Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Neurosci ; 43(14): 2615-2629, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36788031

ABSTRACT

Macroautophagy is a catabolic process that coordinates with lysosomes to degrade aggregation-prone proteins and damaged organelles. Loss of macroautophagy preferentially affects neuron viability and is associated with age-related neurodegeneration. We previously found that α-synuclein (α-syn) inhibits lysosomal function by blocking ykt6, a farnesyl-regulated soluble NSF attachment protein receptor (SNARE) protein that is essential for hydrolase trafficking in midbrain neurons. Using Parkinson's disease (PD) patient iPSC-derived midbrain cultures, we find that chronic, endogenous accumulation of α-syn directly inhibits autophagosome-lysosome fusion by impairing ykt6-SNAP-29 complexes. In wild-type (WT) cultures, ykt6 depletion caused a near-complete block of autophagic flux, highlighting its critical role for autophagy in human iPSC-derived neurons. In PD, macroautophagy impairment was associated with increased farnesyltransferase (FTase) activity, and FTase inhibitors restored macroautophagic flux through promoting active forms of ykt6 in human cultures, and male and female mice. Our findings indicate that ykt6 mediates cellular clearance by coordinating autophagic-lysosomal fusion and hydrolase trafficking, and that macroautophagy impairment in PD can be rescued by FTase inhibitors.SIGNIFICANCE STATEMENT The pathogenic mechanisms that lead to the death of neurons in Parkinson's disease (PD) and Dementia with Lewy bodies (LBD) are currently unknown. Furthermore, disease modifying treatments for these diseases do not exist. Our study indicates that a cellular clearance pathway termed autophagy is impaired in patient-derived culture models of PD and in vivo We identified a novel druggable target, a soluble NSF attachment protein receptor (SNARE) protein called ykt6, that rescues autophagy in vitro and in vivo upon blocking its farnesylation. Our work suggests that farnesyltransferase (FTase) inhibitors may be useful therapies for PD and DLB through enhancing autophagic-lysosomal clearance of aggregated proteins.


Subject(s)
Parkinson Disease , Humans , Male , Mice , Animals , Female , Parkinson Disease/metabolism , Farnesyltranstransferase/metabolism , alpha-Synuclein/metabolism , Autophagy/physiology , Mesencephalon/metabolism , Neurons/metabolism , Lysosomes/metabolism , SNARE Proteins/metabolism , Hydrolases/metabolism , R-SNARE Proteins/metabolism
2.
Neurobiol Dis ; 73: 150-62, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25283984

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder with prominent neuronal cell death in the substantia nigra (SN) and other parts of the brain. Previous studies in models of traumatic and neurodegenerative CNS disease showed that pharmacological inhibition of Rho-associated kinase (ROCK), a molecule involved in inhibitory signaling in the CNS, by small-molecule inhibitors improves neuronal survival and increases regeneration. Most small-molecule inhibitors, however, offer only limited target specificity and also inhibit other kinases, including both ROCK isoforms. To establish the role of the predominantly brain-expressed ROCK2 isoform in models of regeneration and PD, we used adeno-associated viral vectors (AAV) to specifically knockdown ROCK2 in neurons. Rat primary midbrain neurons (PMN) were transduced with AAV expressing short-hairpin-RNA (shRNA) against ROCK2 and LIM-domain kinase 1 (LIMK1), one of the downstream targets of ROCK2. While knock-down of ROCK2 and LIMK1 both enhanced neurite regeneration in a traumatic scratch lesion model, only ROCK2-shRNA protected PMN against 1-methyl-4-phenylpyridinium (MPP+) toxicity. Moreover, AAV.ROCK2-shRNA increased levels of the pro-survival markers Bcl-2 and phospho-Erk1. In vivo, AAV.ROCK2-shRNA vectors were injected into the ipsilateral SN and a unilateral 6-OHDA striatal lesion was performed. After four weeks, behavioral, immunohistochemical and biochemical alterations were investigated. Downregulation of ROCK2 protected dopaminergic neurons in the SN from 6-OHDA-induced degeneration and resulted in significantly increased TH-positive neuron numbers. This effect, however, was confined to nigral neuronal somata as striatal terminal density, dopamine and metabolite levels were not significantly preserved. Interestingly, motor behavior was improved in the ROCK2-shRNA treated animals compared to control after four weeks. Our studies thus confirm ROCK2 as a promising therapeutic target in models of PD and demonstrate that neuron-specific inhibition of ROCK2 promotes survival of lesioned dopaminergic neurons.


Subject(s)
Dopaminergic Neurons/metabolism , Down-Regulation/physiology , Nerve Degeneration/etiology , Nerve Degeneration/pathology , Parkinson Disease/complications , rho-Associated Kinases/metabolism , 3,4-Dihydroxyphenylacetic Acid/metabolism , Adrenergic Agents/toxicity , Animals , Dependovirus/genetics , Disease Models, Animal , Down-Regulation/genetics , Genetic Vectors/physiology , Homovanillic Acid , Lim Kinases/genetics , Lim Kinases/metabolism , Oxidopamine/toxicity , Parkinson Disease/etiology , Psychomotor Performance , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Rats , Rats, Wistar , Substantia Nigra/pathology , Tyrosine 3-Monooxygenase , rho-Associated Kinases/genetics
3.
Interdiscip Sci ; 11(2): 247-257, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31177377

ABSTRACT

INTRODUCTION: GPCR share a common structural feature, i.e., the presence of seven trans-membrane helices having three intracellular and three extracellular loops. The carboxyl terminal is intracellular whereas amino terminal is extracellular. Various conformational changes are observed in structure of GPCR during the binding with ligand, coupling with G protein and interaction with other proteins. In Rhodopsin class of GPCR the basic structure of GPCR is resolved by X-ray crystallography. Ligand acts as an extracellular stimulus for GPCRs to bring physiological changes in organisms. GPR139 has been found to have effective physiological role in primary dopaminergic midbrain neurons and in central nervous system. Recent reports suggested that the ligand of GPR139 protein inhibits the growth of primary dopaminergic midbrain neurons in central nervous system. These discoveries indicated the potential involvement and influence of GPR139 protein in central nervous system METHOD: Therefore, we used multi-approach analysis to investigate the role of GPR139 in the molecular mechanisms of central nervous system. In silico screening was performed to study compound 1 binding with GPR139 protein in their predicted three-dimensional structures. Compound 1 was subjected to molecular dynamics (MD) simulation and stability analysis. RESULTS: The results of MD analysis suggested that the loop region in GPR139 protein structure could affect its binding with drugs. Finally, we cross-validated the predicted compound 1 through systems biology approach. Our results suggested that GPR139 might play an important role in primary dopaminergic midbrain neurons therapy.


Subject(s)
Dopaminergic Neurons/cytology , Drug Evaluation, Preclinical , Mesencephalon/cytology , Molecular Dynamics Simulation , Neuroprotection , Receptors, G-Protein-Coupled/metabolism , Small Molecule Libraries/pharmacology , Systems Biology , Binding Sites , Diabetes Mellitus, Type 2/metabolism , Dopaminergic Neurons/drug effects , Humans , Molecular Docking Simulation , Neuroprotection/drug effects , Parkinson Disease/metabolism , Protein Domains , Receptors, G-Protein-Coupled/chemistry , Signal Transduction/drug effects , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Time Factors
4.
Front Neurosci ; 13: 288, 2019.
Article in English | MEDLINE | ID: mdl-31024230

ABSTRACT

Micro-Graphitic Single Crystal Diamond Multi Electrode Arrays (µG-SCD-MEAs) have so far been used as amperometric sensors to detect catecholamines from chromaffin cells and adrenal gland slices. Besides having time resolution and sensitivity that are comparable with carbon fiber electrodes, that represent the gold standard for amperometry, µG-SCD-MEAs also have the advantages of simultaneous multisite detection, high biocompatibility and implementation of amperometric/potentiometric protocols, aimed at monitoring exocytotic events and neuronal excitability. In order to adapt diamond technology to record neuronal activity, the µG-SCD-MEAs in this work have been interfaced with cultured midbrain neurons to detect electrical activity as well as quantal release of dopamine (DA). µG-SCD-MEAs are based on graphitic sensing electrodes that are embedded into the diamond matrix and are fabricated using MeV ion beam lithography. Two geometries have been adopted, with 4 × 4 and 8 × 8 microelectrodes (20 µm × 3.5 µm exposed area, 200 µm spacing). In the amperometric configuration, the 4 × 4 µG-SCD-MEAs resolved quantal exocytosis from midbrain dopaminergic neurons. KCl-stimulated DA release occurred as amperometric spikes of 15 pA amplitude and 0.5 ms half-width, at a mean frequency of 0.4 Hz. When used as potentiometric multiarrays, the 8 × 8 µG-SCD-MEAs detected the spontaneous firing activity of midbrain neurons. Extracellularly recorded action potentials (APs) had mean amplitude of ∼-50 µV and occurred at a mean firing frequency of 0.7 Hz in 67% of neurons, while the remaining fired at 6.8 Hz. Comparable findings were observed using conventional MEAs (0.9 and 6.4 Hz, respectively). To test the reliability of potentiometric recordings with µG-SCD-MEAs, the D2-autoreceptor modulation of firing was investigated by applying levodopa (L-DOPA, 20 µM), and comparing µG-SCD-MEAs, conventional MEAs and current-clamp recordings. In all cases, L-DOPA reduced the spontaneous spiking activity in most neurons by 70%, while the D2-antagonist sulpiride reversed this effect. Cell firing inhibition was generally associated with increased APs amplitude. A minority of neurons was either insensitive to, or potentiated by L-DOPA, suggesting that AP recordings originate from different midbrain neuronal subpopulations and reveal different modulatory pathways. Our data demonstrate, for the first time, that µG-SCD-MEAs are multi-functional biosensors suitable to resolve real-time DA release and AP firing in in vitro neuronal networks.

5.
Brain Res ; 1724: 146434, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31491419

ABSTRACT

As demonstrated in previous studies, early postnatal genistein (GEN) administration to mice pups of both sexes, at doses similar to that of infant soy-based formulas, may affect the development of some steroid-sensitive neuronal circuits (i.e. nitrergic and vasopressinergic systems), causing irreversible alterations in adults. Here, we investigated the hypothalamic and mesencephalic dopaminergic system (identified with tyrosine hydroxylase immunohistochemistry). GEN administration (50 mg/kg) to mice of both sexes during the first week of postnatal life specifically affected tyrosine hydroxylase immunohistochemistry in the hypothalamic subpopulation of neurons, abolishing their sexual dimorphism. On the contrary, we did not observe any effects in the mesencephalic groups. Due to the large involvement of dopamine in circuits controlling rodent sexual behavior and food intake, these results clearly indicate that the early postnatal administration of GEN may irreversibly alter the control of reproduction, of energetic metabolism, and other behaviors. These results suggest the need for a careful evaluation of the use of soy products in both human and animal newborns.


Subject(s)
Genistein/pharmacology , Sex Differentiation/drug effects , Animals , Animals, Newborn , Dopamine/physiology , Female , Genistein/adverse effects , Genistein/metabolism , Hypothalamic Hormones/metabolism , Hypothalamus/physiology , Male , Mesencephalon/metabolism , Mice , Neurons/physiology , Phytoestrogens , Sex Characteristics , Glycine max , Tyrosine 3-Monooxygenase
6.
Neurotoxicology ; 40: 43-51, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24269647

ABSTRACT

Parkinson's disease is an age-associated disorder characterized by selective degeneration of dopaminergic neurons. The molecular mechanisms underlying the selective vulnerability of this subset of neurons are, however, not fully understood. Employing SH-SY5Y neuroblastoma cells and primary mesencephalic neurons, we here demonstrate a significant increase in cytosolic calcium after inhibition of mitochondrial complex I by means of MPP(+), which is a well-established environmental toxin-based in vitro model of Parkinson's disease. This increase in calcium is correlated with a downregulation of the neuron-specific plasma membrane Ca(2+)-ATPase isoform 2 (PMCA2). Interestingly, two other important mediators of calcium efflux, sarcoplasmic reticulum Ca(2+)-ATPase (SERCA), and Na(+)-Ca(2+)-exchanger (NCX), remained unaltered, indicating a specific role of PMCA2 in maintaining calcium homeostasis in neurons. The observed PMCA2 downregulation was accompanied by reduced levels of phosphorylated CREB protein, an intracellular signaling molecule and transcriptional regulator. In order to investigate the potential influence of PMCA2 on neuronal vulnerability, experimental downregulation of PMCA2 by means of siRNA was performed. The results demonstrate a significant impairment of cell survival under conditions of PMCA2 suppression. Hence, in our cell models increased cytosolic calcium levels as a consequence of insufficient calcium efflux lead to an increased vulnerability of neuronal cells. Moreover, overexpression of PMCA2 rendered the neurons significantly resistant to complex I inhibition. Our findings point toward a dysregulation of calcium homeostasis in Parkinson's disease and suggest a potential molecular mechanism of neurodegeneration via PMCA2.


Subject(s)
Electron Transport Complex I/metabolism , Mesencephalon/metabolism , Neurons/metabolism , Plasma Membrane Calcium-Transporting ATPases/metabolism , 1-Methyl-4-phenylpyridinium/toxicity , Animals , Calcium/metabolism , Cell Line, Tumor , Cyclic AMP Response Element-Binding Protein/metabolism , Down-Regulation , Electron Transport Complex I/antagonists & inhibitors , Humans , Male , Mesencephalon/cytology , Mesencephalon/drug effects , Neurons/drug effects , Rats , Rats, Sprague-Dawley
7.
J Neurosci Methods ; 232: 143-9, 2014 Jul 30.
Article in English | MEDLINE | ID: mdl-24880043

ABSTRACT

BACKGROUND: Respiratory chain (RC) deficiencies are found in primary mtDNA diseases. Focal RC defects are also associated with ageing and neurodegenerative disorders, e.g. in substantia nigra (SN) neurons from Parkinson's disease patients. In mitochondrial disease and ageing, mtDNA mutational loads vary considerably between neurons necessitating single cell-based assessment of RC deficiencies. Evaluating the full extent of RC deficiency within SN neurons is challenging because their size precludes investigations in serial sections. We developed an assay to measure RC abnormalities in individual SN neurons using quadruple immunofluorescence. NEW METHOD: Using antibodies against subunits of complex I (CI) and IV, porin and tyrosine hydroxylase together with IgG subtype-specific fluorescent labelled secondary antibodies, we quantified the expression of CI and CIV compared to mitochondrial mass in dopaminergic neurons. CI:porin and CIV:porin ratios were determined relative to a standard control. RESULTS: Quantification of expression of complex subunits in midbrain sections from patients with mtDNA disease and known RC deficiencies consistently showed reduced CI:porin and/or CIV:porin ratios. COMPARISON WITH EXISTING METHOD(S): The standard histochemical method to investigate mitochondrial dysfunction, the cytochrome c oxidase/succinate dehydrogenase assay, measures CIV and CII activities. To also study CI in a patient, immunohistology in additional sections, i.e. in different neurons, is required. Our method allows correlation of the expression of CI, CIV and mitochondrial mass at a single cell level. CONCLUSION: Quantitative quadruple-label immunofluorescence is a reliable tool to measure RC deficiencies in individual neurons that will enable new insights in the molecular mechanisms underlying inherited and acquired mitochondrial dysfunction.


Subject(s)
Mitochondrial Diseases/pathology , Neurons/metabolism , Substantia Nigra/pathology , Adult , Aged , Electron Transport Complex I/metabolism , Electron Transport Complex IV/metabolism , Female , Fluorescent Antibody Technique , Humans , Male , Middle Aged , Porins/metabolism , Substantia Nigra/metabolism , Tyrosine 3-Monooxygenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL