Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
1.
Cell ; 173(5): 1244-1253.e10, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29681455

ABSTRACT

The RIPK1-RIPK3 necrosome is an amyloid signaling complex that initiates TNF-induced necroptosis, serving in human immune defense, cancer, and neurodegenerative diseases. RIPK1 and RIPK3 associate through their RIP homotypic interaction motifs with consensus sequences IQIG (RIPK1) and VQVG (RIPK3). Using solid-state nuclear magnetic resonance, we determined the high-resolution structure of the RIPK1-RIPK3 core. RIPK1 and RIPK3 alternately stack (RIPK1, RIPK3, RIPK1, RIPK3, etc.) to form heterotypic ß sheets. Two such ß sheets bind together along a compact hydrophobic interface featuring an unusual ladder of alternating Ser (from RIPK1) and Cys (from RIPK3). The crystal structure of a four-residue RIPK3 consensus sequence is consistent with the architecture determined by NMR. The RIPK1-RIPK3 core is the first detailed structure of a hetero-amyloid and provides a potential explanation for the specificity of hetero- over homo-amyloid formation and a structural basis for understanding the mechanisms of signal transduction.


Subject(s)
Amyloid/chemistry , Receptor-Interacting Protein Serine-Threonine Kinases/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Humans , Nuclear Magnetic Resonance, Biomolecular , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Sequence Alignment
2.
EMBO J ; 40(14): e106438, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34101209

ABSTRACT

Bax proteins form pores in the mitochondrial outer membrane to initiate apoptosis. This might involve their embedding in the cytosolic leaflet of the lipid bilayer, thus generating tension to induce a lipid pore with radially arranged lipids forming the wall. Alternatively, Bax proteins might comprise part of the pore wall. However, there is no unambiguous structural evidence for either hypothesis. Using NMR, we determined a high-resolution structure of the Bax core region, revealing a dimer with the nonpolar surface covering the lipid bilayer edge and the polar surface exposed to water. The dimer tilts from the bilayer normal, not only maximizing nonpolar interactions with lipid tails but also creating polar interactions between charged residues and lipid heads. Structure-guided mutations demonstrate the importance of both types of protein-lipid interactions in Bax pore assembly and core dimer configuration. Therefore, the Bax core dimer forms part of the proteolipid pore wall to permeabilize mitochondria.


Subject(s)
Mitochondria/metabolism , Mitochondrial Membranes/metabolism , bcl-2-Associated X Protein/metabolism , Apoptosis/physiology , Humans , Lipid Bilayers/metabolism
3.
J Biol Chem ; 299(10): 105199, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37660904

ABSTRACT

Regulatory ATPase variant A (RavA) is a MoxR AAA+ protein that functions together with a partner protein termed von Willebrand factor type A interacting with AAA+ ATPase (ViaA). RavA-ViaA are functionally associated with anaerobic respiration in Escherichia coli through interactions with the fumarate reductase (Frd) electron transport complex. Through this association, RavA and ViaA modulate the activity of the Frd complex and, hence, are proposed to have chaperone-like activity. However, the functional role of RavA-ViaA in the cell is not yet well established. We had demonstrated that RavA-ViaA can sensitize E. coli cells to sublethal concentrations of the aminoglycoside class of antibiotics. Since Frd has been associated with bacterial persistence against antibiotics, the relationship of RavA-ViaA and Frd was explored within this context. Experiments performed here reveal a function of RavA-ViaA in bacterial persistence upon treatment with antibiotics through the association of the chaperone complex with Frd. As part of this work, the NMR structure of the N-terminal domain of ViaA was solved. The structure reveals a novel alpha helical fold, which we name the VAN fold, that has not been observed before. We show that this domain is required for the function of the chaperone complex. We propose that modulating the levels of RavA-ViaA could enhance the susceptibility of Gram-negative bacteria to antibiotics.

4.
Molecules ; 29(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38998901

ABSTRACT

Long-range HNCO NMR spectra for proteins show crosspeaks due to 1JNC', 2JNC', 3JNCγ, and h3JNC' couplings. The h3JNC' couplings are transmitted through hydrogen bonds and their sizes are correlated to hydrogen bond lengths. We collected long-range HNCO data at a series of temperatures for four protein structures. P22i and CUS-3i are six-stranded beta-barrel I-domains from phages P22 and CUS-3 that share less than 40% sequence identity. The cis and trans states of the C-terminal domain from pore-forming toxin hemolysin ΙΙ (HlyIIC) arise from the isomerization of a single G404-P405 peptide bond. For P22i and CUS-3i, hydrogen bonds detected by NMR agree with those observed in the corresponding domains from cryoEM structures of the two phages. Hydrogen bond lengths derived from the h3JNC' couplings, however, are poorly conserved between the distantly related CUS-3i and P22i domains and show differences even between the closely related cis and trans state structures of HlyIIC. This is consistent with hydrogen bond lengths being determined by local differences in structure rather than the overall folding topology. With increasing temperature, hydrogen bonds typically show an apparent increase in length that has been attributed to protein thermal expansion. Some hydrogen bonds are invariant with temperature, however, while others show apparent decreases in length, suggesting they become stabilized with increasing temperature. Considering the data for the three proteins in this study and previously published data for ubiquitin and GB3, lowered protein folding stability and cooperativity corresponds with a larger range of temperature responses for hydrogen bonds. This suggests a partial uncoupling of hydrogen bond energetics from global unfolding cooperativity as protein stability decreases.


Subject(s)
Hydrogen Bonding , Temperature , Nuclear Magnetic Resonance, Biomolecular , Models, Molecular , Protein Stability , Protein Conformation , Proteins/chemistry , Magnetic Resonance Spectroscopy/methods , Hemolysin Proteins/chemistry
5.
J Biol Chem ; 298(5): 101913, 2022 05.
Article in English | MEDLINE | ID: mdl-35398358

ABSTRACT

The N-terminal (NT) domain of spider silk proteins (spidroins) is crucial for their storage at high concentrations and also regulates silk assembly. NTs from the major ampullate spidroin (MaSp) and the minor ampullate spidroin are monomeric at neutral pH and confer solubility to spidroins, whereas at lower pH, they dimerize to interconnect spidroins in a fiber. This dimerization is known to result from modulation of electrostatic interactions by protonation of well-conserved glutamates, although it is undetermined if this mechanism applies to other spidroin types as well. Here, we determine the solution and crystal structures of the flagelliform spidroin NT, which shares only 35% identity with MaSp NT, and investigate the mechanisms of its dimerization. We show that flagelliform spidroin NT is structurally similar to MaSp NT and that the electrostatic intermolecular interaction between Asp 40 and Lys 65 residues is conserved. However, the protonation events involve a different set of residues than in MaSp, indicating that an overall mechanism of pH-dependent dimerization is conserved but can be mediated by different pathways in different silk types.


Subject(s)
Fibroins , Silk , Spiders , Animals , Conserved Sequence , Dimerization , Fibroins/chemistry , Fibroins/genetics , Fibroins/metabolism , Hydrogen-Ion Concentration , Protein Domains/genetics , Silk/chemistry , Silk/genetics , Silk/metabolism , Spiders/chemistry , Spiders/genetics , Spiders/metabolism
6.
J Biol Chem ; 298(8): 102218, 2022 08.
Article in English | MEDLINE | ID: mdl-35780839

ABSTRACT

The stinging hairs of plants from the family Urticaceae inject compounds that inflict pain to deter herbivores. The sting of the New Zealand tree nettle (Urtica ferox) is among the most painful of these and can cause systemic symptoms that can even be life-threatening; however, the molecular species effecting this response have not been elucidated. Here we reveal that two classes of peptide toxin are responsible for the symptoms of U. ferox stings: Δ-Uf1a is a cytotoxic thionin that causes pain via disruption of cell membranes, while ß/δ-Uf2a defines a new class of neurotoxin that causes pain and systemic symptoms via modulation of voltage-gated sodium (NaV) channels. We demonstrate using whole-cell patch-clamp electrophysiology experiments that ß/δ-Uf2a is a potent modulator of human NaV1.5 (EC50: 55 nM), NaV1.6 (EC50: 0.86 nM), and NaV1.7 (EC50: 208 nM), where it shifts the activation threshold to more negative potentials and slows fast inactivation. We further found that both toxin classes are widespread among members of the Urticeae tribe within Urticaceae, suggesting that they are likely to be pain-causing agents underlying the stings of other Urtica species. Comparative analysis of nettles of Urtica, and the recently described pain-causing peptides from nettles of another genus, Dendrocnide, indicates that members of tribe Urticeae have developed a diverse arsenal of pain-causing peptides.


Subject(s)
Neurotoxins , Peptides , Toxins, Biological , Urticaceae , Humans , Neurotoxins/chemistry , Pain , Patch-Clamp Techniques , Peptides/chemistry , Peptides/toxicity , Toxins, Biological/chemistry , Urticaceae/chemistry , Voltage-Gated Sodium Channels/drug effects
7.
J Pept Sci ; 29(10): e3494, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37051739

ABSTRACT

We report the characterization of the three-dimensional structure of the CEMP1-p1 peptide [MGTSSTDSQQAQHRRCSTSN: corresponding to residues 1-20 of the N-terminus of cementum protein 1 (CEMP1)]. This peptide imitates the capacity of CEMP1 to stimulate hydroxyapatite (HA) crystal nucleation and growth, and promotes the differentiation of periodontal ligament cells into a cementoblastic phenotype. Additionally, in experimental models of critical-sized calvarial defects in Wistar rats, CEMP1-p1 has shown osteogenic properties that enhanced the physiological deposition and maturation of newly formed bone. In this work, studies of CEMP1-p1 by circular dichroism (CD) and nuclear magnetic resonance (NMR) were performed in trifluoroethanol D2 (TFED2) and aqueous solution to determine the 3D structure of the peptide. Using the 3D model, experimental data from HA crystals formation and calcium fluorescence emission, we explain the biological mechanisms involved in CEMP1-p1 activity to promote calcium recruitment and its affinity to HA crystals. This information is valuable because it proposes, for the first time, a plausible molecular mechanism during the mineralization process, from a specific cementum protein-derived peptide.


Subject(s)
Calcium , Dental Cementum , Rats , Animals , Rats, Wistar , Peptides/chemistry , Magnetic Resonance Spectroscopy
8.
Proc Natl Acad Sci U S A ; 117(1): 337-345, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31871151

ABSTRACT

Out of the 14 avian ß-defensins identified in the Gallus gallus genome, only 3 are present in the chicken egg, including the egg-specific avian ß-defensin 11 (Gga-AvBD11). Given its specific localization and its established antibacterial activity, Gga-AvBD11 appears to play a protective role in embryonic development. Gga-AvBD11 is an atypical double-sized defensin, predicted to possess 2 motifs related to ß-defensins and 6 disulfide bridges. The 3-dimensional NMR structure of the purified Gga-AvBD11 is a compact fold composed of 2 packed ß-defensin domains. This fold is the archetype of a structural family, dubbed herein as avian-double-ß-defensins (Av-DBD). We speculate that AvBD11 emanated from a monodomain gene ancestor and that similar events might have occurred in arthropods, leading to another structural family of less compact DBDs. We show that Gga-AvBD11 displays antimicrobial activities against gram-positive and gram-negative bacterial pathogens, the avian protozoan Eimeria tenella, and avian influenza virus. Gga-AvBD11 also shows cytotoxic and antiinvasive activities, suggesting that it may not only be involved in innate protection of the chicken embryo, but also in the (re)modeling of embryonic tissues. Finally, the contribution of either of the 2 Gga-AvBD11 domains to these biological activities was assessed, using chemically synthesized peptides. Our results point to a critical importance of the cationic N-terminal domain in mediating antibacterial, antiparasitic, and antiinvasive activities, with the C-terminal domain potentiating the 2 latter activities. Strikingly, antiviral activity in infected chicken cells, accompanied by marked cytotoxicity, requires the full-length protein.


Subject(s)
Avian Proteins/genetics , Chick Embryo/immunology , Chickens/physiology , Embryonic Development/immunology , beta-Defensins/genetics , Amino Acid Sequence , Animals , Avian Proteins/ultrastructure , Bacterial Infections/immunology , Bacterial Infections/microbiology , Bacterial Infections/veterinary , Biological Assay , Chick Embryo/growth & development , Chick Embryo/microbiology , Chick Embryo/parasitology , Coccidiosis/immunology , Coccidiosis/parasitology , Coccidiosis/veterinary , Eimeria tenella/immunology , Evolution, Molecular , Genome , Immunity, Innate/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza in Birds/immunology , Influenza in Birds/virology , Nuclear Magnetic Resonance, Biomolecular , Phylogeny , Protein Domains/genetics , Protein Domains/immunology
9.
Proc Natl Acad Sci U S A ; 117(27): 16043-16054, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32571919

ABSTRACT

In the indeterminate nodules of a model legume Medicago truncatula, ∼700 nodule-specific cysteine-rich (NCR) peptides with conserved cysteine signature are expressed. NCR peptides are highly diverse in sequence, and some of these cationic peptides exhibit antimicrobial activity in vitro and in vivo. However, there is a lack of knowledge regarding their structural architecture, antifungal activity, and modes of action against plant fungal pathogens. Here, the three-dimensional NMR structure of the 36-amino acid NCR044 peptide was solved. This unique structure was largely disordered and highly dynamic with one four-residue α-helix and one three-residue antiparallel ß-sheet stabilized by two disulfide bonds. NCR044 peptide also exhibited potent fungicidal activity against multiple plant fungal pathogens, including Botrytis cinerea and three Fusarium spp. It inhibited germination in quiescent spores of B. cinerea In germlings, it breached the fungal plasma membrane and induced reactive oxygen species. It bound to multiple bioactive phosphoinositides in vitro. Time-lapse confocal and superresolution microscopy revealed strong fungal cell wall binding, penetration of the cell membrane at discrete foci, followed by gradual loss of turgor, subsequent accumulation in the cytoplasm, and elevated levels in nucleoli of germlings. Spray-applied NCR044 significantly reduced gray mold disease symptoms caused by the fungal pathogen B. cinerea in tomato and tobacco plants, and postharvest products. Our work illustrates the antifungal activity of a structurally unique NCR peptide against plant fungal pathogens and paves the way for future development of this class of peptides as a spray-on fungistat/fungicide.


Subject(s)
Antifungal Agents/pharmacology , Peptides/metabolism , Peptides/pharmacology , Plant Diseases/prevention & control , Plant Proteins/metabolism , Plant Proteins/pharmacology , Symbiosis , Amino Acid Sequence , Botrytis/metabolism , Cell Membrane/metabolism , Cell Wall/metabolism , Cysteine/chemistry , Fusarium/metabolism , Solanum lycopersicum/metabolism , Solanum lycopersicum/microbiology , Magnetic Resonance Spectroscopy , Medicago truncatula/microbiology , Pichia/metabolism , Plant Diseases/microbiology , Nicotiana/metabolism , Nicotiana/microbiology
10.
Molecules ; 28(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37049825

ABSTRACT

Cardiovascular ailments are a major cause of mortality where over 1.3 billion people suffer from hypertension leading to heart-disease related deaths. Snake venoms possess a broad repertoire of natriuretic peptides with therapeutic potential for treating hypertension, congestive heart failure, and related cardiovascular disease. We now describe several taipan (Oxyuranus microlepidotus) natriuretic peptides TNPa-e which stimulated cGMP production through the natriuretic peptide receptor A (NPR-A) with higher potencies for the rat NPR-A (rNPR-A) over human NPR-A (hNPR-A). TNPc and TNPd were the most potent, demonstrating 100- and 560-fold selectivity for rNPR-A over hNPR-A. In vivo studies found that TNPc decreased diastolic and systolic blood pressure (BP) and increased heart rate (HR) in conscious normotensive rabbits, to a level that was similar to that of human atrial natriuretic peptide (hANP). TNPc also enhanced the bradycardia due to cardiac afferent stimulation (Bezold-Jarisch reflex). This indicated that TNPc possesses the ability to lower blood pressure and facilitate cardiac vagal afferent reflexes but unlike hANP does not produce tachycardia. The 3-dimensional structure of TNPc was well defined within the pharmacophoric disulfide ring, displaying two turn-like regions (RMSD = 1.15 Å). Further, its much greater biological stability together with its selectivity and potency will enhance its usefulness as a biological tool.


Subject(s)
Hypertension , Natriuretic Peptides , Rats , Animals , Humans , Rabbits , Natriuretic Peptides/pharmacology , Receptors, Atrial Natriuretic Factor , Heart , Elapidae , Hypertension/drug therapy
11.
Molecules ; 28(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37298811

ABSTRACT

The cationic antimicrobial ß-hairpin, thanatin, was recently developed into drug-like analogues active against carbapenem-resistant Enterobacteriaceae (CRE). The analogues represent new antibiotics with a novel mode of action targeting LptA in the periplasm and disrupting LPS transport. The compounds lose antimicrobial efficacy when the sequence identity to E. coli LptA falls below 70%. We wanted to test the thanatin analogues against LptA of a phylogenetic distant organism and investigate the molecular determinants of inactivity. Acinetobacter baumannii (A. baumannii) is a critical Gram-negative pathogen that has gained increasing attention for its multi-drug resistance and hospital burden. A. baumannii LptA shares 28% sequence identity with E. coli LptA and displays an intrinsic resistance to thanatin and thanatin analogues (MIC values > 32 µg/mL) through a mechanism not yet described. We investigated the inactivity further and discovered that these CRE-optimized derivatives can bind to LptA of A. baumannii in vitro, despite the high MIC values. Herein, we present a high-resolution structure of A. baumannii LptAm in complex with a thanatin derivative 7 and binding affinities of selected thanatin derivatives. Together, these data offer structural insights into why thanatin derivatives are inactive against A. baumannii LptA, despite binding events in vitro.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Antimicrobial Cationic Peptides , Bacterial Proteins , Carrier Proteins , Antimicrobial Cationic Peptides/chemistry , Protein Binding , Bacterial Proteins/chemistry , Carrier Proteins/chemistry , Anti-Bacterial Agents/chemistry , Protein Conformation , Amino Acid Sequence , Conserved Sequence
12.
J Biol Chem ; 296: 100353, 2021.
Article in English | MEDLINE | ID: mdl-33524392

ABSTRACT

Polychlorinated bisphenols (PCBs) continue to contaminate food chains globally where they concentrate in tissues and disrupt the endocrine systems of species throughout the ecosphere. Hydroxylated PCBs (OH-PCBs) are major PCB metabolites and high-affinity inhibitors of human estrogen sulfotransferase (SULT1E1), which sulfonates estrogens and thus prevents them from binding to and activating their receptors. OH-PCB inhibition of SULT1E1 is believed to contribute significantly to PCB-based endocrine disruption. Here, for the first time, the molecular basis of OH-PCB inhibition of SULT1E1 is revealed in a structure of SULT1E1 in complex with OH-PCB1 (4'-OH-2,6-dichlorobiphenol) and its substrates, estradiol (E2), and PAP (3'-phosphoadenosine-5-phosphosulfate). OH-PCB1 prevents catalysis by intercalating between E2 and catalytic residues and establishes a new E2-binding site whose E2 affinity and positioning are greater than and competitive with those of the reactive-binding pocket. Such complexes have not been observed previously and offer a novel template for the design of high-affinity inhibitors. Mutating residues in direct contact with OH-PCB weaken its affinity without compromising the enzyme's catalytic parameters. These OH-PCB resistant mutants were used in stable transfectant studies to demonstrate that OH-PCBs regulate estrogen receptors in cultured human cell lines by binding the OH-PCB binding pocket of SULT1E1.


Subject(s)
Enzyme Inhibitors/pharmacology , Estrogens/pharmacology , Polychlorinated Biphenyls/pharmacology , Sulfotransferases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Estrogens/chemistry , Humans , Hydroxylation , Models, Molecular , Polychlorinated Biphenyls/chemistry , Receptors, Estrogen/metabolism , Sulfotransferases/chemistry , Sulfotransferases/metabolism
13.
Biochem Biophys Res Commun ; 626: 121-128, 2022 10 20.
Article in English | MEDLINE | ID: mdl-35994823

ABSTRACT

Human galanin is a 30-residue neuropeptide targeted for development of analgesics, antidepressants, and anticonvulsants. While previous work from our group and others has already produced significant insights into galanin's N-terminal region, no extant structures of galanin in databases include its full-length sequence and the function of its C-terminus remains ambiguous. We report the NMR solution structure of full-length human galanin C-terminal amide, determined from 2D 1H-1H COSY, TOCSY, and ROESY NMR data. Galanin adopts an irregular helical structure across its N-terminus, likely the average of several coiling states. We present the NMR structure of a peptide encompassing the C-terminus of galanin as a stand-alone fragment. The C-terminus of full-length galanin appears to indirectly assist the intramolecular association of hydrophobic sidechains within its N-terminus, remotely rigidifying their position when compared to previously studied N-terminal galanin fragments. By contrast, there is flexibility in the C-terminus of galanin, characterized by two i to i + 2 hydrogen-bonded turns within an otherwise dynamic backbone. The C-terminal portion of the peptide renders it soluble, and plays a hitherto undescribed biophysical role in pre-organizing the galanin receptor binding epitope. We speculate that hydrophilic microdomains of signaling peptides, hormones, and perhaps intrinsically disordered proteins may also function similarly.


Subject(s)
Galanin , Peptide Hormones , Amino Acid Sequence , Humans , Magnetic Resonance Spectroscopy , Protein Structure, Secondary
14.
RNA ; 26(12): 2031-2043, 2020 12.
Article in English | MEDLINE | ID: mdl-32989045

ABSTRACT

Small regulatory RNAs (sRNAs) play an important role for posttranscriptional gene regulation in bacteria. sRNAs recognize their target messenger RNAs (mRNAs) by base-pairing, which is often facilitated by interactions with the bacterial RNA-binding proteins Hfq or ProQ. The FinO/ProQ RNA-binding protein domain was first discovered in the bacterial repressor of conjugation, FinO. Since then, the functional role of FinO/ProQ-like proteins in posttranscriptional gene regulation was extensively studied in particular in the enterobacteria E. coli and Salmonella enterica and a wide range of sRNA-targets was identified for these proteins. In addition, enterobacterial ProQ homologs also recognize and protect the 3'-ends of a number of mRNAs from exonucleolytic degradation. However, the RNA-binding properties of FinO/ProQ proteins with regard to the recognition of different RNA targets are not yet fully understood. Here, we present the solution NMR structure of the so far functionally uncharacterized ProQ homolog Lpp1663 from Legionella pneumophila as a newly confirmed member and a minimal model system of the FinO/ProQ protein family. In addition, we characterize the RNA-binding preferences of Lpp1663 with high resolution NMR spectroscopy and isothermal titration calorimetry (ITC). Our results suggest a binding preference for single-stranded uridine-rich RNAs in the vicinity of stable stem-loop structures. According to chemical shift perturbation experiments, the single-stranded U-rich RNAs interact mainly with a conserved RNA-binding surface on the concave site of Lpp1663.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Legionella pneumophila/metabolism , Nuclear Magnetic Resonance, Biomolecular/methods , RNA, Bacterial/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Legionella pneumophila/genetics , Protein Binding , Protein Domains , RNA, Bacterial/chemistry , Structure-Activity Relationship
15.
Int J Mol Sci ; 23(20)2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36293186

ABSTRACT

6-Hydroxyquinoline and 3-hydroxyisoquinoline as N-containing naphthol analogues were tested in modified Mannich reactions (mMr's). In the case of 6-hydroxyquinoline, the outcomes of the attempted Mannich reactions were strongly influenced by the amine components. Aminoalkylation of this substrate with reagents 1-naphthaldehyde and N-benzylmethylamine led to the isolation of a diol regarded as a stabilised water adduct of an ortho-quinone methide (o-QM), of which formation can be ascribed to the presence of a hydroxide ion in a relatively higher concentration generated by the bulky and basic amine component with decreased nucleophilicity. The classical Mannich base was isolated as a single product when the amine component was replaced for morpholine, featuring nucleophilicity rather than basic character under the applied reaction conditions. Starting from the isomer substrate 3-hydroxyisoquinoline, independently on the nucleophile (methanol or morpholine) besides the formation of the classical Mannich base, the nucleophilic attack at position one of the heterocyclic substrate was also observed. The DFT analysis of the acceptor molecular orbitals of the potential electrophilic components and the thermodynamics of the assumed-possible transformations demonstrated that this regioselective addition is a feasible process on the investigated heterocyclic skeleton. DFT modelling studies also suggest that besides the steric bulk, the orbital-controlled electronic properties of the aryl group, originating from the aldehyde components, have a strong influence on the ratios and the NMR-monitored interconversions of the C-1-substituted 3-hydroxyisoquinolines and the classical Mannich bases formed in multistep reaction sequences. On the basis of the DFT analysis of the thermodynamics of alternative pathways, a reaction mechanism was proposed for the rationalization of these characteristic substrate-controlled interconversions.


Subject(s)
Mannich Bases , Naphthols , Mannich Bases/chemistry , Methanol , Water/chemistry , Morpholines , Aldehydes
16.
Angew Chem Int Ed Engl ; 61(13): e202112232, 2022 03 21.
Article in English | MEDLINE | ID: mdl-34985791

ABSTRACT

Cholesterol oligomers reside in multiple membrane protein X-ray crystal structures. Yet, there is no direct link between these oligomers and a biological function. Here we present the structural and functional details of a cholesterol dimer that stabilizes the inactivated state of an inward-rectifier potassium channel KirBac1.1. K+ efflux assays confirm that high cholesterol concentration reduces K+ conductance. We then determine the structure of the cholesterol-KirBac1.1 complex using Xplor-NIH simulated annealing calculations driven by solid-state NMR distance measurements. These calculations identified an α-α cholesterol dimer docked to a cleft formed by adjacent subunits of the homotetrameric protein. We compare these results to coarse grain molecular dynamics simulations. This is one of the first examples of a cholesterol oligomer performing a distinct biological function and structural characterization of a conserved promiscuous lipid binding region.


Subject(s)
Potassium Channels, Inwardly Rectifying , Cholesterol , Potassium/metabolism , Potassium Channels, Inwardly Rectifying/chemistry , Potassium Channels, Inwardly Rectifying/metabolism
17.
Proteins ; 89(5): 588-594, 2021 05.
Article in English | MEDLINE | ID: mdl-32949018

ABSTRACT

Lyme disease is the most widespread vector-transmitted disease in North America and Europe, caused by infection with Borrelia burgdorferi sensu lato complex spirochetes. We report the solution NMR structure of the B. burgdorferi outer surface lipoprotein BBP28, a member of the multicopy lipoprotein (mlp) family. The structure comprises a tether peptide, five α-helices and an extended C-terminal loop. The fold is similar to that of Borrelia turicatae outer surface protein BTA121, which is known to bind lipids. These results contribute to the understanding of Lyme disease pathogenesis by revealing the molecular structure of a protein from the widely found mlp family.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Borrelia burgdorferi/metabolism , Lipoproteins/chemistry , Amino Acid Sequence , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Borrelia/chemistry , Borrelia/metabolism , Borrelia burgdorferi/chemistry , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Lipoproteins/genetics , Lipoproteins/metabolism , Lyme Disease/microbiology , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid
18.
J Neurochem ; 159(1): 90-100, 2021 10.
Article in English | MEDLINE | ID: mdl-34008858

ABSTRACT

α-Conotoxins are small disulfide-rich peptides found in the venom of marine cone snails and are potent antagonists of nicotinic acetylcholine receptors (nAChRs). They are valuable pharmacological tools and have potential therapeutic applications for the treatment of chronic pain or neurological diseases and disorders. In the present study, we synthesized and functionally characterized a novel α-conotoxin Bt1.8, which was cloned from Conus betulinus. Bt1.8 selectively inhibited ACh-evoked currents in Xenopus oocytes expressing rat(r) α6/α3ß2ß3 and rα3ß2 nAChRs with an IC50 of 2.1 nM and 9.4 nM, respectively, and similar potency for human (h) α6/α3ß2ß3 and hα3ß2 nAChRs. Additionally, Bt1.8 had higher binding affinity with a slower dissociation rate for the rα6/α3ß2ß3 subtype compared to rα3ß2. The amino acid sequence of Bt1.8 is significantly different from other reported α-conotoxins targeting the two nAChR subtypes. Further Alanine scanning analyses demonstrated that residues Ile9, Leu10, Asn11, Asn12 and Asn14 are critical for its inhibitory activity at the α6/α3ß2ß3 and α3ß2 subtypes. Moreover, the NMR structure of Bt1.8 indicated the presence of a relatively larger hydrophobic zone than other α4/7-conotoxins which may explain its potent inhibition at α6/α3ß2ß3 nAChRs.


Subject(s)
Conotoxins/pharmacology , Nicotinic Antagonists/pharmacology , Receptors, Nicotinic/metabolism , Animals , Conotoxins/chemistry , Conotoxins/isolation & purification , Conus Snail , Dose-Response Relationship, Drug , Female , Humans , Nicotinic Antagonists/chemistry , Nicotinic Antagonists/isolation & purification , Oocytes , Protein Structure, Tertiary , Protein Subunits/antagonists & inhibitors , Protein Subunits/genetics , Protein Subunits/metabolism , Rats , Receptors, Nicotinic/genetics , Xenopus laevis
19.
Mar Drugs ; 19(3)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801301

ABSTRACT

Cone snails are venomous marine predators that rely on fast-acting venom to subdue their prey and defend against aggressors. The conotoxins produced in the venom gland are small disulfide-rich peptides with high affinity and selectivity for their pharmacological targets. A dominant group comprises α-conotoxins, targeting nicotinic acetylcholine receptors. Here, we report on the synthesis, structure determination and biological activity of a novel α-conotoxin, CIC, found in the predatory venom of the piscivorous species Conus catus and its truncated mutant Δ-CIC. CIC is a 4/7 α-conotoxin with an unusual extended N-terminal tail. High-resolution NMR spectroscopy shows a major influence of the N-terminal tail on the apparent rigidity of the three-dimensional structure of CIC compared to the more flexible Δ-CIC. Surprisingly, this effect on the structure does not alter the biological activity, since both peptides selectively inhibit α3ß2 and α6/α3ß2ß3 nAChRs with almost identical sub- to low micromolar inhibition constants. Our results suggest that the N-terminal part of α-conotoxins can accommodate chemical modifications without affecting their pharmacology.


Subject(s)
Conotoxins/isolation & purification , Conus Snail/metabolism , Mollusk Venoms/chemistry , Nicotinic Antagonists/isolation & purification , Animals , Conotoxins/chemistry , Conotoxins/pharmacology , Magnetic Resonance Spectroscopy , Nicotinic Antagonists/pharmacology , Receptors, Nicotinic/drug effects , Receptors, Nicotinic/metabolism
20.
Proc Natl Acad Sci U S A ; 115(38): E8892-E8899, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30185554

ABSTRACT

The membrane-proximal external region (MPER) of the HIV-1 envelope glycoprotein (Env) bears epitopes of broadly neutralizing antibodies (bnAbs) from infected individuals; it is thus a potential vaccine target. We report an NMR structure of the MPER and its adjacent transmembrane domain in bicelles that mimic a lipid-bilayer membrane. The MPER lies largely outside the lipid bilayer. It folds into a threefold cluster, stabilized mainly by conserved hydrophobic residues and potentially by interaction with phospholipid headgroups. Antigenic analysis and comparison with published images from electron cryotomography of HIV-1 Env on the virion surface suggest that the structure may represent a prefusion conformation of the MPER, distinct from the fusion-intermediate state targeted by several well-studied bnAbs. Very slow bnAb binding indicates that infrequent fluctuations of the MPER structure give these antibodies occasional access to alternative conformations of MPER epitopes. Mutations in the MPER not only impede membrane fusion but also influence presentation of bnAb epitopes in other regions. These results suggest strategies for developing MPER-based vaccine candidates.


Subject(s)
HIV Antigens/chemistry , HIV-1/chemistry , Virion/chemistry , env Gene Products, Human Immunodeficiency Virus/chemistry , HIV Antigens/immunology , HIV-1/immunology , Immunoglobulin Fab Fragments/immunology , Lipid Bilayers/chemistry , Magnetic Resonance Spectroscopy , Membrane Fusion , Protein Domains , Virion/immunology
SELECTION OF CITATIONS
SEARCH DETAIL