Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41.894
Filter
Add more filters

Publication year range
1.
Cell ; 187(11): 2875-2892.e21, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38626770

ABSTRACT

Ubiquitylation regulates most proteins and biological processes in a eukaryotic cell. However, the site-specific occupancy (stoichiometry) and turnover rate of ubiquitylation have not been quantified. Here we present an integrated picture of the global ubiquitylation site occupancy and half-life. Ubiquitylation site occupancy spans over four orders of magnitude, but the median ubiquitylation site occupancy is three orders of magnitude lower than that of phosphorylation. The occupancy, turnover rate, and regulation of sites by proteasome inhibitors are strongly interrelated, and these attributes distinguish sites involved in proteasomal degradation and cellular signaling. Sites in structured protein regions exhibit longer half-lives and stronger upregulation by proteasome inhibitors than sites in unstructured regions. Importantly, we discovered a surveillance mechanism that rapidly and site-indiscriminately deubiquitylates all ubiquitin-specific E1 and E2 enzymes, protecting them against accumulation of bystander ubiquitylation. The work provides a systems-scale, quantitative view of ubiquitylation properties and reveals general principles of ubiquitylation-dependent governance.


Subject(s)
Proteasome Endopeptidase Complex , Ubiquitination , Humans , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Proteolysis , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Animals , Mice , Cell Line
2.
Cell ; 187(1): 184-203.e28, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38181741

ABSTRACT

We performed comprehensive proteogenomic characterization of small cell lung cancer (SCLC) using paired tumors and adjacent lung tissues from 112 treatment-naive patients who underwent surgical resection. Integrated multi-omics analysis illustrated cancer biology downstream of genetic aberrations and highlighted oncogenic roles of FAT1 mutation, RB1 deletion, and chromosome 5q loss. Two prognostic biomarkers, HMGB3 and CASP10, were identified. Overexpression of HMGB3 promoted SCLC cell migration via transcriptional regulation of cell junction-related genes. Immune landscape characterization revealed an association between ZFHX3 mutation and high immune infiltration and underscored a potential immunosuppressive role of elevated DNA damage response activity via inhibition of the cGAS-STING pathway. Multi-omics clustering identified four subtypes with subtype-specific therapeutic vulnerabilities. Cell line and patient-derived xenograft-based drug tests validated the specific therapeutic responses predicted by multi-omics subtyping. This study provides a valuable resource as well as insights to better understand SCLC biology and improve clinical practice.


Subject(s)
Lung Neoplasms , Proteogenomics , Small Cell Lung Carcinoma , Humans , Cell Line , Lung Neoplasms/chemistry , Lung Neoplasms/genetics , Small Cell Lung Carcinoma/chemistry , Small Cell Lung Carcinoma/genetics , Heterografts , Biomarkers, Tumor/analysis
3.
Cell ; 187(8): 1907-1921.e16, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38552624

ABSTRACT

Hydroxyproline-rich glycoproteins (HRGPs) are a ubiquitous class of protein in the extracellular matrices and cell walls of plants and algae, yet little is known of their native structures or interactions. Here, we used electron cryomicroscopy (cryo-EM) to determine the structure of the hydroxyproline-rich mastigoneme, an extracellular filament isolated from the cilia of the alga Chlamydomonas reinhardtii. The structure demonstrates that mastigonemes are formed from two HRGPs (a filament of MST1 wrapped around a single copy of MST3) that both have hyperglycosylated poly(hydroxyproline) helices. Within the helices, O-linked glycosylation of the hydroxyproline residues and O-galactosylation of interspersed serine residues create a carbohydrate casing. Analysis of the associated glycans reveals how the pattern of hydroxyproline repetition determines the type and extent of glycosylation. MST3 possesses a PKD2-like transmembrane domain that forms a heteromeric polycystin-like cation channel with PKD2 and SIP, explaining how mastigonemes are tethered to ciliary membranes.


Subject(s)
Chlamydomonas reinhardtii , Cilia , Glycoproteins , Cilia/chemistry , Glycoproteins/chemistry , Glycosylation , Hydroxyproline/chemistry , Plants/metabolism , Chlamydomonas reinhardtii/chemistry
4.
Cell ; 187(5): 1296-1311.e26, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38428397

ABSTRACT

Most membrane proteins are modified by covalent addition of complex sugars through N- and O-glycosylation. Unlike proteins, glycans do not typically adopt specific secondary structures and remain very mobile, shielding potentially large fractions of protein surface. High glycan conformational freedom hinders complete structural elucidation of glycoproteins. Computer simulations may be used to model glycosylated proteins but require hundreds of thousands of computing hours on supercomputers, thus limiting routine use. Here, we describe GlycoSHIELD, a reductionist method that can be implemented on personal computers to graft realistic ensembles of glycan conformers onto static protein structures in minutes. Using molecular dynamics simulation, small-angle X-ray scattering, cryoelectron microscopy, and mass spectrometry, we show that this open-access toolkit provides enhanced models of glycoprotein structures. Focusing on N-cadherin, human coronavirus spike proteins, and gamma-aminobutyric acid receptors, we show that GlycoSHIELD can shed light on the impact of glycans on the conformation and activity of complex glycoproteins.


Subject(s)
Glycoproteins , Molecular Dynamics Simulation , Humans , Cryoelectron Microscopy , Glycoproteins/chemistry , Glycosylation , Polysaccharides/chemistry
5.
Cell ; 186(18): 3945-3967.e26, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37582358

ABSTRACT

Post-translational modifications (PTMs) play key roles in regulating cell signaling and physiology in both normal and cancer cells. Advances in mass spectrometry enable high-throughput, accurate, and sensitive measurement of PTM levels to better understand their role, prevalence, and crosstalk. Here, we analyze the largest collection of proteogenomics data from 1,110 patients with PTM profiles across 11 cancer types (10 from the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium [CPTAC]). Our study reveals pan-cancer patterns of changes in protein acetylation and phosphorylation involved in hallmark cancer processes. These patterns revealed subsets of tumors, from different cancer types, including those with dysregulated DNA repair driven by phosphorylation, altered metabolic regulation associated with immune response driven by acetylation, affected kinase specificity by crosstalk between acetylation and phosphorylation, and modified histone regulation. Overall, this resource highlights the rich biology governed by PTMs and exposes potential new therapeutic avenues.


Subject(s)
Neoplasms , Protein Processing, Post-Translational , Proteomics , Humans , Acetylation , Histones/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Phosphorylation , Proteomics/methods
6.
Cell ; 186(16): 3476-3498.e35, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37541199

ABSTRACT

To improve the understanding of chemo-refractory high-grade serous ovarian cancers (HGSOCs), we characterized the proteogenomic landscape of 242 (refractory and sensitive) HGSOCs, representing one discovery and two validation cohorts across two biospecimen types (formalin-fixed paraffin-embedded and frozen). We identified a 64-protein signature that predicts with high specificity a subset of HGSOCs refractory to initial platinum-based therapy and is validated in two independent patient cohorts. We detected significant association between lack of Ch17 loss of heterozygosity (LOH) and chemo-refractoriness. Based on pathway protein expression, we identified 5 clusters of HGSOC, which validated across two independent patient cohorts and patient-derived xenograft (PDX) models. These clusters may represent different mechanisms of refractoriness and implicate putative therapeutic vulnerabilities.


Subject(s)
Cystadenocarcinoma, Serous , Ovarian Neoplasms , Proteogenomics , Female , Humans , Cystadenocarcinoma, Serous/drug therapy , Cystadenocarcinoma, Serous/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics
7.
Cell ; 186(7): 1465-1477.e18, 2023 03 30.
Article in English | MEDLINE | ID: mdl-37001505

ABSTRACT

Receptor activity-modifying proteins (RAMPs) modulate the activity of many Family B GPCRs. We show that RAMP2 directly interacts with the glucagon receptor (GCGR), a Family B GPCR responsible for blood sugar homeostasis, and broadly inhibits receptor-induced downstream signaling. HDX-MS experiments demonstrate that RAMP2 enhances local flexibility in select locations in and near the receptor extracellular domain (ECD) and in the 6th transmembrane helix, whereas smFRET experiments show that this ECD disorder results in the inhibition of active and intermediate states of the intracellular surface. We determined the cryo-EM structure of the GCGR-Gs complex at 2.9 Å resolution in the presence of RAMP2. RAMP2 apparently does not interact with GCGR in an ordered manner; however, the receptor ECD is indeed largely disordered along with rearrangements of several intracellular hallmarks of activation. Our studies suggest that RAMP2 acts as a negative allosteric modulator of GCGR by enhancing conformational sampling of the ECD.


Subject(s)
Glucagon , Receptors, Glucagon , Cell Membrane/metabolism , Glucagon/metabolism , Receptors, Glucagon/metabolism , Receptor Activity-Modifying Protein 2/metabolism
8.
Cell ; 185(5): 764-776, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35245480

ABSTRACT

In the last decade, the notion that mRNA modifications are involved in regulation of gene expression was demonstrated in thousands of studies. To date, new technologies and methods allow accurate identification, transcriptome-wide mapping, and functional characterization of a growing number of RNA modifications, providing important insights into the biology of these marks. Most of the methods and approaches were developed for studying m6A, the most prevalent internal mRNA modification. However, unique properties of other RNA modifications stimulated the development of additional approaches. In this technical primer, we will discuss the available tools and approaches for detecting and studying different RNA modifications.


Subject(s)
RNA Processing, Post-Transcriptional , RNA , Epigenesis, Genetic , RNA/genetics , RNA/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome
9.
Cell ; 185(4): 712-728.e14, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35063084

ABSTRACT

Tau (MAPT) drives neuronal dysfunction in Alzheimer disease (AD) and other tauopathies. To dissect the underlying mechanisms, we combined an engineered ascorbic acid peroxidase (APEX) approach with quantitative affinity purification mass spectrometry (AP-MS) followed by proximity ligation assay (PLA) to characterize Tau interactomes modified by neuronal activity and mutations that cause frontotemporal dementia (FTD) in human induced pluripotent stem cell (iPSC)-derived neurons. We established interactions of Tau with presynaptic vesicle proteins during activity-dependent Tau secretion and mapped the Tau-binding sites to the cytosolic domains of integral synaptic vesicle proteins. We showed that FTD mutations impair bioenergetics and markedly diminished Tau's interaction with mitochondria proteins, which were downregulated in AD brains of multiple cohorts and correlated with disease severity. These multimodal and dynamic Tau interactomes with exquisite spatial resolution shed light on Tau's role in neuronal function and disease and highlight potential therapeutic targets to block Tau-mediated pathogenesis.


Subject(s)
Mitochondria/metabolism , Nerve Degeneration/metabolism , Protein Interaction Maps , Synapses/metabolism , tau Proteins/metabolism , Alzheimer Disease/genetics , Amino Acids/metabolism , Biotinylation , Brain/metabolism , Brain/pathology , Cell Nucleus/metabolism , Disease Progression , Energy Metabolism , Frontotemporal Dementia/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Mutant Proteins/metabolism , Mutation/genetics , Nerve Degeneration/pathology , Neurons/metabolism , Protein Binding , Protein Domains , Proteomics , Severity of Illness Index , Subcellular Fractions/metabolism , Tauopathies/genetics , tau Proteins/chemistry
10.
Cell ; 185(26): 5040-5058.e19, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36563667

ABSTRACT

Spatial molecular profiling of complex tissues is essential to investigate cellular function in physiological and pathological states. However, methods for molecular analysis of large biological specimens imaged in 3D are lacking. Here, we present DISCO-MS, a technology that combines whole-organ/whole-organism clearing and imaging, deep-learning-based image analysis, robotic tissue extraction, and ultra-high-sensitivity mass spectrometry. DISCO-MS yielded proteome data indistinguishable from uncleared samples in both rodent and human tissues. We used DISCO-MS to investigate microglia activation along axonal tracts after brain injury and characterized early- and late-stage individual amyloid-beta plaques in a mouse model of Alzheimer's disease. DISCO-bot robotic sample extraction enabled us to study the regional heterogeneity of immune cells in intact mouse bodies and aortic plaques in a complete human heart. DISCO-MS enables unbiased proteome analysis of preclinical and clinical tissues after unbiased imaging of entire specimens in 3D, identifying diagnostic and therapeutic opportunities for complex diseases. VIDEO ABSTRACT.


Subject(s)
Alzheimer Disease , Proteome , Mice , Humans , Animals , Proteome/analysis , Proteomics/methods , Alzheimer Disease/pathology , Amyloid beta-Peptides , Mass Spectrometry , Plaque, Amyloid
11.
Cell ; 185(4): 641-653.e17, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35123651

ABSTRACT

HIV-1 Env mediates viral entry into host cells and is the sole target for neutralizing antibodies. However, Env structure and organization in its native virion context has eluded detailed characterization. Here, we used cryo-electron tomography to analyze Env in mature and immature HIV-1 particles. Immature particles showed distinct Env positioning relative to the underlying Gag lattice, providing insights into long-standing questions about Env incorporation. A 9.1-Å sub-tomogram-averaged reconstruction of virion-bound Env in conjunction with structural mass spectrometry revealed unexpected features, including a variable central core of the gp41 subunit, heterogeneous glycosylation between protomers, and a flexible stalk that allows Env tilting and variable exposure of neutralizing epitopes. Together, our results provide an integrative understanding of HIV assembly and structural variation in Env antigen presentation.


Subject(s)
Cryoelectron Microscopy , Electron Microscope Tomography , Virion/ultrastructure , env Gene Products, Human Immunodeficiency Virus/ultrastructure , gag Gene Products, Human Immunodeficiency Virus/ultrastructure , 2,2'-Dipyridyl/analogs & derivatives , 2,2'-Dipyridyl/pharmacology , Amino Acid Sequence , Disulfides/pharmacology , Epitopes/chemistry , HEK293 Cells , HIV Envelope Protein gp41/chemistry , Humans , Hydrogen Deuterium Exchange-Mass Spectrometry , Models, Molecular , Neutralization Tests , Peptides/chemistry , Polysaccharides/chemistry , Protein Domains , Protein Structure, Secondary , Protein Subunits/chemistry , env Gene Products, Human Immunodeficiency Virus/chemistry
12.
Cell ; 184(15): 4073-4089.e17, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34214469

ABSTRACT

Cellular processes arise from the dynamic organization of proteins in networks of physical interactions. Mapping the interactome has therefore been a central objective of high-throughput biology. However, the dynamics of protein interactions across physiological contexts remain poorly understood. Here, we develop a quantitative proteomic approach combining protein correlation profiling with stable isotope labeling of mammals (PCP-SILAM) to map the interactomes of seven mouse tissues. The resulting maps provide a proteome-scale survey of interactome rewiring across mammalian tissues, revealing more than 125,000 unique interactions at a quality comparable to the highest-quality human screens. We identify systematic suppression of cross-talk between the evolutionarily ancient housekeeping interactome and younger, tissue-specific modules. Rewired proteins are tightly regulated by multiple cellular mechanisms and are implicated in disease. Our study opens up new avenues to uncover regulatory mechanisms that shape in vivo interactome responses to physiological and pathophysiological stimuli in mammalian systems.


Subject(s)
Organ Specificity , Protein Interaction Mapping , Animals , Isotope Labeling , Male , Mammals , Mice, Inbred C57BL , Reproducibility of Results
13.
Cell ; 184(2): 545-559.e22, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33357446

ABSTRACT

Biological processes are regulated by intermolecular interactions and chemical modifications that do not affect protein levels, thus escaping detection in classical proteomic screens. We demonstrate here that a global protein structural readout based on limited proteolysis-mass spectrometry (LiP-MS) detects many such functional alterations, simultaneously and in situ, in bacteria undergoing nutrient adaptation and in yeast responding to acute stress. The structural readout, visualized as structural barcodes, captured enzyme activity changes, phosphorylation, protein aggregation, and complex formation, with the resolution of individual regulated functional sites such as binding and active sites. Comparison with prior knowledge, including other 'omics data, showed that LiP-MS detects many known functional alterations within well-studied pathways. It suggested distinct metabolite-protein interactions and enabled identification of a fructose-1,6-bisphosphate-based regulatory mechanism of glucose uptake in E. coli. The structural readout dramatically increases classical proteomics coverage, generates mechanistic hypotheses, and paves the way for in situ structural systems biology.


Subject(s)
Escherichia coli Proteins/metabolism , Imaging, Three-Dimensional , Proteome/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Allosteric Regulation , Amino Acid Sequence , Escherichia coli/enzymology , Escherichia coli/metabolism , Mass Spectrometry , Molecular Dynamics Simulation , Osmotic Pressure , Phosphorylation , Proteolysis , Reproducibility of Results , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Stress, Physiological
14.
Cell ; 184(17): 4579-4592.e24, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34297925

ABSTRACT

Antibacterial agents target the products of essential genes but rarely achieve complete target inhibition. Thus, the all-or-none definition of essentiality afforded by traditional genetic approaches fails to discern the most attractive bacterial targets: those whose incomplete inhibition results in major fitness costs. In contrast, gene "vulnerability" is a continuous, quantifiable trait that relates the magnitude of gene inhibition to the effect on bacterial fitness. We developed a CRISPR interference-based functional genomics method to systematically titrate gene expression in Mycobacterium tuberculosis (Mtb) and monitor fitness outcomes. We identified highly vulnerable genes in various processes, including novel targets unexplored for drug discovery. Equally important, we identified invulnerable essential genes, potentially explaining failed drug discovery efforts. Comparison of vulnerability between the reference and a hypervirulent Mtb isolate revealed incomplete conservation of vulnerability and that differential vulnerability can predict differential antibacterial susceptibility. Our results quantitatively redefine essential bacterial processes and identify high-value targets for drug development.


Subject(s)
Gene Expression Regulation, Bacterial , Genome, Bacterial , Mycobacterium tuberculosis/genetics , Amino Acyl-tRNA Synthetases/metabolism , Antitubercular Agents/pharmacology , Bayes Theorem , Biological Evolution , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Gene Expression Regulation, Bacterial/drug effects , Gene Silencing/drug effects , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , RNA, Guide, Kinetoplastida/genetics
15.
Cell ; 182(1): 200-225.e35, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32649874

ABSTRACT

To explore the biology of lung adenocarcinoma (LUAD) and identify new therapeutic opportunities, we performed comprehensive proteogenomic characterization of 110 tumors and 101 matched normal adjacent tissues (NATs) incorporating genomics, epigenomics, deep-scale proteomics, phosphoproteomics, and acetylproteomics. Multi-omics clustering revealed four subgroups defined by key driver mutations, country, and gender. Proteomic and phosphoproteomic data illuminated biology downstream of copy number aberrations, somatic mutations, and fusions and identified therapeutic vulnerabilities associated with driver events involving KRAS, EGFR, and ALK. Immune subtyping revealed a complex landscape, reinforced the association of STK11 with immune-cold behavior, and underscored a potential immunosuppressive role of neutrophil degranulation. Smoking-associated LUADs showed correlation with other environmental exposure signatures and a field effect in NATs. Matched NATs allowed identification of differentially expressed proteins with potential diagnostic and therapeutic utility. This proteogenomics dataset represents a unique public resource for researchers and clinicians seeking to better understand and treat lung adenocarcinomas.


Subject(s)
Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Proteogenomics , Adenocarcinoma of Lung/immunology , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Carcinogenesis/genetics , Carcinogenesis/pathology , DNA Copy Number Variations/genetics , DNA Methylation/genetics , Female , Humans , Lung Neoplasms/immunology , Male , Middle Aged , Mutation/genetics , Oncogene Proteins, Fusion , Phenotype , Phosphoproteins/metabolism , Proteome/metabolism
16.
Cell ; 181(2): 460-474.e14, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32191846

ABSTRACT

Plants are foundational for global ecological and economic systems, but most plant proteins remain uncharacterized. Protein interaction networks often suggest protein functions and open new avenues to characterize genes and proteins. We therefore systematically determined protein complexes from 13 plant species of scientific and agricultural importance, greatly expanding the known repertoire of stable protein complexes in plants. By using co-fractionation mass spectrometry, we recovered known complexes, confirmed complexes predicted to occur in plants, and identified previously unknown interactions conserved over 1.1 billion years of green plant evolution. Several novel complexes are involved in vernalization and pathogen defense, traits critical for agriculture. We also observed plant analogs of animal complexes with distinct molecular assemblies, including a megadalton-scale tRNA multi-synthetase complex. The resulting map offers a cross-species view of conserved, stable protein assemblies shared across plant cells and provides a mechanistic, biochemical framework for interpreting plant genetics and mutant phenotypes.


Subject(s)
Plant Proteins/genetics , Plant Proteins/metabolism , Protein Interaction Maps/physiology , Mass Spectrometry/methods , Plants/genetics , Plants/metabolism , Protein Interaction Mapping/methods , Proteomics/methods
17.
Cell ; 182(3): 685-712.e19, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32645325

ABSTRACT

The causative agent of the coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected millions and killed hundreds of thousands of people worldwide, highlighting an urgent need to develop antiviral therapies. Here we present a quantitative mass spectrometry-based phosphoproteomics survey of SARS-CoV-2 infection in Vero E6 cells, revealing dramatic rewiring of phosphorylation on host and viral proteins. SARS-CoV-2 infection promoted casein kinase II (CK2) and p38 MAPK activation, production of diverse cytokines, and shutdown of mitotic kinases, resulting in cell cycle arrest. Infection also stimulated a marked induction of CK2-containing filopodial protrusions possessing budding viral particles. Eighty-seven drugs and compounds were identified by mapping global phosphorylation profiles to dysregulated kinases and pathways. We found pharmacologic inhibition of the p38, CK2, CDK, AXL, and PIKFYVE kinases to possess antiviral efficacy, representing potential COVID-19 therapies.


Subject(s)
Betacoronavirus/metabolism , Coronavirus Infections/metabolism , Drug Evaluation, Preclinical/methods , Pneumonia, Viral/metabolism , Proteomics/methods , A549 Cells , Angiotensin-Converting Enzyme 2 , Animals , Antiviral Agents/pharmacology , COVID-19 , Caco-2 Cells , Casein Kinase II/antagonists & inhibitors , Casein Kinase II/metabolism , Chlorocebus aethiops , Coronavirus Infections/virology , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , HEK293 Cells , Host-Pathogen Interactions , Humans , Pandemics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphorylation , Pneumonia, Viral/virology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism , Axl Receptor Tyrosine Kinase
18.
Cell ; 182(1): 245-261.e17, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32649877

ABSTRACT

Genomic studies of lung adenocarcinoma (LUAD) have advanced our understanding of the disease's biology and accelerated targeted therapy. However, the proteomic characteristics of LUAD remain poorly understood. We carried out a comprehensive proteomics analysis of 103 cases of LUAD in Chinese patients. Integrative analysis of proteome, phosphoproteome, transcriptome, and whole-exome sequencing data revealed cancer-associated characteristics, such as tumor-associated protein variants, distinct proteomics features, and clinical outcomes in patients at an early stage or with EGFR and TP53 mutations. Proteome-based stratification of LUAD revealed three subtypes (S-I, S-II, and S-III) related to different clinical and molecular features. Further, we nominated potential drug targets and validated the plasma protein level of HSP 90ß as a potential prognostic biomarker for LUAD in an independent cohort. Our integrative proteomics analysis enables a more comprehensive understanding of the molecular landscape of LUAD and offers an opportunity for more precise diagnosis and treatment.


