Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.121
Filter
1.
Annu Rev Immunol ; 38: 511-539, 2020 04 26.
Article in English | MEDLINE | ID: mdl-32340578

ABSTRACT

The continuous interactions between host and pathogens during their coevolution have shaped both the immune system and the countermeasures used by pathogens. Natural killer (NK) cells are innate lymphocytes that are considered central players in the antiviral response. Not only do they express a variety of inhibitory and activating receptors to discriminate and eliminate target cells but they can also produce immunoregulatory cytokines to alert the immune system. Reciprocally, several unrelated viruses including cytomegalovirus, human immunodeficiency virus, influenza virus, and dengue virus have evolved a multitude of mechanisms to evade NK cell function, such as the targeting of pathways for NK cell receptors and their ligands, apoptosis, and cytokine-mediated signaling. The studies discussed in this article provide further insights into the antiviral function of NK cells and the pathways involved, their constituent proteins, and ways in which they could be manipulated for host benefit.


Subject(s)
Host-Pathogen Interactions/immunology , Immune Evasion , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Viruses/immunology , Animals , Biomarkers , Cytokines/metabolism , Humans , Receptors, Natural Killer Cell/metabolism , Signal Transduction , Virus Diseases/immunology , Virus Diseases/metabolism , Virus Diseases/virology
2.
Cell ; 186(26): 5705-5718.e13, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38091993

ABSTRACT

Multiple sclerosis (MS) is a demyelinating disease of the CNS. Epstein-Barr virus (EBV) contributes to the MS pathogenesis because high levels of EBV EBNA386-405-specific antibodies cross react with the CNS-derived GlialCAM370-389. However, it is unclear why only some individuals with such high autoreactive antibody titers develop MS. Here, we show that autoreactive cells are eliminated by distinct immune responses, which are determined by genetic variations of the host, as well as of the infecting EBV and human cytomegalovirus (HCMV). We demonstrate that potent cytotoxic NKG2C+ and NKG2D+ natural killer (NK) cells and distinct EBV-specific T cell responses kill autoreactive GlialCAM370-389-specific cells. Furthermore, immune evasion of these autoreactive cells was induced by EBV-variant-specific upregulation of the immunomodulatory HLA-E. These defined virus and host genetic pre-dispositions are associated with an up to 260-fold increased risk of MS. Our findings thus allow the early identification of patients at risk for MS and suggest additional therapeutic options against MS.


Subject(s)
Autoimmunity , Epstein-Barr Virus Infections , Multiple Sclerosis , Humans , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/immunology , Herpesvirus 4, Human/genetics , Histocompatibility Antigens Class I , Multiple Sclerosis/immunology , Killer Cells, Natural/immunology
3.
Cell ; 180(5): 895-914.e27, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32142680

ABSTRACT

A safe and controlled manipulation of endocytosis in vivo may have disruptive therapeutic potential. Here, we demonstrate that the anti-emetic/anti-psychotic prochlorperazine can be repurposed to reversibly inhibit the in vivo endocytosis of membrane proteins targeted by therapeutic monoclonal antibodies, as directly demonstrated by our human tumor ex vivo assay. Temporary endocytosis inhibition results in enhanced target availability and improved efficiency of natural killer cell-mediated antibody-dependent cellular cytotoxicity (ADCC), a mediator of clinical responses induced by IgG1 antibodies, demonstrated here for cetuximab, trastuzumab, and avelumab. Extensive analysis of downstream signaling pathways ruled out on-target toxicities. By overcoming the heterogeneity of drug target availability that frequently characterizes poorly responsive or resistant tumors, clinical application of reversible endocytosis inhibition may considerably improve the clinical benefit of ADCC-mediating therapeutic antibodies.


Subject(s)
Antibody-Dependent Cell Cytotoxicity/drug effects , Drug Resistance, Neoplasm/immunology , Neoplasms/drug therapy , Prochlorperazine/pharmacology , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal, Humanized/pharmacology , Antibody-Dependent Cell Cytotoxicity/immunology , Antigen Presentation/drug effects , Biopsy , Cetuximab/pharmacology , Drug Delivery Systems/methods , Drug Resistance, Neoplasm/genetics , Endocytosis/drug effects , Endocytosis/immunology , Heterografts , Humans , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , MCF-7 Cells , Membrane Proteins/genetics , Membrane Proteins/immunology , Mice , Neoplasms/genetics , Neoplasms/immunology , Signal Transduction/drug effects , Signal Transduction/immunology , Trastuzumab/pharmacology
4.
Cell ; 173(5): 1098-1110.e18, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29706541

ABSTRACT

Bats harbor many viruses asymptomatically, including several notorious for causing extreme virulence in humans. To identify differences between antiviral mechanisms in humans and bats, we sequenced, assembled, and analyzed the genome of Rousettus aegyptiacus, a natural reservoir of Marburg virus and the only known reservoir for any filovirus. We found an expanded and diversified KLRC/KLRD family of natural killer cell receptors, MHC class I genes, and type I interferons, which dramatically differ from their functional counterparts in other mammals. Such concerted evolution of key components of bat immunity is strongly suggestive of novel modes of antiviral defense. An evaluation of the theoretical function of these genes suggests that an inhibitory immune state may exist in bats. Based on our findings, we hypothesize that tolerance of viral infection, rather than enhanced potency of antiviral defenses, may be a key mechanism by which bats asymptomatically host viruses that are pathogenic in humans.


Subject(s)
Chiroptera/genetics , Genome , Immunity, Innate/genetics , Amino Acid Sequence , Animals , Cell Line , Chiroptera/classification , Chiroptera/immunology , Chromosome Mapping , Disease Reservoirs/virology , Egypt , Evolution, Molecular , Genetic Variation , Histocompatibility Antigens Class I/classification , Histocompatibility Antigens Class I/genetics , Humans , Interferon Type I/classification , Interferon Type I/genetics , Marburg Virus Disease/immunology , Marburg Virus Disease/pathology , Marburgvirus/physiology , NK Cell Lectin-Like Receptor Subfamily C/chemistry , NK Cell Lectin-Like Receptor Subfamily C/classification , NK Cell Lectin-Like Receptor Subfamily C/genetics , NK Cell Lectin-Like Receptor Subfamily D/chemistry , NK Cell Lectin-Like Receptor Subfamily D/classification , NK Cell Lectin-Like Receptor Subfamily D/genetics , Phylogeny , Sequence Alignment
5.
Cell ; 169(1): 58-71.e14, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28340350

ABSTRACT

Natural killer (NK) cells play a key role in innate immunity by detecting alterations in self and non-self ligands via paired NK cell receptors (NKRs). Despite identification of numerous NKR-ligand interactions, physiological ligands for the prototypical NK1.1 orphan receptor remain elusive. Here, we identify a viral ligand for the inhibitory and activating NKR-P1 (NK1.1) receptors. This murine cytomegalovirus (MCMV)-encoded protein, m12, restrains NK cell effector function by directly engaging the inhibitory NKR-P1B receptor. However, m12 also interacts with the activating NKR-P1A/C receptors to counterbalance m12 decoy function. Structural analyses reveal that m12 sequesters a large NKR-P1 surface area via a "polar claw" mechanism. Polymorphisms in, and ablation of, the viral m12 protein and host NKR-P1B/C alleles impact NK cell responses in vivo. Thus, we identify the long-sought foreign ligand for this key immunoregulatory NKR family and reveal how it controls the evolutionary balance of immune recognition during host-pathogen interplay.


Subject(s)
Killer Cells, Natural/immunology , Muromegalovirus/immunology , Receptors, Natural Killer Cell/immunology , Viral Proteins/metabolism , Animals , Antigens, Ly/metabolism , Cell Line , HEK293 Cells , Host-Pathogen Interactions , Humans , Immune Evasion , Immunity, Innate , Mice , NIH 3T3 Cells , NK Cell Lectin-Like Receptor Subfamily B/metabolism , Rats
6.
J Cell Sci ; 137(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38506245

ABSTRACT

Natural killer (NK) cells have the ability to lyse other cells through the release of lytic granules (LGs). This is in part mediated by the small GTPase Rab27a, which was first identified to play a crucial role in degranulation through the study of individuals harboring mutations in the gene encoding Rab27a. However, the guanine nucleotide exchange factor (GEF) regulating the activation of Rab27a in cytotoxic lymphocytes was unknown. Here, we show that knockout of MADD significantly decreased the levels of GTP-bound Rab27a in both resting and stimulated NK cells, and MADD-deficient NK cells and CD8+ T cells displayed severely reduced degranulation and cytolytic ability, similar to that seen with Rab27a deficiency. Although MADD colocalized with Rab27a on LGs and was enriched at the cytolytic synapse, the loss of MADD did not impact Rab27a association with LGs nor their recruitment to the cytolytic synapse. Together, our results demonstrate an important role for MADD in cytotoxic lymphocyte killing.


Subject(s)
Exocytosis , Monomeric GTP-Binding Proteins , Humans , Killer Cells, Natural , CD8-Positive T-Lymphocytes , Cell Degranulation , Guanine Nucleotide Exchange Factors/genetics , Death Domain Receptor Signaling Adaptor Proteins
7.
Eur J Immunol ; 54(2): e2350635, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38059519

ABSTRACT

Tumor immune escape is a major factor contributing to cancer progression and unresponsiveness to cancer therapies. Tumors can produce prostaglandin E2 (PGE2 ), an inflammatory mediator that directly acts on Natural killer (NK) cells to inhibit antitumor immunity. However, precisely how PGE2 influences NK cell tumor-restraining functions remains unclear. Here, we report that following PGE2 treatment, human NK cells exhibited altered expression of specific activating receptors and a reduced ability to degranulate and kill cancer targets. Transcriptional analysis uncovered that PGE2 also differentially modulated the expression of chemokine receptors by NK cells, inhibiting CXCR3 but increasing CXCR4. Consistent with this, PGE2-treated NK cells exhibited decreased migration to CXCL10 but increased ability to migrate toward CXCL12. Using live cell imaging, we showed that in the presence of PGE2 , NK cells were slower and less likely to kill cancer target cells following conjugation. Imaging the sequential stages of NK cell killing revealed that PGE2 impaired NK cell polarization, but not the re-organization of synaptic actin or the release of perforin itself. Together, these findings demonstrate that PGE2 affects multiple but select NK cell functions. Understanding how cancer cells subvert NK cells is necessary to more effectively harness the cancer-inhibitory function of NK cells in treatments.


Subject(s)
Dinoprostone , Killer Cells, Natural , Humans , Dinoprostone/metabolism , Cell Line, Tumor , Immunity
8.
J Cell Mol Med ; 28(5): e18106, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38239038

ABSTRACT

Hepatocellular carcinoma (HCC) is the fifth most frequently diagnosed cancer and ranks third in cancer-related fatalities. The recognized involvement of long noncoding RNAs (lncRNAs) in several cancer types, including HCC, inspired this study to explore a novel lncRNA's functional importance in the progression of HCC. To achieve this, lncRNA microarray analysis was conducted on three distinct sets of HCC tissues, revealing LINC00707 as the most significantly upregulated lncRNA. Further research into its biological functions has revealed that LINC00707 acts as an oncogene, driving HCC progression by enhancing the proliferation, migration and invasion of HCC cells. Mechanistic insights were provided, demonstrating that LINC00707 interacts with YTH N6-methyladenosine RNA-binding protein 2 (YTHDF2), thus facilitating the ubiquitination-dependent degradation of the YTHDF2 protein. Furthermore, LINC00707 was found to influence the cytotoxicity of NK-92MI cells against HCC cells through its interactions with YTHDF2. These findings significantly contribute to a deeper understanding of the role played by LINC00707 in the progression of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , RNA, Long Noncoding , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Killer Cells, Natural/metabolism , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Cell Line, Tumor , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
9.
Immunology ; 171(1): 60-76, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37753964

ABSTRACT

Tumorigenesis entails circumventing cell-intrinsic regulatory mechanisms while avoiding extrinsic immune surveillance and other host defence systems. Nevertheless, how tumour cells' ability to eliminate misfolded proteins affects immune surveillance remains poorly understood. In this study, we find that overexpression of murine tripartite motif-containing protein 30a (TRIM30a) sensitises tumour cells to natural killer (NK) cells-mediated cytolysis. TRIM30a has no effect on tumour cell proliferation or apoptosis in vitro. However, TRIM30a-overexpressing tumour cells grow substantially slower than control tumour cells in immune-competent mice but not in NK cell-depleted mice. [Correction added on 04 October 2023, after first online publication: 'NK-depleted' has been changed to 'NK cell-depleted' in the preceding sentence.] Mechanistically, TRIM30a overexpression impedes the clearance of misfolded proteins and increases the production of reactive oxygen species induced by proteotoxic stress, implying that TRIM30a impairs protein quality control (PQC) systems in tumour cells. Furthermore, TRIM30a reduces expression of genes encoding proteasome subunits and antioxidant proteins. Our study demonstrates that TRIM30a is a potential tumour suppressor and immune modulator that promotes tumour cytolysis by NK cells, and suggests that an enhanced PQC and antioxidant capacity is an integral part of the immune escape mechanism during tumorigenesis.


Subject(s)
Antioxidants , Neoplasms , Animals , Mice , Antioxidants/metabolism , Carcinogenesis/metabolism , Killer Cells, Natural , Reactive Oxygen Species/metabolism
10.
Lab Invest ; 104(4): 102028, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382808

ABSTRACT

Primary gastrointestinal (GI) T-cell and natural killer (NK)-cell lymphomas/lymphoproliferative disorders (LPD) are uncommon, and they are usually aggressive in nature. However, T-cell and NK-cell lymphoma/LPD of the GI tract with indolent clinical course has been reported over the past 2 decades. Indolent T-cell LPD was formally proposed a decade ago in 2013 and 4 years later recognized as a provisional entity by the revised fourth edition of WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues in 2017. Indolent T-cell LPD of the GI tract has been changed to indolent T-cell lymphoma of the GI tract as a distinct entity by the fifth edition of WHO Classification of Haematolymphoid Tumours, but the International Consensus Classification of mature lymphoid neoplasms prefers indolent clonal T-cell LPD of the GI tract instead. In the past decade, indolent lymphoma/LPD of the GI tract has been expanded to NK cells, and as such, indolent NK-cell LPD of the GI tract was recognized as an entity by both the fifth edition of WHO Classification of Haematolymphoid Tumours and the International Consensus Classification. The underlying genetic/molecular mechanisms of both indolent T-cell lymphoma/LPD of the GI tract and indolent NK-cell LPD of the GI tract have been recently discovered. In this review, we describe the history; salient clinical, cytohistomorphologic, and immunohistochemical features; and genetic/genomic landscape of both entities. In addition, we also summarize the mimics and differential diagnosis. Finally, we propose future directions with regard to the pathogenesis and clinical management.


Subject(s)
Lymphoma, T-Cell , Lymphoma , Lymphoproliferative Disorders , Humans , Lymphoma/diagnosis , Lymphoma/pathology , Gastrointestinal Tract/pathology , Killer Cells, Natural , Lymphoma, T-Cell/diagnosis , T-Lymphocytes/pathology , Lymphoproliferative Disorders/diagnosis , Lymphoproliferative Disorders/pathology
11.
Mol Cancer ; 23(1): 134, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951879

ABSTRACT

Natural killer (NK) cells are important immune cells in the organism and are the third major type of lymphocytes besides T cells and B cells, which play an important function in cancer therapy. In addition to retaining the tumor cell killing function of natural killer cells, natural killer cell-derived exosomes cells also have the characteristics of high safety, wide source, easy to preserve and transport. At the same time, natural killer cell-derived exosomes are easy to modify, and the engineered exosomes can be used in combination with a variety of current cancer therapies, which not only enhances the therapeutic efficacy, but also significantly reduces the side effects. Therefore, this review summarizes the source, isolation and modification strategies of natural killer cell-derived exosomes and the combined application of natural killer cell-derived engineered exosomes with other antitumor therapies, which is expected to accelerate the clinical translation process of natural killer cell-derived engineered exosomes in cancer therapy.


Subject(s)
Exosomes , Killer Cells, Natural , Neoplasms , Humans , Exosomes/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , Animals , Clinical Relevance
12.
Small ; 20(24): e2306738, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38161257

ABSTRACT

Adoptive immunotherapy utilizing natural killer (NK) cells has demonstrated remarkable efficacy in treating hematologic malignancies. However, its clinical intervention for solid tumors is hindered by the limited expression of tumor-specific antigens. Herein, lipid-PEG conjugated hyaluronic acid (HA) materials (HA-PEG-Lipid) for the simple ex-vivo surface coating of NK cells is developed for 1) lipid-mediated cellular membrane anchoring via hydrophobic interaction and thereby 2) sufficient presentation of the CD44 ligand (i.e., HA) onto NK cells for cancer targeting, without the need for genetic manipulation. Membrane-engineered NK cells can selectively recognize CD44-overexpressing cancer cells through HA-CD44 affinity and subsequently induce in situ activation of NK cells for cancer elimination. Therefore, the surface-engineered NK cells using HA-PEG-Lipid (HANK cells) establish an immune synapse with CD44-overexpressing MIA PaCa-2 pancreatic cancer cells, triggering the "recognition-activation" mechanism, and ultimately eliminating cancer cells. Moreover, in mouse xenograft tumor models, administrated HANK cells demonstrate significant infiltration into solid tumors, resulting in tumor apoptosis/necrosis and effective suppression of tumor progression and metastasis, as compared to NK cells and gemcitabine. Taken together, the HA-PEG-Lipid biomaterials expedite the treatment of solid tumors by facilitating a sequential recognition-activation mechanism of surface-engineered HANK cells, suggesting a promising approach for NK cell-mediated immunotherapy.


Subject(s)
Hyaluronan Receptors , Hyaluronic Acid , Immunotherapy , Killer Cells, Natural , Killer Cells, Natural/immunology , Hyaluronan Receptors/metabolism , Animals , Humans , Immunotherapy/methods , Hyaluronic Acid/chemistry , Cell Line, Tumor , Ligands , Mice , Polyethylene Glycols/chemistry , Neoplasms/therapy , Neoplasms/immunology
13.
Clin Exp Immunol ; 216(2): 132-145, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38386917

ABSTRACT

Natural killer (NK) cells were reported to be involved in the pathogenesis of primary antiphospholipid syndrome (pAPS). Immunosuppressive receptor T-cell immunoreceptor with Ig and ITIM domains (TIGIT) and activating receptor cluster of differentiation 226 (CD226) are specifically expressed on NK cells with competitive functions. This study aims to investigate the expression diversities of CD226/TIGIT on NK subsets and their associations with NK subsets activation phenotypes and potential clinical significance, furthermore, to explore potential cause for CD226/TIGIT expression diversities in pAPS. We comparatively assessed the changes of CD56brightNK, CD56dimNK, and NK-like cells in 70 pAPS patients compared with control groups, including systemic lupus erythematosus, asymptomatic antiphospholipid antibodies carriers (asymp-aPLs carriers), and healthy controls and their expression diversities of CD226/TIGIT by flow cytometry. CD25, CD69, CD107α expression, and interferon gamma (IFN-γ) secretion levels of NK subsets were detected to determine the potential association of CD226/TIGIT expression with NK subsets phenotypes. CD226/TIGIT expression levels were compared among different subgroups divided by aPLs status. Moreover, in vitro cultures were conducted to explore the potential mechanisms of CD226/TIGIT expression imbalance. CD56brightNK and CD3+CD56+NK-like cells were significantly increased while CD56dimNK cells were obviously decreased in pAPS, and CD56brightNK and NK-like cells exhibited significantly higher CD226 but lower TIGIT expressions. CD226+CD56brightNK and TIGIT-CD56brightNK cells show higher CD69 expression and IFN-γ secretion capacity, and CD226+NK-like and TIGIT-NK-like cells showed higher expressions of CD25 and CD69 but lower apoptosis rate than CD226- and TIGIT+CD56brightNK/NK-like cells, respectively. The imbalanced CD226/TIGIT expressions were most significant in aPLs triple-positive group. Imbalanced expressions of CD226/TIGIT on CD56brightNK and NK-like cells were aggravated after interleukin-4 (IL-4) stimulation and recovered after tofacitinib blocking. Our data revealed significant imbalanced CD226/TIGIT expressions on NK subsets in pAPS, which closely associated with NK subsets phenotypes and more complicated autoantibody status. CD226/TIGIT imbalanced may be affected by IL-4/Janus Kinase (JAK) pathway activation.

14.
J Transl Med ; 22(1): 76, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38243292

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is a common liver malignancy with limited treatment options. Previous studies expressed the potential synergy of sorafenib and NK cell immunotherapy as a promising approach against HCC. MRI is commonly used to assess response of HCC to therapy. However, traditional MRI-based metrics for treatment efficacy are inadequate for capturing complex changes in the tumor microenvironment, especially with immunotherapy. In this study, we investigated potent MRI radiomics analysis to non-invasively assess early responses to combined sorafenib and NK cell therapy in a HCC rat model, aiming to predict multiple treatment outcomes and optimize HCC treatment evaluations. METHODS: Sprague Dawley (SD) rats underwent tumor implantation with the N1-S1 cell line. Tumor progression and treatment efficacy were assessed using MRI following NK cell immunotherapy and sorafenib administration. Radiomics features were extracted, processed, and selected from both T1w and T2w MRI images. The quantitative models were developed to predict treatment outcomes and their performances were evaluated with area under the receiver operating characteristic (AUROC) curve. Additionally, multivariable linear regression models were constructed to determine the correlation between MRI radiomics and histology, aiming for a noninvasive evaluation of tumor biomarkers. These models were evaluated using root-mean-squared-error (RMSE) and the Spearman correlation coefficient. RESULTS: A total of 743 radiomics features were extracted from T1w and T2w MRI data separately. Subsequently, a feature selection process was conducted to identify a subset of five features for modeling. For therapeutic prediction, four classification models were developed. Support vector machine (SVM) model, utilizing combined T1w + T2w MRI data, achieved 96% accuracy and an AUROC of 1.00 in differentiating the control and treatment groups. For multi-class treatment outcome prediction, Linear regression model attained 85% accuracy and an AUC of 0.93. Histological analysis showed that combination therapy of NK cell and sorafenib had the lowest tumor cell viability and the highest NK cell activity. Correlation analyses between MRI features and histological biomarkers indicated robust relationships (r = 0.94). CONCLUSIONS: Our study underscored the significant potential of texture-based MRI imaging features in the early assessment of multiple HCC treatment outcomes.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Rats , Animals , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/drug therapy , Sorafenib/pharmacology , Sorafenib/therapeutic use , Radiomics , Rats, Sprague-Dawley , Treatment Outcome , Biomarkers, Tumor , Magnetic Resonance Imaging/methods , Killer Cells, Natural , Retrospective Studies , Tumor Microenvironment
15.
Cell Commun Signal ; 22(1): 230, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627796

ABSTRACT

OBJECTIVE: Recurrent pregnancy loss (RPL) patients have higher absolute numbers of decidual natural killer (dNK) cells with elevated intracellular IFN-γ levels leading to a pro-inflammatory cytokine milieu, which contributes to RPL pathogenesis. The main objective of this study was twofold: first to explore the regulatory effects and mechanisms of villus-derived exosomes (vEXOs) from induced abortion patients or RPL patients at the level of intracellular IFN-γ in dNK cells; second to determine the validity of application of vEXOs in the treatment of unexplained RPL (uRPL) through in vitro experiments and mouse models. METHODS: Exosomes were isolated from villus explants by ultracentrifugation, co-cultured with dNK cells, and purified by enzymatic digestion and magnetically activated cell sorting. Flow cytometry, enzyme-linked immunosorbent assays, and RT-qPCR were used to determine IFN-γ levels. Comparative miRNA analysis of vEXOs from induced abortion (IA) and uRPL patients was used to screen potential candidates involved in dNK regulation, which was further confirmed by luciferase reporter assays. IA-vEXOs were electroporated with therapeutic miRNAs and encapsulated in a China Food and Drug Administration (CFDA)-approved hyaluronate gel (HA-Gel), which has been used as a clinical biomaterial in cell therapy for > 30 years. In vivo tracking was performed using 1,1-dioctadecyl-3,3,3,3-tetramethylindotricarbocyaine iodide (DiR) labelling. Tail-vein and uterine horn injections were used to evaluate therapeutic effects of the engineered exosomes in an abortion-prone mouse model (CBA/J × DBA/2 J). Placental growth was evaluated based on placental weight. IFN-γ mRNA levels in mouse placentas were measured by RT-qPCR. RESULTS: IFN-γ levels were significantly higher in dNK cells of uRPL patients than in IA patients. Both uRPL-vEXOs and IA-vEXOs could be efficiently internalized by dNK cells, whereas uRPL-vEXOs could not reduce the expression of IFN-γ by dNK cells as much as IA-vEXOs. Mechanistically, miR-29a-3p was delivered by vEXOs to inhibit IFN-γ production by binding to the 3' UTR of IFN-γ mRNA in dNK cells. For in vivo treatment, application of the HA-Gel effectively prolonged the residence time of vEXOs in the uterine cavity via sustained release. Engineered vEXOs loaded with miR-29a-3p reduced the embryo resorption rate in RPL mice with no signs of systemic toxicity. CONCLUSION: Our study provides the first evidence that villi can regulate dNK cell production of IFN-γ via exosome-mediated transfer of miR-29a-3p, which deepens our understanding of maternal-fetal immune tolerance for pregnancy maintenance. Based on this, we developed a new strategy to mix engineered vEXOs with HA-Gel, which exhibited good therapeutic effects in mice with uRPL and could be used for potential clinical applications in uRPL treatment.


Subject(s)
Abortion, Induced , Abortion, Spontaneous , MicroRNAs , Animals , Female , Humans , Mice , Pregnancy , Abortion, Spontaneous/genetics , Abortion, Spontaneous/metabolism , Decidua/metabolism , Interferon-gamma/metabolism , Killer Cells, Natural , Mice, Inbred CBA , Mice, Inbred DBA , MicroRNAs/genetics , MicroRNAs/metabolism , Placenta/metabolism , RNA, Messenger/metabolism
16.
Transpl Int ; 37: 13209, 2024.
Article in English | MEDLINE | ID: mdl-38979120

ABSTRACT

Transcript analyses highlight an important contribution of natural killer (NK) cells to microvascular inflammation (MVI) in antibody-mediated rejection (ABMR), but only few immunohistologic studies have quantified their spatial distribution within graft tissue. This study included 86 kidney transplant recipients who underwent allograft biopsies for a positive donor-specific antibody (DSA) result. NK cells were visualized and quantified within glomeruli and peritubular capillaries (PTC), using immunohistochemistry for CD34 alongside CD16/T-bet double-staining. Staining results were analyzed in relation to histomorphology, microarray analysis utilizing the Molecular Microscope Diagnostic System, functional NK cell genetics, and clinical outcomes. The number of NK cells in glomeruli per mm2 glomerular area (NKglom) and PTC per mm2 cortical area (NKPTC) was substantially higher in biopsies with ABMR compared to those without rejection, and correlated with MVI scores (NKglom Spearman's correlation coefficient [SCC] = 0.55, p < 0.001, NKPTC 0.69, p < 0.001). In parallel, NK cell counts correlated with molecular classifiers reflecting ABMR activity (ABMRprob: NKglom 0.59, NKPTC 0.75) and showed a trend towards higher levels in association with high functional FCGR3A and KLRC2 gene variants. Only NKPTC showed a marginally significant association with allograft function and survival. Our immunohistochemical results support the abundance of NK cells in DSA-positive ABMR.


Subject(s)
Graft Rejection , Kidney Transplantation , Killer Cells, Natural , Humans , Killer Cells, Natural/immunology , Graft Rejection/immunology , Graft Rejection/pathology , Female , Male , Middle Aged , Adult , Kidney Glomerulus/pathology , Kidney Glomerulus/immunology , Biopsy , Aged , Immunohistochemistry , Isoantibodies/immunology , Receptors, IgG
17.
J Cutan Pathol ; 51(7): 518-524, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38642003

ABSTRACT

Benign natural killer cell enteropathy (NKCE) was first identified in the gastrointestinal (GI) tract. Notably, instances of NKCE have previously been observed at various sites other than the GI tract, including the gallbladder, lymph nodes, esophagus, and female genital tract. Typical NKCE manifests as an NK-cell immunohistological phenotype, with or without TCR rearrangement, and is characterized by the absence of Epstein-Barr virus (EBV) infection and protracted clinical progression. The misdiagnosis of NKT-cell lymphoma has resulted in some patients receiving chemotherapy, while in other instances, the patients' conditions resolved without treatment and showed no evidence of disease recurrence or progression during follow-up examinations. In this paper, we describe a unique case of EBV-negative NKCE occurring in the oral cavity, the first time such a case has been documented. The tumor completely resolved after an excisional biopsy, and subsequent follow-up did not reveal any signs of disease recurrence.


Subject(s)
Killer Cells, Natural , Humans , Male , Killer Cells, Natural/pathology , Killer Cells, Natural/immunology , Mouth/pathology , Aged
18.
Mol Cell ; 62(1): 21-33, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-27058785

ABSTRACT

The inhibitory function of killer cell immunoglobulin-like receptors (KIR) that bind HLA-C and block activation of human natural killer (NK) cells is dependent on zinc. We report that zinc induced the assembly of soluble KIR into filamentous polymers, as detected by electron microscopy, which depolymerized after zinc chelation. Similar KIR filaments were isolated from lysates of cells treated with zinc, and membrane protrusions enriched in zinc were detected on whole cells by scanning electron microscopy and imaging mass spectrometry. Two independent mutations in the extracellular domain of KIR, away from the HLA-C binding site, impaired zinc-driven polymerization and inhibitory function. KIR filaments formed spontaneously, without the addition of zinc, at functional inhibitory immunological synapses of NK cells with HLA-C(+) cells. Adding to the recent paradigm of signal transduction through higher order molecular assemblies, zinc-induced polymerization of inhibitory KIR represents an unusual mode of signaling by a receptor at the cell surface.


Subject(s)
Killer Cells, Natural/immunology , Receptors, KIR/chemistry , Receptors, KIR/metabolism , Zinc/pharmacology , Cells, Cultured , HEK293 Cells , HLA Antigens/metabolism , Humans , Immunological Synapses/metabolism , Polymerization , Receptors, KIR/genetics , Signal Transduction
19.
J Formos Med Assoc ; 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38494360

ABSTRACT

BACKGROUND: Perioperative immunosuppressants, such as surgical stress and opioid use may downregulate anti-cancer immunocytes for patients undergoing pancreatectomy. Thoracic epidural analgesia (TEA) may attenuate these negative effects and provide better anti-cancer immunocyte profile change than intravenous analgesia using opioid. METHODS: We randomly assigned 108 adult patients undergoing pancreatectomy to receive one of two 72-h postoperative analgesia protocols: one was TEA, and the other was intravenous patient-controlled analgesia (IV-PCA). The perioperative proportional changes of immunocytes relevant to anticancer immunity-namely natural killer (NK) cells, cytotoxic T cells, helper T cells, mature dendritic cells, and regulatory T (Treg) cells were determined at 1 day before surgery, at the end of surgery and on postoperative day 1,4 and 7 using flow cytometry. In addition, the progression-free survival and overall survival between the two groups were compared. RESULTS: After surgery, the proportions of NK cells and cytotoxic T cells were significantly decreased; the proportion of B cells and mature dendritic cells and Treg cells were significantly increased. However, the proportions of helper T cells exhibited no significant change. These results were comparable between the two groups. Furthermore, there were no significant differences in progression-free survival (52.75 [39.96] and 57.48 [43.66] months for patients in the TEA and IV-PCA groups, respectively; p = 0.5600) and overall survival (62.71 [35.48] and 75.11 [33.10] months for patients in the TEA and IV-PCA groups, respectively; p = 0.0644). CONCLUSIONS: TEA was neither associated with favorable anticancer immunity nor favorable oncological outcomes for patients undergoing pancreatectomy.

20.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892084

ABSTRACT

Enhancing immune cell functions in tumors remains a major challenge in cancer immunotherapy. Natural killer cells (NK) are major innate effector cells with broad cytotoxicity against tumors. Accordingly, NK cells are ideal candidates for cancer immunotherapy, including glioblastoma (GBM). Hypoxia is a common feature of solid tumors, and tumor cells and normal cells adapt to the tumor microenvironment by upregulating the transcription factor hypoxia-inducible factor (HIF)-1α, which can be detrimental to anti-tumor effector immune cell function, including that of NK cells. We knocked out HIF-1α in human primary NK cells using clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9). Then, cellular characterizations were conducted in normoxic and hypoxic conditions. Electroporating two HIF-1α-targeting guide RNA-Cas9 protein complexes inhibited HIF-1α expression in expanded NK cells. HIF-1α knockout human NK cells, including populations in hypoxic conditions, enhanced the growth inhibition of allogeneic GBM cells and induced apoptosis in GBM-cell-derived spheroids. RNA-sequencing revealed that the cytotoxicity of HIF-1α knockout NK cells could be related to increased perforin and TNF expression. The results demonstrated that HIF-1α knockout human NK cells, including populations, enhanced cytotoxicity in an environment mimicking the hypoxic conditions of GBM. CRISPR-Cas9-mediated HIF-1α knockout NK cells, including populations, could be a promising immunotherapeutic alternative in patients with GBM.


Subject(s)
Gene Knockout Techniques , Glioblastoma , Hypoxia-Inducible Factor 1, alpha Subunit , Killer Cells, Natural , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/immunology , Glioblastoma/pathology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , CRISPR-Cas Systems , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Cell Line, Tumor , Apoptosis/genetics , Cytotoxicity, Immunologic
SELECTION OF CITATIONS
SEARCH DETAIL