Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.607
Filter
1.
Hum Mol Genet ; 33(10): 850-859, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38311346

ABSTRACT

Lynch syndrome (LS) is a common hereditary cancer syndrome caused by heterozygous germline pathogenic variants in DNA mismatch repair (MMR) genes. Splicing defect constitutes one of the major mechanisms for MMR gene inactivation. Using RT-PCR based RNA analysis, we investigated 24 potential spliceogenic variants in MMR genes and determined their pathogenicity based on refined splicing-related American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) criteria. Aberrant transcripts were confirmed in 19 variants and 17 of which were classified as pathogenic including 11 located outside of canonical splice sites. Most of these variants were previously reported in LS patients without mRNA splicing assessment. Thus, our study provides crucial evidence for pathogenicity determination, allowing for appropriate clinical follow-up. We also found that computational predictions were globally well correlated with RNA analysis results and the use of both SPiP and SpliceAI software appeared more efficient for splicing defect prediction.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , DNA Mismatch Repair , RNA Splicing , Humans , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA Mismatch Repair/genetics , RNA Splicing/genetics , Germ-Line Mutation/genetics , RNA Splice Sites/genetics
2.
Hum Mol Genet ; 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39180486

ABSTRACT

Microsatellite unstable colorectal cancer (MSI-CRC) can arise through germline mutations in mismatch repair (MMR) genes in individuals with Lynch syndrome (LS), or sporadically through promoter methylation of the MMR gene MLH1. Despite the different origins of hereditary and sporadic MSI tumours, their genomic features have not been extensively compared. A prominent feature of MMR-deficient genomes is the occurrence of many indels in short repeat sequences, an understudied mutation type due to the technical challenges of variant calling in these regions. In this study, we performed whole genome sequencing and RNA-sequencing on 29 sporadic and 14 hereditary MSI-CRCs. We compared the tumour groups by analysing genome-wide mutation densities, microsatellite repeat indels, recurrent protein-coding variants, signatures of single base, doublet base, and indel mutations, and changes in gene expression. We show that the mutational landscapes of hereditary and sporadic MSI-CRCs, including mutational signatures and mutation densities genome-wide and in microsatellites, are highly similar. Only a low number of differentially expressed genes were found, enriched to interferon-γ regulated immune response pathways. Analysis of the variance in allelic fractions of somatic variants in each tumour group revealed higher clonal heterogeneity in sporadic MSI-CRCs. Our results suggest that the differing molecular origins of MMR deficiency in hereditary and sporadic MSI-CRCs do not result in substantial differences in the mutational landscapes of these tumours. The divergent patterns of clonal evolution between the tumour groups may have clinical implications, as high clonal heterogeneity has been associated with decreased tumour immunosurveillance and reduced responsiveness to immunotherapy.

3.
Gastroenterology ; 166(5): 787-801.e11, 2024 05.
Article in English | MEDLINE | ID: mdl-38244726

ABSTRACT

BACKGROUND & AIMS: Lynch syndrome (LS) carriers develop mismatch repair-deficient neoplasia with high neoantigen (neoAg) rates. No detailed information on targetable neoAgs from LS precancers exists, which is crucial for vaccine development and immune-interception strategies. We report a focused somatic mutation and frameshift-neoAg landscape of microsatellite loci from colorectal polyps without malignant potential (PWOMP), precancers, and early-stage cancers in LS carriers. METHODS: We generated paired whole-exome and transcriptomic sequencing data from 8 colorectal PWOMP, 41 precancers, 8 advanced precancers, and 12 early-stage cancers of 43 LS carriers. A computational pipeline was developed to predict, rank, and prioritize the top 100 detected mutated neoAgs that were validated in vitro using ELISpot and tetramer assays. RESULTS: Mutation calling revealed >10 mut/Mb in 83% of cancers, 63% of advanced precancers, and 20% of precancers. Cancers displayed an average of 616 MHC-I neoAgs/sample, 294 in advanced precancers, and 107 in precancers. No neoAgs were detected in PWOMP. A total of 65% of our top 100 predicted neoAgs were immunogenic in vitro, and were present in 92% of cancers, 50% of advanced precancers, and 29% of precancers. We observed increased levels of naïve CD8+ and memory CD4+ T cells in mismatch repair-deficient cancers and precancers via transcriptomics analysis. CONCLUSIONS: Shared frameshift-neoAgs are generated within unstable microsatellite loci at initial stages of LS carcinogenesis and can induce T-cell responses, generating opportunities for vaccine development, targeting LS precancers and early-stage cancers.


Subject(s)
Antigens, Neoplasm , Colorectal Neoplasms, Hereditary Nonpolyposis , Exome Sequencing , Frameshift Mutation , Humans , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/immunology , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Female , Mutation , Male , Middle Aged , DNA Mismatch Repair/genetics , Microsatellite Repeats , Microsatellite Instability , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Colorectal Neoplasms/prevention & control , Adult , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use
4.
CA Cancer J Clin ; 68(3): 217-231, 2018 05.
Article in English | MEDLINE | ID: mdl-29485237

ABSTRACT

The current understanding of familial colorectal cancer was limited to descriptions of affected pedigrees until the early 1990s. A series of landscape-altering discoveries revealed that there were distinct forms of familial cancer, and most were related to genes previously not known to be involved in human disease. This review largely focuses on advances in our understanding of Lynch syndrome because of the unique relationship of this disease to defective DNA mismatch repair and the clinical implications this has for diagnostics, prevention, and therapy. Recent advances have occurred in our understanding of the epidemiology of this disease, and the advent of broad genetic panels has altered the approach to germline and somatic diagnoses for all of the familial colorectal cancer syndromes. Important advances have been made toward a more complete mechanistic understanding of the pathogenesis of neoplasia in the setting of Lynch syndrome, and these advances have important implications for prevention. Finally, paradigm-shifting approaches to treatment of Lynch-syndrome and related tumors have occurred through the development of immune checkpoint therapies for hypermutated cancers. CA Cancer J Clin 2018;68:217-231. © 2018 American Cancer Society.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/therapy , Adenoma/pathology , Cell Transformation, Neoplastic , Chemoprevention , Chemotherapy, Adjuvant , Colectomy , Colonoscopy , Colorectal Neoplasms/pathology , Colorectal Neoplasms, Hereditary Nonpolyposis/epidemiology , DNA Mutational Analysis , Genetic Testing , Germ-Line Mutation , Humans , Sequence Analysis, DNA/methods
5.
Genes Chromosomes Cancer ; 63(5): e23237, 2024 05.
Article in English | MEDLINE | ID: mdl-38722212

ABSTRACT

BACKGROUND: This study investigates the potential influence of genotype and parent-of-origin effects (POE) on the clinical manifestations of Lynch syndrome (LS) within families carrying (likely) disease-causing MSH6 germline variants. PATIENTS AND METHODS: A cohort of 1615 MSH6 variant carriers (310 LS families) was analyzed. Participants were categorized based on RNA expression and parental inheritance of the variant. Hazard ratios (HRs) were calculated using weighted Cox regression, considering external information to address ascertainment bias. The findings were cross-validated using the Prospective Lynch Syndrome Database (PLSD) for endometrial cancer (EC). RESULTS: No significant association was observed between genotype and colorectal cancer (CRC) risk (HR = 1.06, 95% confidence interval [CI]: 0.77-1.46). Patients lacking expected RNA expression exhibited a reduced risk of EC (Reference Cohort 1: HR = 0.68, 95% CI: 0.43-1.03; Reference Cohort 2: HR = 0.63, 95% CI: 0.46-0.87). However, these results could not be confirmed in the PLSD. Moreover, no association was found between POE and CRC risk (HR = 0.78, 95% CI: 0.52-1.17) or EC risk (Reference Cohort 1: HR = 0.93, 95% CI: 0.65-1.33; Reference Cohort 2: HR = 0.8, 95% CI: 0.64-1.19). DISCUSSION AND CONCLUSION: No evidence of POE was detected in MSH6 families. While RNA expression may be linked to varying risks of EC, further investigation is required to explore this observation.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , DNA-Binding Proteins , Genotype , Phenotype , Humans , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Female , Male , DNA-Binding Proteins/genetics , Middle Aged , Adult , Germ-Line Mutation , Aged , Genetic Predisposition to Disease , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology
6.
Genes Chromosomes Cancer ; 63(1): e23193, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37534630

ABSTRACT

PMS2 germline pathogenic variants are one of the major causes for Lynch syndrome and constitutional mismatch repair deficiencies. Variant identification in the 3' region of this gene is complicated by the presence of the pseudogene PMS2CL which shares a high sequence homology with PMS2. Consequently, short-fragment screening strategies (NGS, Sanger) may fail to discriminate variant's gene localization. Using a comprehensive analysis strategy, we assessed 42 NGS-detected variants in 76 patients and found 32 localized on PMS2 while 6 on PMS2CL. Interestingly, four variants were detected in either of them in different patients. Clinical phenotype was well correlated to genotype, making it very helpful in variant assessment. Our findings emphasize the necessity of more specific complementary analyses to confirm the gene origin of each variant detected in different individuals in order to avoid variant misinterpretation. In addition, we characterized two PMS2 genomic alterations involving Alu-mediated tandem duplication and gene conversion. Those mechanisms seemed to be particularly favored in PMS2 which contribute to frequent genomic rearrangements in the 3' region of the gene.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , Humans , Mismatch Repair Endonuclease PMS2/genetics , Colorectal Neoplasms/genetics , Pseudogenes , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Germ-Line Mutation
7.
Genes Chromosomes Cancer ; 63(3): e23231, 2024 03.
Article in English | MEDLINE | ID: mdl-38459936

ABSTRACT

Lynch syndrome-associated endometrial cancer patients often present multiple synchronous tumors and this assessment can affect treatment strategies. We present a case of a 27-year-old woman with tumors in the uterine corpus, cervix, and ovaries who was diagnosed with endometrial cancer and exhibited cervical invasion and ovarian metastasis. Her family history suggested Lynch syndrome, and genetic testing identified a variant of uncertain significance, MLH1 p.L582H. We conducted immunohistochemical staining, microsatellite instability analysis, and Sanger sequencing for Lynch syndrome-associated cancers in three generations of the family and identified consistent MLH1 loss. Whole-exome sequencing for the corpus, cervical, and ovarian tumors of the proband identified a copy-neutral loss of heterozygosity (LOH) occurring at the MLH1 position in all tumors. This indicated that the germline variant and the copy-neutral LOH led to biallelic loss of MLH1 and was the cause of cancer initiation. All tumors shared a portion of somatic mutations with high mutant allele frequencies, suggesting a common clonal origin. There were no mutations shared only between the cervix and ovary samples. The profiles of mutant allele frequencies shared between the corpus and cervix or ovary indicated that two different subclones originating from the corpus independently metastasized to the cervix or ovary. Additionally, all tumors presented unique mutations in endometrial cancer-associated genes such as ARID1A and PIK3CA. In conclusion, we demonstrated clonal origin and genomic diversity in a Lynch syndrome-associated endometrial cancer, suggesting the importance of evaluating multiple sites in Lynch syndrome patients with synchronous tumors.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Endometrial Neoplasms , MutL Protein Homolog 1 , Neoplasms, Multiple Primary , Adult , Female , Humans , Colorectal Neoplasms, Hereditary Nonpolyposis/complications , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA Mismatch Repair , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Genomics , Microsatellite Instability , MutL Protein Homolog 1/genetics , Neoplasms, Multiple Primary/genetics
8.
Int J Cancer ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39109916

ABSTRACT

To evaluate different Lynch syndrome (LS) screening approaches and establish an efficient and sensitive strategy are critical for clinical practice. In total, 583 patients with colorectal carcinoma (CRC) at Fudan University Shanghai Cancer Center were enrolled. Patient samples were examined by immunohistochemistry (IHC) and next-generation sequencing (NGS), and MLH1 promoter hypermethylation (MPH) was detected in MLH1-deficient cases. Germline genetic testing was performed in cases with deleterious variants and large genomic rearrangements (LGRs) of tumor MMR genes were detected in cases with dMMR or MSI-H cases with no MMR germline variants. Our results showed that triage with IHC and followed by BRAF/MLH1 methylation testing (Strategy 1) identified 93.3% (70/75) of LS cases. IHC followed by germline NGS (Strategy 2) or direct tumor NGS (Strategy 3) both identified 98.7% (74/75) of LS cases. The proportion of LGRs in LS cases was 16.0% (12/75), while 84.0% (63/75) showed SNV/Indel. The average cost per patient was ¥6010.81, ¥6058.48, and ¥8029.98 for Strategy 1, Strategy 2 and Strategy 3, respectively. The average time spent on different strategies was 4.74 days (Strategy 1), 4.89 days (Strategy 2), and 14.50 days (Strategy 3) per patient, respectively. LS and Lynch-like syndrome (LLS) were associated with an earlier onset age than MPH. In conclusion, we compared different workflows for LS screening and IHC plus germline NGS is recommended for LS screening when taking sensitivity, time, and cost into account. Moreover, multiplex ligation-dependent probe amplification made up for the shortcoming of NGS and should be incorporated into routine screening.

9.
Int J Cancer ; 155(12): 2201-2210, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39032036

ABSTRACT

Identifying Lynch syndrome significantly impacts cancer risk management, treatment, and prognosis. Validation of mutation risk predictive models for mismatch repair (MMR) genes is crucial for guiding genetic counseling and testing, particularly in the understudied Asian population. We evaluated the performance of four MMR mutation risk predictive models in a Chinese cohort of 604 patients with colorectal cancer (CRC), endometrial cancer (EC), or ovarian cancer (OC) in Taiwan. All patients underwent germline genetic testing and 36 (6.0%) carried a mutation in the MMR genes (MLH1, MSH2, MSH6, and PMS2). All models demonstrated good performance, with area under the receiver operating characteristic curves comparable to Western cohorts: PREMM5 0.80 (95% confidence interval [CI], 0.73-0.88), MMRPro 0.88 (95% CI, 0.82-0.94), MMRPredict 0.82 (95% CI, 0.74-0.90), and Myriad 0.76 (95% CI, 0.67-0.84). Notably, MMRPro exhibited exceptional performance across all subgroups regardless of family history (FH+ 0.88, FH- 0.83), cancer type (CRC 0.84, EC 0.85, OC 1.00), or sex (male 0.83, female 0.90). PREMM5 and MMRPredict had good accuracy in the FH+ subgroup (0.85 and 0.82, respectively) and in CRC patients (0.76 and 0.82, respectively). Using the ratio of observed and predicted mutation rates, MMRPro and PREMM5 had good overall fit, while MMRPredict and Myriad overestimated mutation rates. Risk threshold settings in different models led to different positive predictive values. We suggest a lower threshold (5%) for recommending genetic testing when using MMRPro, and a higher threshold (20%) when using PREMM5 and MMRPredict. Our findings have important implications for personalized mutation risk assessment and counseling on genetic testing.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , DNA Mismatch Repair , MutL Protein Homolog 1 , Adult , Aged , Female , Humans , Male , Middle Aged , Cohort Studies , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , DNA Mismatch Repair/genetics , DNA-Binding Proteins/genetics , East Asian People/genetics , Endometrial Neoplasms/genetics , Genetic Testing/methods , Germ-Line Mutation , Mismatch Repair Endonuclease PMS2/genetics , Mutation , MutL Protein Homolog 1/genetics , MutS Homolog 2 Protein/genetics , Ovarian Neoplasms/genetics , Taiwan/epidemiology
10.
Int J Cancer ; 154(8): 1455-1463, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38175816

ABSTRACT

Lynch syndrome (LS) predisposes to cancer in adulthood and is caused by heterozygous germline variants in a mismatch repair (MMR) gene. Recent studies show an increased prevalence of LS among children with cancer, suggesting a causal relationship. For LS-spectrum (LSS) cancers, including high-grade gliomas and colorectal cancer, causality has been supported by typical MMR-related tumor characteristics, but for non-LSS cancers, causality is unclear. We characterized 20 malignant tumors of 18 children with LS, including 16 non-LSS tumors. We investigated second hits, tumor mutational load, mutational signatures and MMR protein expression. In all LSS tumors and three non-LSS tumors, we detected MMR deficiency caused by second hit somatic alterations. Furthermore, these MMR-deficient tumors carried driver variants that likely originated as a consequence of MMR deficiency. However, in 13 non-LSS tumors (81%), a second hit and MMR deficiency were absent, thus a causal link between LS and cancer development in these children is lacking. These findings demonstrate that causality of LS in children with cancer, which can be determined by molecular tumor characterization, seems to be restricted to specific tumor types. Large molecular and epidemiological studies are needed to further refine the tumor spectrum in children with LS.


Subject(s)
Brain Neoplasms , Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , Neoplastic Syndromes, Hereditary , Child , Humans , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , Colorectal Neoplasms/pathology , Brain Neoplasms/genetics , Germ-Line Mutation , DNA Mismatch Repair/genetics , Microsatellite Instability , MutL Protein Homolog 1/genetics
11.
Cancer Sci ; 115(5): 1646-1655, 2024 May.
Article in English | MEDLINE | ID: mdl-38433331

ABSTRACT

The clinical features of sporadic mismatch repair deficiency (MMRd) and Lynch syndrome (LS) in Japanese patients with endometrial cancer (EC) were examined by evaluating the prevalence and prognostic factors of LS and sporadic MMRd in patients with EC. Targeted sequencing of five LS susceptibility genes (MLH1, MSH2, MSH6, PMS2, and EPCAM) was carried out in 443 patients with EC who were pathologically diagnosed with EC at the National Cancer Center Hospital between 2011 and 2018. Pathogenic variants in these genes were detected in 16 patients (3.7%). Immunohistochemistry for MMR proteins was undertaken in 337 of the 433 (77.9%) EC patients, and 91 patients (27.0%) showed absent expression of at least one MMR protein. The 13 cases of LS with MMR protein loss (93.8%) showed a favorable prognosis with a 5-year overall survival (OS) rate of 100%, although there was no statistically significant difference between this group and the sporadic MMRd group (p = 0.27). In the MMRd without LS group, the 5-year OS rate was significantly worse in seven patients with an aberrant p53 expression pattern than in those with p53 WT (53.6% vs. 93.9%, log-rank test; p = 0.0016). These results suggest that p53 abnormalities and pathogenic germline variants in MMR genes could be potential biomarkers for the molecular classification of EC with MMRd.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , DNA Mismatch Repair , Endometrial Neoplasms , Tumor Suppressor Protein p53 , Uterine Neoplasms , Adult , Aged , Aged, 80 and over , Female , Humans , Middle Aged , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , DNA Mismatch Repair/genetics , DNA-Binding Proteins/genetics , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Epithelial Cell Adhesion Molecule/genetics , Epithelial Cell Adhesion Molecule/metabolism , Japan , Mismatch Repair Endonuclease PMS2/genetics , MutL Protein Homolog 1/genetics , MutS Homolog 2 Protein/genetics , Prognosis , Tumor Suppressor Protein p53/genetics , Uterine Neoplasms/genetics , Uterine Neoplasms/pathology
12.
Prostate ; 84(10): 945-953, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38629217

ABSTRACT

BACKGROUND: Pathogenic germline variants in the mismatch repair (MMR) genes are associated with an increased risk of prostate cancer (PCa). Since 2010 we have recommended MMR carriers annual PSA testing from the age of 40. Prospective studies of the outcome of long-term PSA screening are lacking. This study aimed to investigate the incidence and characteristics of PCa in Norwegian MMR carriers attending annual PSA screening (PSA threshold >3.0 ng/mL) to evaluate whether our recommendations should be continued. METHODS: This is a prospective observational study of 225 male MMR carriers who were recommended annual PSA screening by the Section of Inherited Cancer, Oslo University Hospital from 2010 and onwards. Incidence and tumor characteristics (age, PSA at diagnosis, Gleason score, TNM score) were described. IHC and MSI-analyses were done on available tumors. Standardized incidence ratio (SIR) was calculated based on data from the Cancer Registry of Norway. RESULTS: Twenty-two of 225 (9.8%) had been diagnosed with PCa, including 10/69 (14.5%) MSH2 carriers and 8/61 (13.1%) MSH6 carriers. Ten of 20 (50%) tumors had Gleason score ≥4 + 3 on biopsy and 6/11 (54.5%) had a pathological T3a/b stage. Eight of 17 (47.1%) tumors showed abnormal staining on IHC and 3/13 (23.1%) were MSI-high. SIR was 9.54 (95% CI 5.98-14.45) for all MMR genes, 13.0 (95% CI 6.23-23.9) for MSH2 and 13.74 for MSH6 (95% CI 5.93-27.08). CONCLUSIONS: Our results indicate that the MMR genes, and especially MSH2 and MSH6, are associated with a significant risk of PCa, and a high number of tumors show aggressive characteristics. While the impact of screening on patient outcomes remains to be more firmly established, the high SIR values we observe provide support for continued PSA screening of MSH2 and MSH6 carriers. Studies are needed to provide optimal recommendations for PSA-threshold and to evaluate whether MLH1 and PMS2 carriers should not be recommended screening.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Early Detection of Cancer , Prostate-Specific Antigen , Prostatic Neoplasms , Humans , Male , Norway/epidemiology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/epidemiology , Prostatic Neoplasms/pathology , Prostatic Neoplasms/blood , Prostate-Specific Antigen/blood , Middle Aged , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/epidemiology , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , Prospective Studies , Early Detection of Cancer/methods , Aged , Adult , MutS Homolog 2 Protein/genetics , Incidence , DNA Mismatch Repair/genetics , Neoplasm Grading , DNA-Binding Proteins/genetics
13.
Cancer ; 2024 Oct 22.
Article in English | MEDLINE | ID: mdl-39435727

ABSTRACT

BACKGROUND: Lynch syndrome (LS) is an autosomal-dominant, hereditary cancer predisposition syndrome caused by pathogenic variants (PVs) in one of the mismatch-repair genes MLH1, MSH2/EPCAM, MSH6, or PMS2. Individuals who have MLH1 PVs have high lifetime risks of colorectal cancer (CRC) and endometrial cancer (EC). There is controversy regarding whether a younger age at diagnosis (or anticipation) occurs in MLH1-associated LS. The objective of this study was to assess anticipation in families with MLH1-associated LS by using statistical models while controlling for potential confounders. METHODS: Data from 31 families with MLH1 PVs were obtained from an academic registry. Wilcoxon signed-rank tests on parent-child-pairs as well as parametric Weibull and semiparametric Cox proportional hazards and Cox mixed-effects models were used to calculate hazard ratios or to compare mean ages at CRC/EC diagnosis by generation. Models were also corrected for ascertainment bias and birth-cohort effects. RESULTS: A trend toward younger ages at diagnosis of CRC/EC in successive generations, ranging from 3.2 to 15.7 years, was observed in MLH1 PV carrier families. A greater hazard for cancer in younger generations was not precluded by the inclusion of birth cohorts in the model. Individuals who had MLH1 variants with no Mlh1 activity were at a 78% greater hazard for CRC/EC than those who retained Mlh1 activity. CONCLUSIONS: The current results demonstrated evidence in support of anticipation in families with MLH1-associated LS across all statistical models. Mutational effects on Mlh1 activity influenced the hazard for CRC/EC. Screening based on the youngest age of cancer diagnosis in MLH1-LS families is recommended.

14.
Cancer ; 130(22): 3888-3893, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39024159

ABSTRACT

BACKGROUND: In 2017, the Food and Drug Administration approved pembrolizumab for treatment of any mismatch repair-deficient (dMMR) tumor making MMR immunohistochemistry (IHC) testing beneficial for all tumor types. For the first time, MMR IHC was not performed exclusively to screen for Lynch syndrome (LS). METHODS: In this study, all MMR IHC reports issued between 2017 and 2021 at an academic hospital were reviewed and completion of genetic testing was determined through chart review. Colorectal cancers (CRCs), endometrial cancers (ECs), and noncancerous lesions were excluded. RESULTS: Between 2017 and 2021, MMR IHC was completed in 1939 patients with a malignancy other than CRC or EC. Absent or weak staining for at least one MMR protein was detected in 115 (5.9%) patients and 59 (51%) of those completed germline genetic testing. Overall, the identification rate of LS in this cohort was 0.72%, which is similar to the rate in our previously reported CRC and EC universal screening cohort. A diagnosis of LS was most commonly made in patients with dMMR brain (18.75%) and small intestinal cancers (10.20%). Five additional patients were found to carry a pathogenic variant in a non-LS gene. CONCLUSIONS: Pan-cancer MMR testing for pembrolizumab consideration can identify LS cases at a rate similar to universal CRC and EC screening programs. A persistent challenge is subsequent uptake of genetic testing. MMR testing should be prioritized in brain and small intestinal tumors, and multigene panel testing is recommended in patients with dMMR, as unexpected pathogenic variants in non-LS genes were found as frequently as LS gene variants.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , DNA Mismatch Repair , Genetic Testing , Humans , Female , Genetic Testing/methods , DNA Mismatch Repair/genetics , Male , Middle Aged , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/drug therapy , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Aged , Adult , Brain Neoplasms/genetics , Brain Neoplasms/drug therapy , Immunohistochemistry , Aged, 80 and over , Antibodies, Monoclonal, Humanized/therapeutic use
15.
Cancer ; 130(3): 385-399, 2024 02 01.
Article in English | MEDLINE | ID: mdl-37751191

ABSTRACT

BACKGROUND: Mismatch-repair (MMR)/microsatellite instability (MSI) status has therapeutic implications in endometrial cancer (EC). The authors evaluated the concordance of testing and factors contributing to MMR expression heterogeneity. METHODS: Six hundred sixty-six ECs were characterized using immunohistochemistry (IHC), MSI testing, and mut-L homolog 1 (MLH1) methylation. Select samples underwent whole-transcriptome analysis and next-generation sequencing. MMR expression of metastatic/recurrent sites was evaluated. RESULTS: MSI testing identified 27.3% of cases as MSI-high (n = 182), MMR IHC identified 25.1% cases as MMR-deficient (n = 167), and 3.8% of cases (n = 25) demonstrated discordant results. A review of IHC staining explained discordant results in 18 cases, revealing subclonal loss of MLH1/Pms 1 homolog 2 (PMS2) (n = 10) and heterogeneous MMR IHC (mut-S homolog 6 [MSH6], n = 7; MLH1/PMS2, n = 1). MSH6-associated Lynch syndrome was diagnosed in three of six cases with heterogeneous expression. Subclonal or heterogeneous cases had a 38.9% recurrence rate (compared with 16.7% in complete MMR-deficient cases and 9% in MMR-proficient cases) and had abnormal MMR IHC results in all metastatic recurrent sites (n = 7). Tumors with subclonal MLH1/PMS2 demonstrated 74 differentially expressed genes (determined using digital spatial transcriptomics) when stratified by MLH1 expression, including many associated with epithelial-mesenchymal transition. CONCLUSIONS: Subclonal/heterogeneous MMR IHC cases showed epigenetic loss in 66.7%, germline mutations in 16.7%, and somatic mutations in 16.7%. MMR IHC reported as intact/deficient missed 21% of cases of Lynch syndrome. EC with subclonal/heterogeneous MMR expression demonstrated a high recurrence rate, and metastatic/recurrent sites were MMR-deficient. Transcriptional analysis indicated an increased risk for migration/metastasis, suggesting that clonal MMR deficiency may be a driver for tumor aggressiveness. Reporting MMR IHC only as intact/deficient, without reporting subclonal and heterogeneous staining, misses opportunities for biomarker-directed therapy. PLAIN LANGUAGE SUMMARY: Endometrial cancer is the most common gynecologic cancer, and 20%-40% of tumors have a defect in DNA proofreading known as mismatch-repair (MMR) deficiency. These results can be used to guide therapy. Tests for this defect can yield differing results, revealing heterogeneous (mixed) proofreading capabilities. Tumors with discordant testing results and mixed MMR findings can have germline or somatic defects in MMR genes. Cells with deficient DNA proofreading in tumors with mixed MMR findings have DNA expression profiles linked to more aggressive characteristics and cancer spread. These MMR-deficient cells may drive tumor behavior and the risk of spreading cancer.


Subject(s)
Brain Neoplasms , Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , Endometrial Neoplasms , Neoplastic Syndromes, Hereditary , Humans , Female , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Microsatellite Instability , Mismatch Repair Endonuclease PMS2/genetics , Endometrial Neoplasms/pathology , DNA Mismatch Repair/genetics , DNA , MutL Protein Homolog 1/genetics , MutL Protein Homolog 1/metabolism
16.
Cancer ; 130(10): 1733-1746, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38422006

ABSTRACT

The DNA mismatch repair (MMR) pathway is critical for correcting DNA mismatches generated during DNA replication. MMR-deficiency (MMR-D) leads to microsatellite instability (MSI) associated with an increased mutation rate, driving cancer development. This is particularly relevant in endometrial cancer (EC) as 25%-30% of tumors are of MMR-D/MSI-high (MSI-H) phenotype. Comprehensive assessment using immunohistochemistry (IHC) and sequencing-based techniques are necessary to fully evaluate ECs given the importance of molecular subtyping in staging and prognosis. This also influences treatment selection as clinical trials have demonstrated survival benefits for immune checkpoint inhibitors (ICIs) alone and in combination with chemotherapy for MMR-D/MSI-H EC patients in various treatment settings. As a portion of MMR-D/MSI-H ECs are driven by Lynch syndrome, an inherited cancer predisposition syndrome that is also associated with colorectal cancer, this molecular subtype also prompts germline assessment that can affect at-risk family members. Additionally, heterogeneity in the tumor immune microenvironment and tumor mutation burden (TMB) have been described by MMR mechanism, meaning MLH1 promoter hypermethylation versus germline/somatic MMR gene mutation, and this may affect response to ICI therapies. Variations by ancestry in prevalence and mechanism of MMR-D/MSI-H tumors have also been reported and may influence health disparities given observed differences in tumors of Black compared to White patients which may affect ICI eligibility. These observations highlight the need for additional prospective studies to evaluate the nuances regarding MMR-D heterogeneity as well as markers of resistance to inform future trials of combination therapies to further improve outcomes for patients with EC.


Subject(s)
DNA Mismatch Repair , Endometrial Neoplasms , Immune Checkpoint Inhibitors , Microsatellite Instability , Humans , Immune Checkpoint Inhibitors/therapeutic use , Endometrial Neoplasms/genetics , Endometrial Neoplasms/drug therapy , Female , DNA Mismatch Repair/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/drug therapy , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
17.
Am J Hum Genet ; 108(1): 163-175, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33357406

ABSTRACT

The lack of functional evidence for the majority of missense variants limits their clinical interpretability and poses a key barrier to the broad utility of carrier screening. In Lynch syndrome (LS), one of the most highly prevalent cancer syndromes, nearly 90% of clinically observed missense variants are deemed "variants of uncertain significance" (VUS). To systematically resolve their functional status, we performed a massively parallel screen in human cells to identify loss-of-function missense variants in the key DNA mismatch repair factor MSH2. The resulting functional effect map is substantially complete, covering 94% of the 17,746 possible variants, and is highly concordant (96%) with existing functional data and expert clinicians' interpretations. The large majority (89%) of missense variants were functionally neutral, perhaps unexpectedly in light of its evolutionary conservation. These data provide ready-to-use functional evidence to resolve the ∼1,300 extant missense VUSs in MSH2 and may facilitate the prospective classification of newly discovered variants in the clinic.


Subject(s)
Genetic Predisposition to Disease/genetics , MutS Homolog 2 Protein/genetics , Mutation, Missense/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA Mismatch Repair/genetics , HEK293 Cells , Humans
18.
Gastroenterology ; 164(5): 783-799, 2023 04.
Article in English | MEDLINE | ID: mdl-36706841

ABSTRACT

Lynch syndrome (LS) is one of the most prevalent hereditary cancer syndromes in humans and accounts for some 3% of unselected patients with colorectal or endometrial cancer and 10%-15% of those with DNA mismatch repair-deficient tumors. Previous studies have established the genetic basis of LS predisposition, but there have been significant advances recently in the understanding of the molecular pathogenesis of LS tumors, which has important implications in clinical management. At the same time, immunotherapy has revolutionized the treatment of advanced cancers with DNA mismatch repair defects. We aim to review the recent progress in the LS field and discuss how the accumulating epidemiologic, clinical, and molecular information has contributed to a more accurate and complete picture of LS, resulting in genotype- and immunologic subtype-specific strategies for surveillance, cancer prevention, and treatment.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , Endometrial Neoplasms , Female , Humans , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/therapy , Endometrial Neoplasms/genetics , Endometrial Neoplasms/therapy , Genotype , DNA Mismatch Repair/genetics , Microsatellite Instability
19.
Mod Pathol ; 37(3): 100423, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38191122

ABSTRACT

Universal tumor screening in endometrial carcinoma (EC) is increasingly adopted to identify individuals at risk of Lynch syndrome (LS). These cases involve mismatch repair-deficient (MMRd) EC without MLH1 promoter hypermethylation (PHM). LS is confirmed through the identification of germline MMR pathogenic variants (PV). In cases where these are not detected, emerging evidence highlights the significance of double-somatic MMR gene alterations as a sporadic cause of MMRd, alongside POLE/POLD1 exonuclease domain (EDM) PV leading to secondary MMR PV. Our understanding of the incidence of different MMRd EC origins not related to MLH1-PHM, their associations with clinicopathologic characteristics, and the prognostic implications remains limited. In a combined analysis of the PORTEC-1, -2, and -3 trials (n = 1254), 84 MMRd EC not related to MLH1-PHM were identified that successfully underwent paired tumor-normal tissue next-generation sequencing of the MMR and POLE/POLD1 genes. Among these, 37% were LS associated (LS-MMRd EC), 38% were due to double-somatic hits (DS-MMRd EC), and 25% remained unexplained. LS-MMRd EC exhibited higher rates of MSH6 (52% vs 19%) or PMS2 loss (29% vs 3%) than DS-MMRd EC, and exclusively showed MMR-deficient gland foci. DS-MMRd EC had higher rates of combined MSH2/MSH6 loss (47% vs 16%), loss of >2 MMR proteins (16% vs 3%), and somatic POLE-EDM PV (25% vs 3%) than LS-MMRd EC. Clinicopathologic characteristics, including age at tumor onset and prognosis, did not differ among the various groups. Our study validates the use of paired tumor-normal next-generation sequencing to identify definitive sporadic causes in MMRd EC unrelated to MLH1-PHM. MMR immunohistochemistry and POLE-EDM mutation status can aid in the differentiation between LS-MMRd EC and DS-MMRd EC. These findings emphasize the need for integrating tumor sequencing into LS diagnostics, along with clear interpretation guidelines, to improve clinical management. Although not impacting prognosis, confirmation of DS-MMRd EC may release patients and relatives from burdensome LS surveillance.


Subject(s)
DNA Mismatch Repair , Endometrial Neoplasms , Female , Humans , DNA Mismatch Repair/genetics , MutL Protein Homolog 1/genetics , MutL Protein Homolog 1/metabolism , Endometrial Neoplasms/pathology , Germ-Line Mutation , Mismatch Repair Endonuclease PMS2/genetics , Microsatellite Instability , DNA Methylation
20.
Genet Med ; : 101285, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39360752

ABSTRACT

INTRODUCTION: Genomic screening to identify individuals with Lynch Syndrome (LS) and those with a high polygenic risk score (PRS) promises to personalize Colorectal Cancer (CRC) screening. Understanding its clinical and economic impact is needed to inform screening guidelines and reimbursement policies. METHODS: We developed a Markov model to simulate individuals over a lifetime. We compared LS+PRS genomic screening to standard of care (SOC) for a cohort of US adults at age 30. The Markov model included health states of "no CRC", CRC stages (A-D) and death. We estimated incidence, mortality, and discounted economic outcomes of the population under different interventions. RESULTS: Screening 1000 individuals for LS+PRS resulted in 1.36 fewer CRC cases and 0.65 fewer deaths compared to SOC. The incremental cost-effectiveness ratio (ICER) was $124,415 per quality-adjusted life-year (QALY); screening had a 69% probability of being cost-effective using a willingness to pay threshold of $150,000/QALY. Setting the PRS threshold at the 90th percentile of the LS+PRS screening program to define individuals at high risk was most likely to be cost-effective compared to 95th, 85th, and 80th percentiles. CONCLUSION: Population-level LS+PRS screening is marginally cost-effective and a threshold of 90th percentile is more likely to be cost-effective than other thresholds.

SELECTION OF CITATIONS
SEARCH DETAIL