Subject(s)
Adenocarcinoma of Lung/metabolism , Lung Neoplasms/metabolism , Proteomics , Adenocarcinoma of Lung/genetics , Asian People/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Drug Delivery Systems , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Male , Middle Aged , Mutation/genetics , Neoplasm Staging , Phosphoproteins/metabolism , Principal Component Analysis , Prognosis , Proteome/metabolism , Treatment Outcome , Tumor Suppressor Protein p53/genetics
19.
Cell ; 181(5): 1046-1061.e6, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32392465

ABSTRACT

Since their discovery, giant viruses have expanded our understanding of the principles of virology. Due to their gargantuan size and complexity, little is known about the life cycles of these viruses. To answer outstanding questions regarding giant virus infection mechanisms, we set out to determine biomolecular conditions that promote giant virus genome release. We generated four infection intermediates in Samba virus (Mimivirus genus, lineage A) as visualized by cryoelectron microscopy (cryo-EM), cryoelectron tomography (cryo-ET), and scanning electron microscopy (SEM). Each of these four intermediates reflects similar morphology to a stage that occurs in vivo. We show that these genome release stages are conserved in other mimiviruses. Finally, we identified proteins that are released from Samba and newly discovered Tupanvirus through differential mass spectrometry. Our work revealed the molecular forces that trigger infection are conserved among disparate giant viruses. This study is also the first to identify specific proteins released during the initial stages of giant virus infection.


Subject(s)
Giant Viruses/genetics , Giant Viruses/metabolism , Giant Viruses/physiology , Capsid/metabolism , DNA Viruses/genetics , Genome, Viral/genetics , Proteomics/methods , Virus Assembly/genetics , Virus Assembly/physiology , Virus Diseases/genetics , Viruses/genetics
20.
Cell ; 183(5): 1436-1456.e31, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33212010

ABSTRACT

The integration of mass spectrometry-based proteomics with next-generation DNA and RNA sequencing profiles tumors more comprehensively. Here this "proteogenomics" approach was applied to 122 treatment-naive primary breast cancers accrued to preserve post-translational modifications, including protein phosphorylation and acetylation. Proteogenomics challenged standard breast cancer diagnoses, provided detailed analysis of the ERBB2 amplicon, defined tumor subsets that could benefit from immune checkpoint therapy, and allowed more accurate assessment of Rb status for prediction of CDK4/6 inhibitor responsiveness. Phosphoproteomics profiles uncovered novel associations between tumor suppressor loss and targetable kinases. Acetylproteome analysis highlighted acetylation on key nuclear proteins involved in the DNA damage response and revealed cross-talk between cytoplasmic and mitochondrial acetylation and metabolism. Our results underscore the potential of proteogenomics for clinical investigation of breast cancer through more accurate annotation of targetable pathways and biological features of this remarkably heterogeneous malignancy.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinogenesis/genetics , Carcinogenesis/pathology , Molecular Targeted Therapy , Proteogenomics , APOBEC Deaminases/metabolism , Adult , Aged , Aged, 80 and over , Breast Neoplasms/immunology , Breast Neoplasms/therapy , Cohort Studies , DNA Damage , DNA Repair , Female , Humans , Immunotherapy , Metabolomics , Middle Aged , Mutagenesis/genetics , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Receptor, ErbB-2/metabolism , Retinoblastoma Protein/metabolism , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL