Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Int J Mol Sci ; 21(22)2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33228190

ABSTRACT

Low temperature stress has a severe impact on the distribution, physiology, and survival of plants in their natural habitats. While numerous studies have focused on the physiological and molecular adjustments to low temperatures, this study provides evidence that cold induced physiological responses coincide with distinct ultrastructural alterations. Three plants from different evolutionary levels and habitats were investigated: The freshwater alga Micrasterias denticulata, the aquatic plant Lemna sp., and the nival plant Ranunculus glacialis. Ultrastructural alterations during low temperature stress were determined by the employment of 2-D transmission electron microscopy and 3-D reconstructions from focused ion beam-scanning electron microscopic series. With decreasing temperatures, increasing numbers of organelle contacts and particularly the fusion of mitochondria to 3-dimensional networks were observed. We assume that the increase or at least maintenance of respiration during low temperature stress is likely to be based on these mitochondrial interconnections. Moreover, it is shown that autophagy and degeneration processes accompany freezing stress in Lemna and R. glacialis. This might be an essential mechanism to recycle damaged cytoplasmic constituents to maintain the cellular metabolism during freezing stress.


Subject(s)
Araceae/physiology , Autophagy/physiology , Chloroplasts/physiology , Micrasterias/physiology , Mitochondria/physiology , Ranunculus/physiology , Aquatic Organisms , Araceae/ultrastructure , Cell Respiration/physiology , Chloroplasts/ultrastructure , Cold Temperature , Cold-Shock Response , Endoplasmic Reticulum/physiology , Endoplasmic Reticulum/ultrastructure , Micrasterias/ultrastructure , Microscopy, Electron, Transmission , Mitochondria/ultrastructure , Peroxisomes/physiology , Peroxisomes/ultrastructure , Photosynthesis/physiology , Plant Cells/physiology , Plant Cells/ultrastructure , Ranunculus/ultrastructure
2.
J Struct Biol ; 204(1): 52-63, 2018 10.
Article in English | MEDLINE | ID: mdl-29981486

ABSTRACT

Mitochondria are central organelles for energy supply of cells and play an important role in maintenance of ionic balance. Consequently mitochondria are highly sensitive to any kind of stress to which they mainly response by disturbance of respiration, ROS production and release of cytochrome c into the cytoplasm. Many of the physiological and molecular stress reactions of mitochondria are well known, yet there is a lack of information on corresponding stress induced structural changes. 3-D visualization of high-pressure frozen cells by FIB-SEM tomography and TEM tomography as used for the present investigation provide an excellent tool for studying structure related mitochondrial stress reactions. In the present study it is shown that mitochondria in the unicellular fresh-water algal model system Micrasterias as well as in the closely related aquatic higher plant Lemna fuse to local networks as a consequence of exposure to ionic stress induced by addition of KCl, NaCl and CoCl2. In dependence on concentration and duration of the treatment, fusion of mitochondria occurs either by formation of protuberances arising from the outer mitochondrial membrane, or by direct contact of the surface of elongated mitochondria. As our results show that respiration is maintained in both model systems during ionic stress and mitochondrial fusion, as well as formation of protuberances are reversible, we assume that mitochondrial fusion is a ubiquitous process that may help the cells to cope with stress. This may occur by interconnecting the respiratory chains of the individual mitochondria and by enhancing the buffer capacity against stress induced ionic imbalance.


Subject(s)
Electron Microscope Tomography/methods , Cobalt/chemistry , Microscopy, Electron, Transmission , Mitochondria/ultrastructure , Osmolar Concentration , Potassium Chloride/chemistry , Sodium Chloride/chemistry
3.
BMC Evol Biol ; 17(1): 1, 2017 01 03.
Article in English | MEDLINE | ID: mdl-28049419

ABSTRACT

BACKGROUND: Unicellular green algae of the genus Micrasterias (Desmidiales) have complex cells with multiple lobes and indentations, and therefore, they are considered model organisms for research on plant cell morphogenesis and variation. Micrasterias cells have a typical biradial symmetric arrangement and multiple terminal lobules. They are composed of two semicells that can be further differentiated into three structural components: the polar lobe and two lateral lobes. Experimental studies suggested that these cellular parts have specific evolutionary patterns and develop independently. In this study, different geometric morphometric methods were used to address whether the semicells of Micrasterias compereana are truly not integrated with regard to the covariation of their shape data. In addition, morphological integration within the semicells was studied to ascertain whether individual lobes constitute distinct units that may be considered as separate modules. In parallel, I sought to determine whether the main components of morphological asymmetry could highlight underlying cytomorphogenetic processes that could indicate preferred directions of variation, canalizing evolutionary changes in cellular morphology. RESULTS: Differentiation between opposite semicells constituted the most prominent subset of cellular asymmetry. The second important asymmetric pattern, recovered by the Procrustes ANOVA models, described differentiation between the adjacent lobules within the quadrants. Other asymmetric components proved to be relatively unimportant. Opposite semicells were shown to be completely independent of each other on the basis of the partial least squares analysis analyses. In addition, polar lobes were weakly integrated with adjacent lateral lobes. Conversely, higher covariance levels between the two lateral lobes of the same semicell indicated mutual interconnection and significant integration between these parts. CONCLUSIONS: Micrasterias cells are composed of several successively disintegrated parts. These integration patterns concurred with presumed scenarios of morphological evolution within the lineage. In addition, asymmetric differentiation in the shape of the lobules involves two major patterns: asymmetry across the isthmus axis and among the adjacent lobules. Notably, asymmetry among the adjacent lobules may be related to evolutionary differentiation among species, but it may also point out developmental instability related to environmental factors.


Subject(s)
Micrasterias/anatomy & histology , Biological Evolution , Morphogenesis
4.
J Microsc ; 263(2): 129-41, 2016 08.
Article in English | MEDLINE | ID: mdl-26708415

ABSTRACT

Stress-induced physiological deficiencies in cells are reflected in structural, morphological and functional reactions of organelles. Although numerous investigations have focused on chloroplasts and mitochondria as main targets of different stressors in plant cells, there is insufficient information on the plant Golgi apparatus as stress sensor. By using the advantages of field emission scanning electron microscopy tomography in combination with classical ultrathin sectioning and transmission electron microscopic analyses, we provide structural evidence for common stress responses of the large and highly stable dictyosomes in the algal model system Micrasterias. Stress is induced by different metals such as manganese and lead, by starvation in 9 weeks of darkness or by inhibiting photosynthesis or glycolysis and by disturbing ionic homeostasis via KCl. For the first time a stress-induced degradation pathway of dictyosomes is described that does not follow "classical" autophagy but occurs by disintegration of cisternae into single membrane balls that seem to be finally absorbed by the endoplasmic reticulum (ER). Comparison of the morphological features that accompany dictyosomal degradation in Micrasterias to similar reactions observed during the same stress application in Nitella indicates an ubiquitous degradation process at least in algae. As the algae investigated belong to the closest relatives of higher land plants these results may also be relevant for understanding dictyosomal stress and degradation responses in the latter phylogenetic group. In addition, this study shows that two-dimensional transmission electron microscopy is insufficient for elucidating complex processes such as organelle degradation, and that information from three-dimensional reconstructions as provided by field emission scanning electron microscopy tomography is absolutely required for a comprehensive understanding of the phenomenon.


Subject(s)
Golgi Apparatus/metabolism , Micrasterias/cytology , Micrasterias/ultrastructure , Endoplasmic Reticulum/metabolism , Imaging, Three-Dimensional , Micrasterias/metabolism , Microscopy, Electron , Phylogeny , Tomography, X-Ray Computed
5.
J Struct Biol ; 184(2): 203-11, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24135121

ABSTRACT

In the present study we employ FIB/SEM tomography for analyzing 3-D architecture of dictyosomes and formation of multivesicular bodies (MVB) in high pressure frozen and cryo-substituted interphase cells of the green algal model system Micrasterias denticulata. The ability of FIB/SEM of milling very thin 'slices' (5-10 nm), viewing the block face and of capturing cytoplasmic volumes of several hundred µm(3) provides new insight into the close spatial connection of the ER-Golgi machinery in an algal cell particularly in z-direction, complementary to informations obtained by TEM serial sectioning or electron tomography. Our FIB/SEM series and 3-D reconstructions show that interphase dictyosomes of Micrasterias are not only closely associated to an ER system at their cis-side which is common in various plant cells, but are surrounded by a huge "trans-ER" sheath leading to an almost complete enwrapping of dictyosomes by the ER. This is particularly interesting as the presence of a trans-dictyosomal ER system is well known from mammalian secretory cells but not from cells of higher plants to which the alga Micrasterias is closely related. In contrast to findings in plant storage tissue indicating that MVBs originate from the trans-Golgi network or its derivatives our investigations show that MVBs in Micrasterias are in direct spatial contact with both, trans-Golgi cisternae and the trans-ER sheath which provides evidence that both endomembrane compartments are involved in their formation.


Subject(s)
Micrasterias/ultrastructure , Multivesicular Bodies/ultrastructure , Cryoelectron Microscopy , Electron Microscope Tomography , Endoplasmic Reticulum/ultrastructure , Imaging, Three-Dimensional , Microscopy, Electron, Scanning , Models, Biological
6.
Front Microbiol ; 13: 1006609, 2022.
Article in English | MEDLINE | ID: mdl-36312980

ABSTRACT

Based on previous research, related to detailed insight into mutualistic collaboration of microalga and its microbiome, we established an artificial plant-bacteria system of the microalga Micrasterias radians MZCH 672 and the bacterial isolate Dyadobacter sp. HH091. The bacteria, affiliated with the phylum Bacteroidota, strongly stimulated growth of the microalga when it was added to axenic algal cultures. For further advances, we studied the isolate HH091 and its interaction with the microalga M. radians using transcriptome and extensive genome analyses. The genome of HH091 contains predicted polysaccharide utilizing gene clusters co-working with the type IX secretion system (T9SS) and conceivably involved in the algae-bacteria liaison. Here, we focus on characterizing the mechanism of T9SS, implementing the attachment and invasion of microalga by Dyadobacter sp. HH091. Omics analysis exposed T9SS genes: gldK, gldL, gldM, gldN, sprA, sprE, sprF, sprT, porU and porV. Besides, gld genes not considered as the T9SS components but required for gliding motility and protein secretion (gldA, gldB, gldD, gldF, gldG, gldH, gldI, gldJ), were also identified at this analysis. A first model of T9SS apparatus of Dyadobacter was proposed in a course of this research. Using the combination of fluorescence labeling of Dyadobacter sp. HH091, we examined the bacterial colonisation and penetration into the cell wall of the algal host M. radians MZCH 672.

7.
J Phycol ; 47(3): 565-579, 2011 Jun.
Article in English | MEDLINE | ID: mdl-27021986

ABSTRACT

Entry of metals in form of aerosols into areas of high air humidity such as peat bogs represents a serious danger for inhabiting organisms such as the unicellular desmid Micrasterias denticulata Bréb. ex Ralfs (Desmidiaceae, Zynematophyceae, Streptophyta). To understand cellular detoxification and tolerance mechanisms, detailed intracellular localization of metal pollutants is required. This study localizes the metals aluminum (Al), zinc (Zn), copper (Cu), and cadmium (Cd) in the green algal model system Micrasterias after experimental exposure to sulfate solutions by highly sensitive TEM-coupled electron energy loss spectroscopy (EELS). Concentrations of the metals shown to induce inhibiting effects on cell development and cytomorphogenesis were chosen for these experiments. Long-term exposure to these metal concentrations led to a pronounced impact on cell physiology expressed by a general decrease in apparent photosynthesis. After long-term treatment, Zn, Al, and Cu were detected in the cell walls by EELS. Zn was additionally found in vacuoles and mucilage vesicles, and Cu in starch grains and also in mucilage vesicles. Elevated amounts of oxygen in areas where Zn, Al, and Cu were localized suggest sequestration of these metals as oxides. The study demonstrated that Micrasterias can cope differently with metal pollutants. In low doses and during a limited time period, the cells were able to compartmentalize Cu the best, followed by Zn and Al. Cu and Zn were taken up into intracellular compartments, whereas Al was only bound to the cell wall. Cd was not compartmentalized at all, which explains its strongest impact on growth, cell division rate, and photosynthesis in Micrasterias.

8.
Harmful Algae ; 101: 101967, 2021 01.
Article in English | MEDLINE | ID: mdl-33526189

ABSTRACT

The proliferation of cyanobacteria Microcystis spp. and the invading green alga Micrasterias hardyi in Lake Biwa has been increasing. However, the available knowledge on the dietary utilization of these cyanobacterial and algal species by bivalves, which are key species in lake ecosystems, is limited. In this study, we examined the dietary quality and utilization of these species by freshwater bivalves of the Corbicula spp., which are important fishery resources, by performing feeding experiments and field investigations based on fatty acid profiles and stomach content analysis. Although a significant increase in the dry weight and condition factor of the Corbicula spp. individuals fed on diatom was observed at the end of the experiment, for the individuals fed on Microcystis aeruginosa or M. hardyi, a dry weight increase was not observed and their condition factor decreased. Moreover, the fatty acid profile of the Corbicula spp. individuals fed on M. aeruginosa or M. hardyi indicated that they did not assimilate these diets, even though filtration was confirmed during the experiments. However, the stomach contents of wild Corbicula spp. specimens, collected from six sampling sites in Lake Biwa on four sampling occasions, showed that Microcystis spp. were the most abundant dietary items in all sites and on all occasions. Moreover, M. hardyi was detected during the analysis of stomach contents; this alga was the third most abundant algal species. As shown in the feeding experiments, they do not contribute to bivalve growth, indicating that the high occupation of Microcystis spp. and M. hardyi in the consumer's stomach may inhibit effective carbon transfer. The expansion of these unsuitable dietary organisms may affect the stability of lake ecosystems.


Subject(s)
Bivalvia , Micrasterias , Microcystis , Animals , Ecosystem , Lakes
9.
Protoplasma ; 258(6): 1323-1334, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34292402

ABSTRACT

The algae Micrasterias with its star-shaped cell pattern is a perfect unicellular model system to study morphogenesis. How the indentations are formed in the primary cell wall at exactly defined areas puzzled scientists for decades, and they searched for chemical differences in the primary wall of the extending tips compared to the resting indents. We now tackled the question by Raman imaging and scanned in situ Micrasterias cells at different stages of development. Thousands of Raman spectra were acquired from the mother cell and the developing semicell to calculate chemical images based on an algorithm finding the most different Raman spectra. Each of those spectra had characteristic Raman bands, which were assigned to molecular vibrations of BaSO4, proteins, lipids, starch, and plant cell wall carbohydrates. Visualizing the cell wall carbohydrates revealed a cell wall thickening at the indentations of the primary cell wall of the growing semicell and uniplanar orientation of the cellulose microfibrils to the cell surface in the secondary cell wall. Crystalline cellulose dominated in the secondary cell wall spectra, while in the primary cell wall spectra, also xyloglucan and pectin were reflected. Spectral differences between the indent and tip region of the primary cell wall were scarce, but a spectral mixing approach pointed to more cellulose fibrils deposited in the indent region. Therefore, we suggest that cell wall thickening together with a denser network of cellulose microfibrils stiffens the cell wall at the indent and induces different cell wall extensibility to shape the lobes.


Subject(s)
Micrasterias , Cell Wall , Cellulose , Morphogenesis , Pectins
10.
Plant Methods ; 16: 48, 2020.
Article in English | MEDLINE | ID: mdl-32280364

ABSTRACT

BACKGROUND: Many methodological approaches have focused so far on physiological and molecular responses of plant tissues to freezing but only little knowledge is available on the consequences of extracellular ice-formation on cellular ultrastructure that underlies physiological reactions. In this context, the preservation of a defined frozen state during the entire fixation procedure is an essential prerequisite. However, current techniques are not able to fix frozen plant tissues for transmission electron microscopy (TEM) without interrupting the cold chain. Chemical fixation by glutaraldehyde and osmium tetroxide is not possible at sub-zero temperatures. Cryo-fixation methods, such as high pressure freeze fixation (HPF) representing the state-of-the-art technique for best structural preservation, are not equipped for freezing frozen samples. In order to overcome this obstacle, a novel technical approach for maintaining the cold chain of already frozen plant samples prior and during HPF is presented. RESULTS: Different algae (Micrasterias denticulata, Klebsormidium crenulatum) and higher plant tissues (Lemna sp., Ranunculus glacialis, Pinus mugo) were successfully frozen and prepared for HPF at freezing temperatures (- 2 °C, - 5 °C, - 6 °C) within a newly developed automatic freezing unit (AFU), that we manufactured from a standard laboratory freezer. Preceding tests on photosynthetic electron transport and ability to plasmolyse show that the temperatures applied did not impair electron transport in PSII nor cell vitality. The transfer of the frozen specimen from the AFU into the HPF-device and subsequently cryo-fixation were performed without intermediate thawing. After cryo-substitution and further processing, the resulting TEM-micrographs showed excellent ultrastructure preservation of the different organisms when compared to specimens fixed at ambient temperature. CONCLUSIONS: The method presented allows preserving the ultrastructure of plant cells in the frozen state during cryo-fixation. The resulting high quality TEM-images represent an important step towards a better understanding of the consequences of extracellular ice formation on cellular ultrastructure. It has the potential to provide new insights into changes of organelle structure, identification of intracellular injuries during ice formation and may help to understand freezing and thawing processes in plant tissues. It may be combined with analytical TEM such as electron energy loss spectroscopy (EELS), X-ray analyses (EDX) and various other electron microscopic techniques.

11.
J Plant Physiol ; 230: 80-91, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30195163

ABSTRACT

The unicellular model alga Micrasterias denticulata inhabits acid peat bogs that are highly endangered by pollutants due to their high humidity. As it was known from earlier studies that algae like Micrasterias are capable of storing barium naturally in form of BaSO4 crystals, it was interesting to experimentally investigate distribution and sequestration of barium and the chemically similar alkaline earth metal strontium. Additionally, we intended to analyze whether biomineralization by crystal formation contributes to diminution of the generally toxic effects of these minerals to physiology and structure of this alga which is closely related to higher plants. The results show that depending on the treatment differently shaped crystals are formed in BaCl2 and Cl2Sr exposed Micrasterias cells. Modern microscopic techniques such as analytical TEM by electron energy loss spectroscopy and Raman microscopy provide evidence for the chemical composition of these crystals. It is shown that barium treatment results in the formation of insoluble BaSO4 crystals that develop within distinct compartments. During strontium exposure long rod-like crystals are formed and are surrounded by membranes. Based on the Raman signature of these crystals their composition is attributed to strontium citrate. These crystals are instable and are dissolved during cell death. During strontium as well as barium treatment cell division rates and photosynthetic oxygen production decreased in dependence of the concentration, whereas cell vitality was reduced only slightly. Together with the fact that TEM analyses revealed only minor ultrastructural alterations as consequence of relatively high concentrated BaCl2 and Cl2Sr exposure, this indicates that biomineralization of Sr and Ba protects the cells from severe damage or cell death at least within a particular concentration range and time period. In the case of Sr treatment where ROS levels were found to be elevated, hallmarks for autophagy of single organelles were observed by TEM, indicating beginning degradation processes.


Subject(s)
Barium/metabolism , Biomineralization , Micrasterias/metabolism , Strontium/metabolism , Barium Compounds/metabolism , Cell Division , Chlorides/metabolism , Crystallization , Micrasterias/ultrastructure , Microscopy, Electron, Transmission , Oxygen/metabolism , Reactive Oxygen Species/metabolism
12.
Front Plant Sci ; 7: 1470, 2016.
Article in English | MEDLINE | ID: mdl-27777578

ABSTRACT

Charophytes are the group of green algae whose ancestral lineage gave rise to land plants in what resulted in a profoundly transformative event in the natural history of the planet. Extant charophytes exhibit many features that are similar to those found in land plants and their relatively simple phenotypes make them efficacious organisms for the study of many fundamental biological phenomena. Several taxa including Micrasterias, Penium, Chara, and Coleochaete are valuable model organisms for the study of cell biology, development, physiology and ecology of plants. New and rapidly expanding molecular studies are increasing the use of charophytes that in turn, will dramatically enhance our understanding of the evolution of plants and the adaptations that allowed for survival on land. The Frontiers in Plant Science series on "Charophytes" provides an assortment of new research reports and reviews on charophytes and their emerging significance as model plants.

13.
J Phycol ; 48(3): 682-92, 2012 Jun.
Article in English | MEDLINE | ID: mdl-27011085

ABSTRACT

Rab GTPases are central regulators of cell shape in land plants by coordinating vesicle trafficking during morphogenesis. To date, relatively little is known about the role of these ubiquitous signaling proteins during cell growth in microalgae, in particular in the related charophyte algae. This article identifies the first charophyte Rab GTPase, MdRABE1, in Micrasterias denticulata Bréb., a convenient model organism for studying morphogenesis. Its expression correlated with the onset of morphogenesis, and structural analysis indicated that it belongs to the RABE (Ras gene from rat brain E) subclass. Confocal fluorescence and immunoelectron microscopy (IEM) of transiently GFP-MdRABE1 overexpressing interphase cells demonstrated that the GFP-MdRABE1 protein was localized to the endoplasmic reticulum, dictyosomes, exocytotic vesicles, the cell margin, the membranes of cell organelles, and in the isthmus zone around the nucleus. Although overexpression phenotyping of both N- and C-terminal green fluorescent protein (GFP) fusions failed to indicate additional functional evidence of the MdRABE1 protein due to mortality of those transgenic cells, its expression profile, bioinformatics, and intracellular localization suggest a role in vesicle trafficking during morphogenesis.

14.
J Phycol ; 44(5): 1221-34, 2008 Oct.
Article in English | MEDLINE | ID: mdl-27041719

ABSTRACT

The cell wall of the green alga Micrasterias denticulata Bréb. ex Ralfs (Desmidiaceae, Zygnematophyceae, Streptophyta) was investigated to obtain information on the composition of component polysaccharides and proteoglycans to allow comparison with higher plants and to understand cell wall functions during development. Various epitopes currently assigned to arabinogalactan-proteins (AGPs) of higher plants could be detected in Micrasterias by immuno TEM and immunofluorescence methods, but the walls did not bind the ß-d-glycosyl-Yariv (ß-GlcY) reagent. Secretory vesicles and the primary wall were labeled by antibodies against AGPs (JIM8, JIM13, JIM14). Dot and Western blot experiments indicated a proteoglycan nature of the epitopes recognized, which consisted of galactose and xylose as major sugars by high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Epitopes of alkali-soluble polysaccharides assigned to noncellulosic polysaccharides in higher plants could be detected and located in the wall during its formation. The polyclonal anti-xyloglucan (anti-XG) antibody labeled primary and secondary wall of Micrasterias, whereas the monoclonal antibody CCRC-M1, directed against the fucose/galactose side chain of xyloglucan (XyG), did not recognize any structures. Labeling by anti-XG antibody at the trans-sites of the dictyosomes and at wall material containing vesicles indicated that secretion of the epitopes occurred similar to higher plants. The presence of (1→3, 1→4)-ß-glucan (mixed linked glucan) in the secondary cell wall but not in the primary cell wall of Micrasterias could be demonstrated by an antibody recognizing this glucan type, whereas (1→3)-ß-glucan (callose) could not be detected. The analytical results revealed that alkali-soluble polysaccharides in the secondary wall of Micrasterias consist mostly of (1→3, 1→4)-ß-d-glucan.

SELECTION OF CITATIONS
SEARCH DETAIL