Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 810
Filter
1.
FASEB J ; 38(14): e23812, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39041354

ABSTRACT

The application of metagenomic next-generation sequencing (mNGS) in pathogens detection of cerebrospinal fluid (CSF) is limited because clinical, microbiological, and biological information are not well connected. We analyzed the 428 enrolled patients' clinical features, pathogens diagnostic efficiency of mNGS in CSF, microbial community structure and composition in CSF, and correlation of microbial and clinical biomarkers in CSF. General characteristics were unspecific but helpful in formulating a differential diagnosis. CSF mNGS has a higher detection rate (34.6%) compared to traditional methods (5.4%). mNGS detection rate was higher when the time from onset to CSF collection was ≤20 days, the CSF leukocytes count was >200 × 106/L, the CSF protein concentration was >1.3 g/L, or CSF glucose concentration was ≤2.5 mmol/L in non-postoperative bacterial CNS infections (CNSi). CSF was not strictly a sterile environment, and the potential pathogens may contribute to the dysbiosis of CSF microbiome. Furthermore, clinical biomarkers were significantly relevant to CNS pathogens. Clinical data are helpful in choosing a proper opportunity to obtain an accurate result of mNGS, and can speculate whether the mNGS results are correct or not. Our study is a pioneering study exploring the CSF microbiome in different CNSIs.


Subject(s)
Central Nervous System Infections , High-Throughput Nucleotide Sequencing , Metagenomics , Humans , Male , Female , Middle Aged , High-Throughput Nucleotide Sequencing/methods , Adult , Metagenomics/methods , Aged , Central Nervous System Infections/cerebrospinal fluid , Central Nervous System Infections/microbiology , Central Nervous System Infections/diagnosis , Adolescent , Biomarkers/cerebrospinal fluid , Child , Young Adult , Cerebrospinal Fluid/microbiology , Aged, 80 and over , Child, Preschool , Metagenome
2.
Rev Med Virol ; 34(3): e2538, 2024 May.
Article in English | MEDLINE | ID: mdl-38658176

ABSTRACT

Serious adverse events following vaccination include medical complications that require hospitalisation. The live varicella vaccine that was approved by the Food and Drug Administration in the United States in 1995 has an excellent safety record. Since the vaccine is a live virus, adverse events are more common in immunocompromised children who are vaccinated inadvertently. This review includes only serious adverse events in children considered to be immunocompetent. The serious adverse event called varicella vaccine meningitis was first reported in a hospitalised immunocompetent child in 2008. When we carried out a literature search, we found 15 cases of immunocompetent children and adolescents with varicella vaccine meningitis; the median age was 11 years. Eight of the children had received two varicella vaccinations. Most of the children also had a concomitant herpes zoster rash, although three did not. The children lived in the United States, Greece, Germany, Switzerland, and Japan. During our literature search, we found five additional cases of serious neurological events in immunocompetent children; these included 4 cases of progressive herpes zoster and one case of acute retinitis. Pulses of enteral corticosteroids as well as a lack of herpes simplex virus antibody may be risk factors for reactivation in immunocompetent children. All 20 children with adverse events were treated with acyclovir and recovered; 19 were hospitalised and one child was managed as an outpatient. Even though the number of neurological adverse events remains exceedingly low following varicella vaccination, we recommend documentation of those caused by the vaccine virus.


Subject(s)
Chickenpox Vaccine , Meningitis, Viral , Adolescent , Child , Child, Preschool , Female , Humans , Male , Acyclovir/therapeutic use , Antiviral Agents/therapeutic use , Chickenpox/prevention & control , Chickenpox/virology , Chickenpox Vaccine/administration & dosage , Chickenpox Vaccine/adverse effects , Chickenpox Vaccine/immunology , Herpesvirus 3, Human/immunology , Meningitis, Viral/virology , Nervous System Diseases/virology , Nervous System Diseases/etiology , Vaccination/adverse effects , Virus Activation/drug effects
3.
J Infect Dis ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008608

ABSTRACT

BACKGROUND: Clinical impact of plasma metagenomic next-generation sequencing (mNGS) on infection diagnosis and antimicrobial therapy in immunocompromised patients with suspected infection remains unclear. METHODS: Between March and December 2022, 424 cases with fever, infection history, mechanical ventilation, or imaging abnormalities underwent plasma mNGS testing at a single center. Eleven patients have received solid organ transplantation, and the remaining patients were categorised into febrile neutropenia (FN), non-neutropenia (NN), and non-haematologic disease (NTHD) groups based on immunosuppression severity. The diagnostic rate of infection and the utilisation of antimicrobial agents based on mNGS were assessed. RESULTS: The use of mNGS significantly improved the diagnostic rates for fungi in the FN (56.1%, P = 0.003) and NN (58.8%, P = 0.008) groups versus the NHD group (33.3%). Positive impacts associated with therapy were significantly greater than negative impacts across all three groups (all P < 0.001), and the utilisation of escalation therapy was significantly more frequent in the FN group than in the NN groups (P = 0.006). Over 70% of cases with negative mNGS results across the three groups underwent de-escalation therapy, with >1/3 being discontinued, preventing antimicrobial overuse. CONCLUSIONS: Plasma mNGS has a clinically confirmed positive impact in immunocompromised patients with neutropenia, improving the diagnosis of fungal infections and antimicrobial therapy.

4.
J Infect Dis ; 229(1): 223-231, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-37506257

ABSTRACT

BACKGROUND: The impact of metagenomic next-generation sequencing (mNGS) on antimicrobial stewardship in patients with lower respiratory tract infections (LRTIs) is still unknown. METHODS: This retrospective cohort study included patients who had LRTIs diagnosed and underwent bronchoalveolar lavage between September 2019 and December 2020. Patients who underwent both mNGS and conventional microbiologic tests were classified as the mNGS group, while those with conventional tests only were included as a control group. A 1:1 propensity score match for baseline variables was conducted, after which changes in antimicrobial stewardship between the 2 groups were assessed. RESULTS: A total of 681 patients who had an initial diagnosis of LRTIs and underwent bronchoalveolar lavage were evaluated; 306 patients were finally included, with 153 in each group. mNGS was associated with lower rates of antibiotic escalation than in the control group (adjusted odds ratio, 0.466 [95% confidence interval, .237-.919]; P = .02), but there was no association with antibiotic de-escalation. Compared with the control group, more patients discontinued the use of antivirals in the mNGS group. CONCLUSIONS: The use of mNGS was associated with lower rates of antibiotic escalation and may facilitate the cessation of antivirals, but not contribute to antibiotic de-escalation in patients with LRTIs.


Subject(s)
Antimicrobial Stewardship , Respiratory Tract Infections , Humans , Bronchoalveolar Lavage Fluid , Retrospective Studies , High-Throughput Nucleotide Sequencing , Respiratory Tract Infections/drug therapy , Anti-Bacterial Agents/therapeutic use , Dimercaprol , Metagenomics , Antiviral Agents , Sensitivity and Specificity
5.
Brief Bioinform ; 23(2)2022 03 10.
Article in English | MEDLINE | ID: mdl-35108376

ABSTRACT

Metagenomic next-generation sequencing (mNGS) enables comprehensive pathogen detection and has become increasingly popular in clinical diagnosis. The distinct pathogenic traits between strains require mNGS to achieve a strain-level resolution, but an equivocal concept of 'strain' as well as the low pathogen loads in most clinical specimens hinders such strain awareness. Here we introduce a metagenomic intra-species typing (MIST) tool (https://github.com/pandafengye/MIST), which hierarchically organizes reference genomes based on average nucleotide identity (ANI) and performs maximum likelihood estimation to infer the strain-level compositional abundance. In silico analysis using synthetic datasets showed that MIST accurately predicted the strain composition at a 99.9% average nucleotide identity (ANI) resolution with a merely 0.001× sequencing depth. When applying MIST on 359 culture-positive and 359 culture-negative real-world specimens of infected body fluids, we found the presence of multiple-strain reached considerable frequencies (30.39%-93.22%), which were otherwise underestimated by current diagnostic techniques due to their limited resolution. Several high-risk clones were identified to be prevalent across samples, including Acinetobacter baumannii sequence type (ST)208/ST195, Staphylococcus aureus ST22/ST398 and Klebsiella pneumoniae ST11/ST15, indicating potential outbreak events occurring in the clinical settings. Interestingly, contaminations caused by the engineered Escherichia coli strain K-12 and BL21 throughout the mNGS datasets were also identified by MIST instead of the statistical decontamination approach. Our study systemically characterized the infected body fluids at the strain level for the first time. Extension of mNGS testing to the strain level can greatly benefit clinical diagnosis of bacterial infections, including the identification of multi-strain infection, decontamination and infection control surveillance.


Subject(s)
Bacterial Infections , Body Fluids , Bacterial Infections/diagnosis , High-Throughput Nucleotide Sequencing/methods , Humans , Metagenomics/methods , Nucleotides
6.
Expert Rev Proteomics ; 21(4): 169-179, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38420723

ABSTRACT

INTRODUCTION: The nasal cavity is the initial site of the human respiratory tract and is one of the habitats where microorganisms colonize. The findings from a growing number of studies have shown that the nasal microbiome is an important factor for human disease and health. 16S rRNA sequencing and metagenomic next-generation sequencing (mNGS) are the most commonly used means of microbiome evaluation. Among them, 16S rRNA sequencing is the primary method used in previous studies of nasal microbiomes. However, neither 16S rRNA sequencing nor mNGS can be used to analyze the genes specifically expressed by nasal microorganisms and their functions. This problem can be addressed by proteomic analysis of the nasal microbiome. AREAS COVERED: In this review, we summarize current advances in research on the nasal microbiome, introduce the methods for proteomic evaluation of the nasal microbiome, and focus on the important roles of proteomic evaluation of the nasal microbiome in the diagnosis and treatment of related diseases. EXPERT OPINION: The detection method for microbiome-expressed proteins is known as metaproteomics. Metaproteomic analysis can help us dig deeper into the nasal microbiomes and provide new targets and ideas for clinical diagnosis and treatment of many nasal dysbiosis-related diseases.


Subject(s)
Microbiota , Proteomics , Humans , Microbiota/genetics , Proteomics/methods , Nasal Cavity/microbiology , RNA, Ribosomal, 16S/genetics
7.
HIV Med ; 25(7): 794-804, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38515324

ABSTRACT

BACKGROUND: Opportunistic infections in the central nervous system (CNS) can be a serious threat to people living with HIV. Early aetiological diagnosis and targeted treatment are crucial but difficult. Metagenomic next-generation sequencing (mNGS) has significant advantages over traditional detection methods. However, differences in the cerebrospinal fluid (CSF) microbiome profiles of patients living with and without HIV with suspected CNS infections using mNGS and conventional testing methods have not yet been adequately evaluated. METHODS: We conducted a retrospective cohort study in the first hospital of Changsha between January 2019 and June 2022 to investigate the microbiomes detected using mNGS of the CSF of patients living with and without HIV with suspected CNS infections. The pathogens causing CNS infections were concurrently identified using both mNGS and traditional detection methods. The spectrum of pathogens identified was compared between the two groups. RESULTS: Overall, 173 patients (140 with and 33 without HIV) with suspected CNS infection were enrolled in our study. In total, 106 (75.7%) patients with and 16 (48.5%) patients without HIV tested positive with mNGS (p = 0.002). Among the enrolled patients, 71 (50.7%) with HIV and five (15.2%) without HIV tested positive for two or more pathogens (p < 0.001). Patients with HIV had significantly higher proportions of fungus (20.7% vs. 3.0%, p = 0.016) and DNA virus (59.3% vs. 21.2%, p < 0.001) than those without HIV. Epstein-Barr virus (33.6%) was the most commonly identified potential pathogen in the CSF of patients living with HIV using mNGS, followed by cytomegalovirus (20.7%) and torque teno virus (13.8%). The top three causative pathogens identified in patients without HIV were Streptococcus (18.2%), Epstein-Barr virus (12.1%), and Mycobacterium tuberculosis (9.1%). In total, 113 patients living with HIV were diagnosed as having CNS infections. The rate of pathogen detection in people living with HIV with a CNS infection was significantly higher with mNGS than with conventional methods (93.8% vs. 15.0%, p < 0.001). CONCLUSION: CSF microbiome profiles differ between patients living with and without HIV with suspected CNS infection. mNGS is a powerful tool for the diagnosis of CNS infection among people living with HIV, especially in those with mixed infections.


Subject(s)
Central Nervous System Infections , Cerebrospinal Fluid , HIV Infections , High-Throughput Nucleotide Sequencing , Metagenomics , Humans , Male , Retrospective Studies , Female , High-Throughput Nucleotide Sequencing/methods , Adult , Middle Aged , Central Nervous System Infections/cerebrospinal fluid , Central Nervous System Infections/microbiology , Central Nervous System Infections/diagnosis , Central Nervous System Infections/virology , HIV Infections/complications , HIV Infections/cerebrospinal fluid , Metagenomics/methods , Cerebrospinal Fluid/microbiology , Cerebrospinal Fluid/virology , Microbiota/genetics , AIDS-Related Opportunistic Infections/cerebrospinal fluid , AIDS-Related Opportunistic Infections/microbiology , AIDS-Related Opportunistic Infections/diagnosis
8.
BMC Microbiol ; 24(1): 86, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38481150

ABSTRACT

INTRODUCTION: Psittacosis is a zoonosis caused by Chlamydia psittaci, the clinical manifestations of Psittacosis range from mild illness to fulminant severe pneumonia with multiple organ failure. This study aimed to evaluate the clinical characteristics of Chlamydia psittaci infection diagnosed based on metagenomic next-generation sequencing(mNGS), as well as the risk factors affecting the progress of Chlamydia psittaci infection, in order to improve the effect of therapeutics. METHODS: We retrospectively analyzed the clinical data of patients infected with chlamydia psittaci in the First Affiliated Hospital of Nanchang University from January 2021 to December 2021. The patient's past medical history, clinical manifestations, laboratory examinations, chest CT results, treatment status, and prognosis data were collected. we also investigated both the pathogenic profile characteristics and the lower respiratory tract microbiota of patients with Chlamydia psittaci pneumonia using mNGS. RESULTS: All cases of Chlamydia psittaci in our research have been confirmed by mNGS. Among 46 cases of Chlamydia psittaci pneumonia, Poultry exposure was reported in 35 cases. In severe cases of Chlamydia psittaci pneumonia, Neutrophils, Procalcitonin (PCT), Lactate Dehydrogenase (LDH), Hydroxybutyrate Dehydrogenase (HBDH), Creatine Kinase Isoenzymes-B (CK-MB) and D-Dimer levels were remarkably higher than that of non-severe cases, except for lymphocytes (all P < 0.05). Chest CT scans showed Bilateral (77.8%), multiple lobar lungs (85.2%), pleural effusions (44.4%) involvement in those suffering from severe Chlamydia psittaci pneumonia, whereas its incidence was 0%, 21.1% and 10.5% in non-severe patients, respectively (P < 0.05). Multivariate analysis revealed that higher lymphocyte concentrations (OR 0.836, 95% CI 0.714-0.962, P = 0.041) were the only protective factor for survival. mNGS results indicated that 41.3% of patients (19/46) had suspected coinfections with a coinfection rate of 84.2% (16/19) in the severe group, much higher than that in the non severe group (p < 0.05). No significantly different profiles of lower respiratory tract microbiota diversity were found between non severe group and severe group. CONCLUSION: A history of poultry exposure in patients can serve as an important basis for diagnosing Chlamydia psittaci pneumonia, and patients with severe Chlamydia psittaci pneumonia are more likely to develop elevated inflammatory biomarkers as well as elevated cardiac markers. Higher lymphocyte concentrations are protective factors associated with severe C. psittaci pneumonia. The higher proportion of patients with coinfections in our study supports the use of mNGS for comprehensive early detection of respiratory infections in patients with C. psittaci pneumonia.


Subject(s)
Chlamydophila psittaci , Coinfection , Pneumonia , Psittacosis , Humans , Psittacosis/diagnosis , Chlamydophila psittaci/genetics , Retrospective Studies , High-Throughput Nucleotide Sequencing , Risk Factors
9.
Respir Res ; 25(1): 283, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020401

ABSTRACT

BACKGROUND: Microbial infection and colonization are frequently associated with disease progression and poor clinical outcomes in bronchiectasis. Identification of pathogen spectrum is crucial for precision treatment at exacerbation of bronchiectasis. METHODS: We conducted a prospective cohort study in patients with bronchiectasis exacerbation onset and stable state. Bronchoalveolar lavage fluid (BALF) was collected for conventional microbiological tests (CMTs) and metagenomic Next-Generation Sequencing (mNGS). Bronchiectasis patients were monitored for documenting the time to the next exacerbation during longitudinal follow-up. RESULTS: We recruited 168 eligible participants in the exacerbation cohorts, and 38 bronchiectasis patients at stable state at longitudinal follow-up. 141 bronchiectasis patients at exacerbation onset had definite or probable pathogens via combining CMTs with mNGS reports. We identified that Pseudomonas aeruginosa, non-tuberculous mycobacteria, Haemophilus influenzae, Nocardia spp, and Staphylococcus aureus were the top 5 pathogens with a higher detection rate in our cohorts via combination of CMTs and mNGS analysis. We also observed strong correlations of Pseudomonas aeruginosa, Haemophilus influenzae, non-tuberculous mycobacteria with disease severity, including the disease duration, Bronchiectasis Severity Index, and lung function. Moreover, the adjusted pathogenic index of potential pathogenic microorganism negatively correlated (r = -0.7280, p < 0.001) with the time to the next exacerbation in bronchiectasis. CONCLUSION: We have revealed the pathogenic microbial spectrum in lower airways and the negative correlation of PPM colonization with the time to the next exacerbation in bronchiectasis. These results suggested that pathogens contribute to the progression of bronchiectasis.


Subject(s)
Bronchiectasis , Humans , Bronchiectasis/microbiology , Bronchiectasis/diagnosis , Female , Male , Prospective Studies , Middle Aged , Aged , Bronchoalveolar Lavage Fluid/microbiology , Cohort Studies , Follow-Up Studies , Adult , Disease Progression , Longitudinal Studies
10.
Respir Res ; 25(1): 125, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38486264

ABSTRACT

BACKGROUND: Increasing evidence revealed that lung microbiota dysbiosis was associated with pulmonary infection in lung transplant recipients (LTRs). Pneumocystis jirovecii (P. jirovecii) is an opportunistic fungal pathogen that frequently causes lethal pneumonia in LTRs. However, the lung microbiota in LTRs with P. jirovecii pneumonia (PJP) remains unknow. METHODS: In this prospective observational study, we performed metagenomic next-generation sequencing (mNGS) on 72 bronchoalveolar lavage fluid (BALF) samples from 61 LTRs (20 with PJP, 22 with PJC, 19 time-matched stable LTRs, and 11 from LTRs after PJP recovery). We compared the lung microbiota composition of LTRs with and without P. jirovecii, and analyzed the related clinical variables. RESULTS: BALFs collected at the episode of PJP showed a more discrete distribution with a lower species diversity, and microbiota composition differed significantly compared to P. jirovecii colonization (PJC) and control group. Human gammaherpesvirus 4, Phreatobacter oligotrophus, and Pseudomonas balearica were the differential microbiota species between the PJP and the other two groups. The network analysis revealed that most species had a positive correlation, while P. jirovecii was correlated negatively with 10 species including Acinetobacter venetianus, Pseudomonas guariconensis, Paracandidimonas soli, Acinetobacter colistiniresistens, and Castellaniella defragrans, which were enriched in the control group. The microbiota composition and diversity of BALF after PJP recovery were also different from the PJP and control groups, while the main components of the PJP recovery similar to control group. Clinical variables including age, creatinine, total protein, albumin, IgG, neutrophil, lymphocyte, CD3+CD45+, CD3+CD4+ and CD3+CD8+ T cells were deeply implicated in the alterations of lung microbiota in LTRs. CONCLUSIONS: This study suggests that LTRs with PJP had altered lung microbiota compared to PJC, control, and after recovery groups. Furthermore, lung microbiota is related to age, renal function, nutritional and immune status in LTRs.


Subject(s)
Microbiota , Pneumocystis carinii , Pneumonia, Pneumocystis , Humans , Pneumonia, Pneumocystis/diagnosis , Pneumonia, Pneumocystis/complications , Transplant Recipients , CD8-Positive T-Lymphocytes , Pneumocystis carinii/genetics , Lung
11.
Respir Res ; 25(1): 250, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902783

ABSTRACT

INTRODUCTION: Lower respiratory tract infections(LRTIs) in adults are complicated by diverse pathogens that challenge traditional detection methods, which are often slow and insensitive. Metagenomic next-generation sequencing (mNGS) offers a comprehensive, high-throughput, and unbiased approach to pathogen identification. This retrospective study evaluates the diagnostic efficacy of mNGS compared to conventional microbiological testing (CMT) in LRTIs, aiming to enhance detection accuracy and enable early clinical prediction. METHODS: In our retrospective single-center analysis, 451 patients with suspected LRTIs underwent mNGS testing from July 2020 to July 2023. We assessed the pathogen spectrum and compared the diagnostic efficacy of mNGS to CMT, with clinical comprehensive diagnosis serving as the reference standard. The study analyzed mNGS performance in lung tissue biopsies and bronchoalveolar lavage fluid (BALF) from cases suspected of lung infection. Patients were stratified into two groups based on clinical outcomes (improvement or mortality), and we compared clinical data and conventional laboratory indices between groups. A predictive model and nomogram for the prognosis of LRTIs were constructed using univariate followed by multivariate logistic regression, with model predictive accuracy evaluated by the area under the ROC curve (AUC). RESULTS: (1) Comparative Analysis of mNGS versus CMT: In a comprehensive analysis of 510 specimens, where 59 cases were concurrently collected from lung tissue biopsies and BALF, the study highlights the diagnostic superiority of mNGS over CMT. Specifically, mNGS demonstrated significantly higher sensitivity and specificity in BALF samples (82.86% vs. 44.42% and 52.00% vs. 21.05%, respectively, p < 0.001) alongside greater positive and negative predictive values (96.71% vs. 79.55% and 15.12% vs. 5.19%, respectively, p < 0.01). Additionally, when comparing simultaneous testing of lung tissue biopsies and BALF, mNGS showed enhanced sensitivity in BALF (84.21% vs. 57.41%), whereas lung tissues offered higher specificity (80.00% vs. 50.00%). (2) Analysis of Infectious Species in Patients from This Study: The study also notes a concerning incidence of lung abscesses and identifies Epstein-Barr virus (EBV), Fusobacterium nucleatum, Mycoplasma pneumoniae, Chlamydia psittaci, and Haemophilus influenzae as the most common pathogens, with Klebsiella pneumoniae emerging as the predominant bacterial culprit. Among herpes viruses, EBV and herpes virus 7 (HHV-7) were most frequently detected, with HHV-7 more prevalent in immunocompromised individuals. (3) Risk Factors for Adverse Prognosis and a Mortality Risk Prediction Model in Patients with LRTIs: We identified key risk factors for poor prognosis in lower respiratory tract infection patients, with significant findings including delayed time to mNGS testing, low lymphocyte percentage, presence of chronic lung disease, multiple comorbidities, false-negative CMT results, and positive herpesvirus affecting patient outcomes. We also developed a nomogram model with good consistency and high accuracy (AUC of 0.825) for predicting mortality risk in these patients, offering a valuable clinical tool for assessing prognosis. CONCLUSION: The study underscores mNGS as a superior tool for lower respiratory tract infection diagnosis, exhibiting higher sensitivity and specificity than traditional methods.


Subject(s)
High-Throughput Nucleotide Sequencing , Metagenomics , Respiratory Tract Infections , Humans , Retrospective Studies , Male , Female , Middle Aged , High-Throughput Nucleotide Sequencing/methods , Metagenomics/methods , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Respiratory Tract Infections/epidemiology , Risk Factors , Aged , Adult , Bronchoalveolar Lavage Fluid/microbiology , Bronchoalveolar Lavage Fluid/virology , Hospitalization , Predictive Value of Tests
12.
Eur J Clin Microbiol Infect Dis ; 43(7): 1367-1374, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38801485

ABSTRACT

PURPOSE: Metagenomic next-generation sequencing (mNGS) has been widely used in the diagnosis of infectious diseases. However, studies on Talaromyces marneffei detection using mNGS remain scarce. Therefore, this study aimed to explore the diagnostic performance of mNGS in T. marneffei. METHODS: Between March 2021 and June 2023, patients who were discharged with a final diagnosis of talaromycosis, or confirmed T. marneffei infection by mNGS, culture or pathological examination were included in the study. Culture and mNGS were performed simultaneously for all patients. Clinical data were retrieved for analysis. RESULTS: A total of 78 patients were enrolled, with 40 in the talaromycosis group and 38 in the suspected-talaromycosis group. In the talaromycosis group, mNGS showed a higher positivity rate(40/40, 100.0%) compared to culture(34/40, 85.0%)(P = 0.111). All patients in the suspected-talaromycosis group tested negative via culture, while mNGS yielded positive results. The T. marneffei reads in the talaromycosis group were significantly higher than in the suspected-talaromycosis group (4399 vs. 28, P < 0.001). In the suspected-talaromycosis group, of the four patients with low reads who did not receive antifungal therapy, one died and one lung lesion progressed; most patients(31/34, 91.2%) recovered after receiving appropriate antifungal therapy. CONCLUSION: mNGS proves to be a rapid and highly sensitive method for detecting T. marneffei. Higher reads of T. marneffei correspond to a higher likelihood of infection. However, cases with low reads necessitate a comprehensive approach, integrating clinical manifestations, laboratory tests, and imaging examinations to confirm T. marneffei infection.


Subject(s)
High-Throughput Nucleotide Sequencing , Metagenomics , Mycoses , Talaromyces , Talaromyces/genetics , Talaromyces/isolation & purification , Humans , High-Throughput Nucleotide Sequencing/methods , Mycoses/diagnosis , Mycoses/microbiology , China , Male , Retrospective Studies , Metagenomics/methods , Female , Middle Aged , Adult , Aged , Sensitivity and Specificity
13.
Med Mycol ; 62(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38710585

ABSTRACT

Cryptococcus neoformans is the most common cause of fungal meningitis and is associated with a high mortality. The clinical significance of concurrent Epstein-Barr virus (EBV) in the cerebrospinal fluid (CSF) of human immunodeficiency virus (HIV)-negative patients with cryptococcal meningitis (CM) remains unclear. A retrospective cohort study was performed by analyzing CSF samples from 79 HIV-negative Chinese Han patients with confirmed CM. We identified CSF viral DNA in these patients by metagenomic next-generation sequencing (mNGS) and compared 10-week survival rates among those with and without EBV DNA in CSF. Of the 79 CSF samples tested, 44.3% (35/79) had detectable viral DNA in CSF, while 55.7% (44/79) were virus-negative. The most frequent viral pathogen was EBV, which was detected in 22.8% (18/79) patients. The median number of CSF-EBV DNA reads was 4 reads with a range from 1 to 149 reads. The 10-week mortality rates were 22.2% (4/18) in those with positive CSF-EBV and 2.3% (1/44) in those with negative CSF-virus (hazard ratio 8.20, 95% confidence interval [CI] 1.52-81.80; P = 0.014), which remained significant after a multivariate adjustment for the known risk factors of mortality (adjusted hazard ratio 8.15, 95% CI 1.14-92.87; P = 0.037). mNGS can identify viruses that coexist in CSF of HIV-negative patients with CM. EBV DNA is most commonly found together with C. neoformans in CSF and its presence is associated with increased mortality in HIV-negative CM patients.


We retrospectively analyzed CSF samples from 79 HIV-negative Chinese Han patients with confirmed CM. We identified CSF viral DNA by mNGS and compared 10-week survival rates among those with and without EBV DNA. Positive CSF-EBV DNA is associated with the increased mortality in HIV-negative CM patients.


Subject(s)
DNA, Viral , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Meningitis, Cryptococcal , Humans , Meningitis, Cryptococcal/mortality , Meningitis, Cryptococcal/cerebrospinal fluid , Meningitis, Cryptococcal/microbiology , Male , Female , Retrospective Studies , Adult , Middle Aged , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/isolation & purification , DNA, Viral/cerebrospinal fluid , DNA, Viral/genetics , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/mortality , Epstein-Barr Virus Infections/cerebrospinal fluid , Aged , Cerebrospinal Fluid/microbiology , Cerebrospinal Fluid/virology , Cryptococcus neoformans/genetics , Cryptococcus neoformans/isolation & purification , High-Throughput Nucleotide Sequencing , Metagenomics , Young Adult , China/epidemiology , Survival Analysis
14.
Infection ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39152290

ABSTRACT

Next-generation sequencing (NGS) has revolutionized clinical microbiology, particularly in diagnosing respiratory infectious diseases and conducting epidemiological investigations. This narrative review summarizes conventional methods for routine respiratory infection diagnosis, including culture, smear microscopy, immunological assays, image techniques as well as polymerase chain reaction(PCR). In contrast to conventional methods, there is a new detection technology, sequencing technology, and here we mainly focus on the next-generation sequencing NGS, especially metagenomic NGS(mNGS). NGS offers significant advantages over traditional methods. Firstly, mNGS eliminates assumptions about pathogens, leading to faster and more accurate results, thus reducing diagnostic time. Secondly, it allows unbiased identification of known and novel pathogens, offering broad-spectrum coverage. Thirdly, mNGS not only identifies pathogens but also characterizes microbiomes, analyzes human host responses, and detects resistance genes and virulence factors. It can complement targeted sequencing for bacterial and fungal classification. Unlike traditional methods affected by antibiotics, mNGS is less influenced due to the extended survival of pathogen DNA in plasma, broadening its applicability. However, barriers to full integration into clinical practice persist, primarily due to cost constraints and limitations in sensitivity and turnaround time. Despite these challenges, ongoing advancements aim to improve cost-effectiveness and efficiency, making NGS a cornerstone technology for global respiratory infection diagnosis.

15.
Infection ; 52(3): 985-993, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38147199

ABSTRACT

BACKGROUND: Interstitial lung disease (ILD) is a new risk category for pneumocystis pneumonia (PCP) with a high mortality rate. The definite diagnostic criteria of PCP in ILD patients have not been established until now. The aims of this study were to identify potential risk factors of PCP in patients with ILD, and to evaluate the performance of metagenomic next-generation sequencing (mNGS), CD4 + T cell count, (1-3)-ß-D-Glucan (BG) and lactate dehydrogenase (LDH) in the diagnosis of PCP in ILD patients. METHODS: This is a retrospective, single-center, case-control study. ILD patients who underwent mNGS from December 2018 to December 2022 were included in the study. Based on the diagnosis criteria of PCP, these patients were divided into PCP-ILD and non-PCP-ILD groups. The potential risk factors for PCP occurrence in ILD patients were analysed via logistic regression. The diagnostic efficacy of mNGS was compared with serological biomarkers. RESULTS: 92 patients with ILD were enrolled, 31 of which had a definite PCP and were assigned to the PCP-ILD group while 61 were to the non-PCP-ILD group. The infection rate of PJ in ILD patients was 33.7% (31/92). The history of glucocorticoid therapy, CD4 + T cell count, BG level and traction bronchiectasis on HRCT were associated with PCP occurrence in ILD patients. LDH level did not reach statistical significance in the logistic regression analysis. mNGS was confirmed as the most accurate test for PCP diagnosis in ILD patients. CONCLUSION: ILD is a new risk group of PCP with high PCP prevalence. Clinicians should pay close attention to the occurrence of PCP in ILD patients who possess the risk factors of previous glucocorticoid therapy, decreased CD4 + T cell count, increased BG level and absence of traction bronchiectasis on HRCT. mNGS showed the most excellent performance for PCP diagnosis in ILD patients. Peripheral blood CD4 + T cell count and BG level are alternative diagnostic methods for PCP in ILD patients. However, the diagnostic value of serum LDH level was limited in ILD patients.


Subject(s)
Lung Diseases, Interstitial , Pneumonia, Pneumocystis , Humans , Retrospective Studies , Pneumonia, Pneumocystis/diagnosis , Pneumonia, Pneumocystis/epidemiology , Male , Lung Diseases, Interstitial/epidemiology , Lung Diseases, Interstitial/diagnosis , Female , Middle Aged , Aged , Prevalence , Case-Control Studies , Risk Factors , beta-Glucans/blood , L-Lactate Dehydrogenase/blood , High-Throughput Nucleotide Sequencing , CD4 Lymphocyte Count , Biomarkers/blood
16.
Infection ; 52(2): 625-636, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368306

ABSTRACT

BACKGROUND: Infectious etiologies of lower respiratory tract infections (LRTIs) by the conventional microbiology tests (CMTs) can be challenging. Metagenomic next-generation sequencing (mNGS) has great potential in clinical use for its comprehensiveness in identifying pathogens, particularly those difficult-to-culture organisms. METHODS: We analyzed a total of 205 clinical samples from 201 patients with suspected LRTIs using mNGS in parallel with CMTs. mNGS results were used to guide treatment adjustments for patients who had negative CMT results. The efficacy of treatment was subsequently evaluated in these patients. RESULTS: mNGS-detected microorganisms in 91.7% (188/205) of the clinical samples, whereas CMTs demonstrated a lower detection rate, identifying microorganisms in only 37.6% (77/205) of samples. Compared to CMT results, mNGS exhibited a detection sensitivity of 93.5% and 95.4% in all 205 clinical samples and 180 bronchoalveolar lavage fluid (BALF) samples, respectively. A total of 114 patients (114/201; 56.7%) showed negative CMT results, among which 92 received treatment adjustments guided by their positive mNGS results. Notably, 67.4% (62/92) of patients demonstrated effective treatment, while 25% (23/92) experienced a stabilized condition. Subgroup analysis of cancer patients revealed that 41.9% (13/31) exhibited an effective response to treatment, and 35.5% (11/31) maintained a stable condition following medication adjustments guided by mNGS. CONCLUSION: mNGS demonstrated great potential in identifying microorganisms of clinical significance in LRTIs. The rapid turnaround time and reduced susceptibility to the impact of antimicrobial administration make mNGS a valuable supplementary tool for diagnosis and treatment decision-making for suspected LRTIs in clinical practice.


Subject(s)
Respiratory Tract Infections , Humans , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/drug therapy , High-Throughput Nucleotide Sequencing , Bronchoalveolar Lavage Fluid , Metagenomics , Sensitivity and Specificity
17.
BMC Neurol ; 24(1): 281, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134956

ABSTRACT

BACKGROUND: Angiostrongyliasis cantonensis is a severe yet rare parasitic infection caused by the larvae of Angiostrongylus cantonensis. The primary characteristic feature of this foodborne illness in humans is eosinophilic meningitis. Recently, there has been a gradual increase in reported cases globally. Due to the lack of typical clinical symptoms, signs, and specific laboratory tests, early diagnosis of this disease poses significant challenges. Failure to diagnose and treat this condition promptly can result in fatalities. METHODS: We present the case of a 13-year-old male patient who initially presented with fever and headache. The patient was preliminarily diagnosed with bacterial meningitis and received treatment with antibacterial drugs. However, the patient's condition worsened, and he developed progressive consciousness disturbances. Eventually, metagenomic next-generation sequencing (mNGS) testing of cerebrospinal fluid samples indicated Angiostrongylus cantonensis infection. Following treatment with albendazole and prednisone, the patient made a full recovery. We include this case report as part of a literature review to emphasize the potential applications of mNGS in the early diagnosis of Angiostrongyliasis cantonensis. CONCLUSION: mNGS technology plays a crucial role in the diagnosis of angiostrongyliasis cantonensis. As this technology continues to evolve and be applied, we believe it will play an increasingly important role in diagnosing, treating, and monitoring angiostrongyliasis cantonensis.


Subject(s)
Angiostrongylus cantonensis , High-Throughput Nucleotide Sequencing , Hydrocephalus , Strongylida Infections , Humans , Strongylida Infections/diagnosis , Strongylida Infections/drug therapy , Strongylida Infections/complications , Male , Angiostrongylus cantonensis/genetics , Angiostrongylus cantonensis/isolation & purification , High-Throughput Nucleotide Sequencing/methods , Adolescent , Animals , Hydrocephalus/diagnosis , Hydrocephalus/parasitology
18.
BMC Neurol ; 24(1): 34, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38243162

ABSTRACT

BACKGROUND: Neuroleptospirosis and anti-dipeptidyl-peptidase-like protein 6 (DPPX) encephalitis are both very rare and have only been reported in the form of respective case reports. There are no reports of anti-DPPX encephalitis combined with neuroleptospirosis in the literature. We reported the first case of neuroleptospirosis combined with elevated DPPX antibodies in serum and cerebrospinal fluid (CSF). CASE PRESENTATION: A previously healthy 53-year-old Chinese male farmer with a history of drinking raw stream water and flood sewage exposure was brought to the hospital due to an acute onset of neuropsychiatric symptoms. No fever or meningeal irritation signs were detected on physical examination. Routine laboratory investigations, including infection indicators, leukocyte and protein in CSF, electroencephalogram and gadolinium-enhanced magnetic resonance imaging of the brain, all revealed normal. While metagenomic next-generation sequencing (mNGS) identified the DNA genome of Leptospira interrogans in the CSF. Anti-DPPX antibody was detected both in blood and in CSF. A diagnosis of neuroleptospirosis combined with autoimmune encephalitis associated with DPPX-Ab was eventually made. He resolved completely after adequate amount of penicillin combined with immunotherapy. CONCLUSION: We highlight that in patients with acute or subacute behavioral changes, even in the absence of fever, if the most recent freshwater exposure is clear, physicians should pay attention to leptospirosis. Due to the low sensitivity of routine microscopy, culture, polymerase chain reaction and antibody testing, mNGS may have more advantages in diagnosing neuroleptospirosis. As autoimmune encephalitis can be triggered by various infections, neuroleptospirosis may be one of the causes of autoimmune encephalitis. Since neuronal antibody measurements themselves are not that common in neuroleptospirosis, future studies are needed to determine whether the detection of anti-DPPX antibodies is a rare event in leptospirosis. Early identification of autoimmune encephalitis and timely administration of immunotherapy may lead to a better outcome.


Subject(s)
Autoimmune Diseases of the Nervous System , Encephalitis , Hashimoto Disease , Leptospirosis , Male , Humans , Middle Aged , Encephalitis/diagnosis , Brain , Leptospirosis/complications , Leptospirosis/diagnosis
19.
BMC Neurol ; 24(1): 124, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38616262

ABSTRACT

BACKGROUND: Scedosporium apiospermum (S. apiospermum) is a rare fungal pathogen that causes disseminated infections. It rarely affects immunocompetent individuals and has a poor prognosis. CASE PRESENTATION: A 37-year-old woman presented with multiple lesions in the lungs, brain, and eyes, shortly after near drowning in a car accident. The primary symptoms were chest tightness, limb weakness, headache, and poor vision in the left eye. S. apiospermum infection was confirmed by metagenomic next-generation sequencing (mNGS) of intracranial abscess drainage fluid, although intracranial metastases were initially considered. After systemic treatment with voriconazole, her symptoms improved significantly; however, she lost vision in her left eye due to delayed diagnosis. CONCLUSION: While S. apiospermum infection is rare, it should be considered even in immunocompetent patients. Prompt diagnosis and treatment are essential. Voriconazole may be an effective treatment option.


Subject(s)
Invasive Fungal Infections , Near Drowning , Scedosporium , Humans , Female , Adult , Near Drowning/complications , Voriconazole/therapeutic use , Brain
20.
BMC Infect Dis ; 24(1): 920, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39232674

ABSTRACT

BACKGROUND: Sepsis remains a leading cause of mortality in intensive care units, and rapid and accurate pathogen detection is crucial for effective treatment. This study evaluated the clinical application of multi-site metagenomic next-generation sequencing (mNGS) for the diagnosis of sepsis, comparing its performance against conventional methods. METHODS: A retrospective analysis was conducted on 69 patients with sepsis consecutively admitted to the Department of Intensive Care Medicine, Meizhou People's Hospital. Samples of peripheral blood and infection sites were collected for mNGS and conventional method tests to compare the positive rate of mNGS and traditional pathogen detection methods and the distribution of pathogens. The methods used in this study included a comprehensive analysis of pathogen consistency between peripheral blood and infection site samples. Additionally, the correlation between the pathogens detected and clinical outcomes was investigated. RESULTS: Of the patients with sepsis, 57.97% experienced dyspnea, and 65.2% had underlying diseases, with hypertension being the most common. mNGS demonstrated a significantly higher pathogen detection rate (88%) compared to the conventional method tests (26%). The pathogen consistency rate was 60% between plasma and bronchoalveolar lavage fluid samples, and that of plasma and local body fluid samples was 63%. The most frequently detected pathogens were gram-negative bacteria, and Klebsiella pneumonia. There were no significant differences in the clinical features between the pathogens. CONCLUSION: mNGS is significantly superior to conventional methods in pathogen detection. There was a notable high pathogen consistency detection between blood and local body fluid samples, supporting the clinical relevance of mNGS. This study highlights the superiority of mNGS in detecting a broad spectrum of pathogens quickly and accurately. TRIAL REGISTRATION: Not applicable.


Subject(s)
High-Throughput Nucleotide Sequencing , Intensive Care Units , Metagenomics , Sepsis , Humans , Sepsis/diagnosis , Sepsis/microbiology , Male , Female , Middle Aged , Retrospective Studies , Aged , Metagenomics/methods , Adult , Bacteria/isolation & purification , Bacteria/genetics , Bacteria/classification , Aged, 80 and over
SELECTION OF CITATIONS
SEARCH DETAIL