis, including those in the SNARE or kinesin superfamily. Nevertheless, a kinesin crucial for cytokinesis initiation in plants (NACK/Kinesin-7II) is hardly expressed in the coenocytic part of the thallus, possibly underlying the lack of cytokinesis in this portion. The present genome sequence lays the foundation for experimental biology in coenocytic macroalgae.


Subject(s)
Genome, Plant , Genome, Plant/genetics , Phylogeny , Chlorophyta/genetics , Chlorophyta/physiology , Regeneration/genetics , Bryopsida/genetics , Bryopsida/physiology , Bryopsida/cytology , Kinesins/genetics , Kinesins/metabolism , Myosins/genetics , Myosins/metabolism
16.
EMBO J ; 40(19): e108375, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34375000

ABSTRACT

New SARS-CoV-2 variants are continuously emerging with critical implications for therapies or vaccinations. The 22 N-glycan sites of Spike remain highly conserved among SARS-CoV-2 variants, opening an avenue for robust therapeutic intervention. Here we used a comprehensive library of mammalian carbohydrate-binding proteins (lectins) to probe critical sugar residues on the full-length trimeric Spike and the receptor binding domain (RBD) of SARS-CoV-2. Two lectins, Clec4g and CD209c, were identified to strongly bind to Spike. Clec4g and CD209c binding to Spike was dissected and visualized in real time and at single-molecule resolution using atomic force microscopy. 3D modelling showed that both lectins can bind to a glycan within the RBD-ACE2 interface and thus interferes with Spike binding to cell surfaces. Importantly, Clec4g and CD209c significantly reduced SARS-CoV-2 infections. These data report the first extensive map and 3D structural modelling of lectin-Spike interactions and uncovers candidate receptors involved in Spike binding and SARS-CoV-2 infections. The capacity of CLEC4G and mCD209c lectins to block SARS-CoV-2 viral entry holds promise for pan-variant therapeutic interventions.


Subject(s)
Receptors, Mitogen/metabolism , SARS-CoV-2/metabolism , Animals , Binding Sites/physiology , COVID-19/virology , Cell Line , Chlorocebus aethiops , Glycosylation , HEK293 Cells , Humans , Mice , Molecular Dynamics Simulation , Protein Binding/physiology , Vero Cells , Virus Internalization
17.
Eur J Immunol ; : e2451092, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39194380

ABSTRACT

Dectin-1 is a C-type lectin-receptor involved in sensing fungi by innate immune cells. Encoded by the Clec7a gene, Dectin-1 exists in two major splice isoforms, Dectin-1a and 1b, which differ in the presence of a membrane-proximal stalk domain. As reported previously, this domain determines degradative routes for Dectin-1a and 1b leading to the generation of a stable N-terminal fragment exclusively from Dectin-1a. Here, we narrow down the responsible part of the stalk and demonstrate the stabilisation of the Dectin-1a N-terminal fragment in tetraspanin-enriched microdomains. C57BL/6 and BALB/c mice show divergent Dectin-1 isoform expression patterns, which are caused by a single nucleotide polymorphism in exon 3 of the Clec7a gene, leading to a non-sense Dectin-1a mRNA in C57BL/6 mice. Using backcrossing, we generated mice with the C57BL/6 Clec7a allele on a BALB/c background and compared these to the parental strains. Expression of the C57BL/6 allele leads to the exclusive presence of the Dectin-1b protein. Furthermore, it was associated with higher Dectin-1 mRNA expression, but less Dectin-1 at the cell surface according to flow cytometry. In neutrophils, this altered ROS production induced by Dectin-1 model ligands, while cellular responses in macrophages and dendritic cells were not significantly influenced by the Dectin-1 isoform pattern.

18.
Eur J Immunol ; 54(4): e2250318, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38072999

ABSTRACT

Innate lymphocytes comprise cytotoxic natural killer (NK) cells and tissue-resident innate lymphoid cells (ILC) that are subgrouped according to their cytokine profiles into group 1 ILC (ILC1), ILC2, and ILC3. However, cell surface receptors unambiguously defining or specifically activating such ILC subsets are scarcely known. Here, we report on the physiologic expression of the human activating C-type lectin-like receptor (CTLR) NKp65, a high-affinity receptor for the CTLR keratinocyte-associated C-type lectin (KACL). Tracking rare NKp65 transcripts in human blood, we identify ILC3 to selectively express NKp65. NKp65 expression not only demarcates "bona fide" ILC3 from likewise RORγt-expressing ILC precursors and lymphoid tissue inducer cells but also from mature NK cells which acquire the NKp65-relative NKp80 during a Notch-dependent differentiation from NKp65+ precursor cells. Hence, ILC3 and NK cells mutually exclusively and interdependently express the genetically coupled sibling receptors NKp65 and NKp80. Much alike NKp80, NKp65 promotes cytotoxicity by innate lymphocytes which may become relevant during pathophysiological reprogramming of ILC3. Altogether, we report the selective expression of the activating immunoreceptor NKp65 by ILC3 demarcating ILC3 from mature NK cells and endowing ILC3 with a dedicated immunosensor for the epidermal immune barrier.


Subject(s)
Biosensing Techniques , Immunity, Innate , Humans , Immunoassay , Killer Cells, Natural , Lectins, C-Type/metabolism
19.
FASEB J ; 38(10): e23687, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38785390

ABSTRACT

Mammalian spermatozoa have a surface covered with glycocalyx, consisting of heterogeneous glycoproteins and glycolipids. This complexity arises from diverse monosaccharides, distinct linkages, various isomeric glycans, branching levels, and saccharide sequences. The glycocalyx is synthesized by spermatozoa developing in the testis, and its subsequent alterations during their transit through the epididymis are a critical process for the sperm acquisition of fertilizing ability. In this study, we performed detailed analysis of the glycocalyx on the sperm surface of bull spermatozoa in relation to individual parts of the epididymis using a wide range (24) of lectins with specific carbohydrate binding preferences. Fluorescence analysis of intact sperm isolated from the bull epididymides was complemented by Western blot detection of protein extracts from the sperm plasma membrane fractions. Our experimental results revealed predominant sequential modification of bull sperm glycans with N-acetyllactosamine (LacNAc), followed by subsequent sialylation and fucosylation in a highly specific manner. Additionally, variations in the lectin detection on the sperm surface may indicate the acquisition or release of glycans or glycoproteins. Our study is the first to provide a complex analysis of the bull sperm glycocalyx modification during epididymal maturation.


Subject(s)
Epididymis , Glycocalyx , Lectins , Spermatozoa , Male , Animals , Glycocalyx/metabolism , Cattle , Epididymis/metabolism , Epididymis/cytology , Spermatozoa/metabolism , Lectins/metabolism , Polysaccharides/metabolism , Glycoproteins/metabolism
20.
FASEB J ; 38(5): e23543, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38466278

ABSTRACT

Collectin-11 (CL-11) is a pattern recognition molecule of the lectin pathway capable of interacting with collectin-10 (CL-10) and the MASPs to activate the complement cascade. Alternative splicing of the COLEC11 gene gives rise to two different isoforms found in serum (A and D). These isoforms vary in the length of their collagen-like region, which is involved in the stabilization of the trimeric subunit and the interaction with the MASPs. Here we aim at elucidating the biological differences of naturally occurring CL-11 isoforms A and D. We produced recombinant CL-11 as independent isoforms (CL-11A and CL-11D) and together with CL-10 (CL-10/11A, CL-10/11D). Both CL-11 isoforms associated with CL-10, but CL-11D did so to a lesser extent. CL-10/11 heterocomplexes were composed of trimeric subunits of CL-10 and CL-11, as opposed to CL-10 and CL-11 homotrimers. Heterocomplexes were more stable and migrated with higher apparent molecular weights. Immunoprecipitation of serum CL-11 and subsequent mass spectrometry analysis confirmed that native CL-11 circulates in the form of CL-10/11 heterocomplexes that associate with MASP-1, and MASP-3, but not necessarily MASP-2. Despite a shorter collagen region, CL-11D was capable to bind to the MASPs, suggesting that the missing exon 4 is not required for MASP association CL-11D had a reduced ligand binding compared to full-length CL-11A. Based on its reduced ability to oligomerize, form CL-10/11 heterocomplexes, and bind to ligands, we hypothesize that CL-11D may have a limited complement activation potential compared to full-length CL-11A.


Subject(s)
Alternative Splicing , Mannose-Binding Protein-Associated Serine Proteases , Protein Isoforms/genetics , Collagen , Collectins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL