Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 180
Filter
1.
Plant J ; 117(6): 1856-1872, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38113327

ABSTRACT

The yield of maize (Zea mays L.) crops depends on their ability to intercept sunlight throughout the growing cycle, transform this energy into biomass and allocate it to the kernels. Abiotic stresses affect these eco-physiological determinants, reducing crop grain yield below the potential of each environment. Here we analyse the impact of combined abiotic stresses, such as water restriction and nitrogen deficiency or water restriction and elevated temperatures. Crop yield depends on the product of kernel yield per plant and the number of plants per unit soil area, but increasing plant population density imposes a crowding stress that reduces yield per plant, even within the range that maximises crop yield per unit soil area. Therefore, we also analyse the impact of abiotic stresses under different plant densities. We show that the magnitude of the detrimental effects of two combined stresses on field-grown plants can be lower, similar or higher than the sum of the individual stresses. These patterns depend on the timing and intensity of each one of the combined stresses and on the effects of one of the stresses on the status of the resource whose limitation causes the other. The analysis of the eco-physiological determinants of crop yield is useful to guide and prioritise the rapidly progressing studies aimed at understanding the molecular mechanisms underlying plant responses to combined stresses.


Subject(s)
Crops, Agricultural , Zea mays , Zea mays/genetics , Soil , Edible Grain , Water
2.
Plant J ; 117(4): 1115-1129, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37966861

ABSTRACT

Nitrogen (N) is an essential nutrient for crop growth and development, significantly influencing both yield and quality. Melatonin (MT), a known enhancer of abiotic stress tolerance, has been extensively studied. However, its relationship with nutrient stress, particularly N deficiency, and the underlying regulatory mechanisms of MT on N absorption remain unclear. In this study, exogenous MT treatment was found to improve the tolerance of apple plants to N deficiency. Apple plants overexpressing the MT biosynthetic gene N-acetylserotonin methyltransferase 9 (MdASMT9) were used to further investigate the effects of endogenous MT on low-N stress. Overexpression of MdASMT9 improved the light harvesting and heat transfer capability of apple plants, thereby mitigating the detrimental effects of N deficiency on the photosynthetic system. Proteomic and physiological data analyses indicated that MdASMT9 overexpression enhanced the trichloroacetic acid cycle and positively modulated amino acid metabolism to counteract N-deficiency stress. Additionally, both exogenous and endogenous MT promoted the transcription of MdHY5, which in turn bound to the MdNRT2.1 and MdNRT2.4 promoters and activated their expression. Notably, MT-mediated promotion of MdNRT2.1 and MdNRT2.4 expression through regulating MdHY5, ultimately enhancing N absorption. Taken together, these findings shed light on the association between MdASMT9-mediated MT biosynthesis and N absorption in apple plants under N-deficiency conditions.


Subject(s)
Malus , Melatonin , Melatonin/metabolism , Malus/genetics , Malus/metabolism , Nitrogen/metabolism , Proteomics , Plants, Genetically Modified/genetics
3.
BMC Plant Biol ; 24(1): 923, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39358689

ABSTRACT

BACKGROUND: Konjac corms are known for their alkaloid content, which possesses pharmacological properties. In the primary cultivation areas of konjac, nitrogen deficiency is a common problem that significantly influences alkaloid synthesis. The impact of nitrogen deficiency on the alkaloids in konjac corms remains unclear, further complicated by the transition from mother to daughter corms during their growth cycle. RESULTS: This study examined 21 alkaloids, including eight indole alkaloids, five isoquinoline alkaloids, and eight other types of alkaloids, along with the associated gene expressions throughout the development of Amorphophallus muelleri Blume under varying nitrogen levels. Nitrogen deficiency significantly reduced corm diameter and fresh weight and delayed the transformation process. Under low nitrogen conditions, the content of indole alkaloids and the expression of genes involved in their biosynthesis, such as tryptophan synthase (TRP) and tryptophan decarboxylase (TDC), exhibited a substantial increase in daughter corms, with fold changes of 61.99 and 19.31, respectively. Conversely, in the mother corm, TDC expression was markedly reduced, showing only 0.04 times the expression level observed under 10 N treatment. The patterns of isoquinoline alkaloid accumulation in corms subjected to nitrogen deficiency were notably distinct from those observed for indole alkaloids. The accumulation of isoquinoline alkaloids was significantly higher in mother corms, with expression levels of aspartate aminotransferase (GOT), chorismate mutase (CM), tyrosine aminotransferase (TAT), and pyruvate decarboxylase (PD) being 4.30, 2.89, 921.18, and 191.40 times greater, respectively. Conversely, in daughter corms, the expression levels of GOT and CM in the 0 N treatment were markedly lower (0.01 and 0.83, respectively) compared to the 10 N treatment. CONCLUSIONS: The study suggests that under nitrogen deficiency, daughter corms preferentially convert chorismate into tryptophan to synthesize indole alkaloids, while mother corms convert it into tyrosine, boosting the production of isoquinoline alkaloids. This research provides valuable insights into the mechanisms of alkaloid biosynthesis in A. muelleri and can aid in developing nitrogen fertilization strategies and in the extraction and utilization of alkaloids.


Subject(s)
Alkaloids , Amorphophallus , Nitrogen , Nitrogen/metabolism , Alkaloids/metabolism , Amorphophallus/metabolism , Gene Expression Regulation, Plant , Indole Alkaloids/metabolism
4.
BMC Plant Biol ; 24(1): 105, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38342903

ABSTRACT

BACKGROUND: Nitrogen (N) metabolism-related key genes and conserved amino acid sites in key enzymes play a crucial role in improving N use efficiency (NUE) under N stress. However, it is not clearly known about the molecular mechanism of N deficiency-induced improvement of NUE in the N-sensitive rhizomatous medicinal plant Panax notoginseng (Burk.) F. H. Chen. To explore the potential regulatory mechanism, the transcriptome and proteome were analyzed and the three-dimensional (3D) information and molecular docking models of key genes were compared in the roots of P. notoginseng grown under N regimes. RESULTS: Total N uptake and the proportion of N distribution to roots were significantly reduced, but the NUE, N use efficiency in biomass production (NUEb), the recovery of N fertilizer (RNF) and the proportion of N distribution to shoot were increased in the N0-treated (without N addition) plants. The expression of N uptake- and transport-related genes NPF1.2, NRT2.4, NPF8.1, NPF4.6, AVP, proteins AMT and NRT2 were obviously up-regulated in the N0-grown plants. Meanwhile, the expression of CIPK23, PLC2, NLP6, TCP20, and BT1 related to the nitrate signal-sensing and transduction were up-regulated under the N0 condition. Glutamine synthetase (GS) activity was decreased in the N-deficient plants, while the activity of glutamate dehydrogenase (GDH) increased. The expression of genes GS1-1 and GDH1, and proteins GDH1 and GDH2 were up-regulated in the N0-grown plants, there was a significantly positive correlation between the expression of protein GDH1 and of gene GDH1. Glu192, Glu199 and Glu400 in PnGS1 and PnGDH1were the key amino acid residues that affect the NUE and lead to the differences in GDH enzyme activity. The 3D structure, docking model, and residues of Solanum tuberosum and P. notoginseng was similar. CONCLUSIONS: N deficiency might promote the expression of key genes for N uptake (genes NPF8.1, NPF4.6, AMT, AVP and NRT2), transport (NPF1.2 and NRT2.4), assimilation (proteins GS1 and GDH1), signaling and transduction (genes CIPK23, PLC2, NLP6, TCP20, and BT1) to enhance NUE in the rhizomatous species. N deficiency might induce Glu192, Glu199 and Glu400 to improve the biological activity of GS1 and GDH, this has been hypothesized to be the main reason for the enhanced ability of N assimilation in N-deficient rhizomatous species. The key genes and residues involved in improving NUE provide excellent candidates for the breeding of medicinal plants.


Subject(s)
Panax notoginseng , Plants, Medicinal , Nitrogen/metabolism , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , Panax notoginseng/genetics , Panax notoginseng/metabolism , Molecular Docking Simulation , Plant Breeding , Amino Acids/metabolism , Gene Expression Regulation, Plant
5.
New Phytol ; 242(5): 2132-2147, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38523242

ABSTRACT

Elucidating the mechanisms regulating nitrogen (N) deficiency responses in plants is of great agricultural importance. Previous studies revealed that decreased expression of NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR1 (NIGT1) transcriptional repressor genes upon N deficiency is involved in N deficiency-inducible gene expression in Arabidopsis thaliana. However, our knowledge of the mechanisms controlling N deficiency-induced changes in gene expression is still limited. Through the identification of Dof1.7 as a direct target of NIGT1 repressors and a novel N deficiency response-related transcriptional activator gene, we here show that NIGT1 and Dof1.7 transcription factors (TFs) differentially regulate N deficiency-inducible expression of three high-affinity nitrate transporter genes, NRT2.1, NRT2.4, and NRT2.5, which are responsible for most of the soil nitrate uptake activity of Arabidopsis plants under N-deficient conditions. Unlike NIGT1 repressors, which directly suppress NRT2.1, NRT2.4, and NRT2.5 under N-sufficient conditions, Dof1.7 directly activated only NRT2.5 but indirectly and moderately activated NRT2.1 and NRT2.4 under N-deficient conditions, probably by indirectly decreasing NIGT1 expression. Thus, Dof1.7 converted passive transcriptional activation into active and potent transcriptional activation, further differentially enhancing the expression of NRT2 genes. These findings clarify the mechanism underlying different expression patterns of NRT2 genes upon N deficiency, suggesting that time-dependent multilayered transcriptional regulation generates complicated expression patterns of N deficiency-inducible genes.


Subject(s)
Anion Transport Proteins , Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Nitrate Transporters , Nitrogen , Transcription Factors , Anion Transport Proteins/genetics , Anion Transport Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Genes, Plant , Nitrates/metabolism , Nitrogen/metabolism , Nitrogen/deficiency , Promoter Regions, Genetic/genetics , Protein Binding , Stress, Physiological/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Transcription, Genetic
6.
Int J Mol Sci ; 25(16)2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39201712

ABSTRACT

Nitrogen (N) is essential for sugar beet (Beta vulgaris L.), a highly N-demanding sugar crop. This study investigated the morphological, subcellular, and microRNA-regulated responses of sugar beet roots to low N (LN) stress (0.5 mmol/L N) to better understand the N perception, uptake, and utilization in this species. The results showed that LN led to decreased dry weight of roots, N accumulation, and N dry matter production efficiency, along with damage to cell walls and membranes and a reduction in organelle numbers (particularly mitochondria). Meanwhile, there was an increase in root length (7.2%) and branch numbers (29.2%) and a decrease in root surface area (6.14%) and root volume (6.23%) in sugar beet after 7 d of LN exposure compared to the control (5 mmol/L N). Transcriptomics analysis was confirmed by qRT-PCR for 6 randomly selected microRNAs, and we identified 22 differentially expressed microRNAs (DEMs) in beet root under LN treatment. They were primarily enriched in functions related to binding (1125), ion binding (641), intracellular (437) and intracellular parts (428), and organelles (350) and associated with starch and sucrose metabolism, tyrosine metabolism, pyrimidine metabolism, amino sugar and nucleotide sugar metabolism, and isoquinoline alkaloid biosynthesis, as indicated by the GO and KEGG analyses. Among them, the upregulated miR156a, with conserved sequences, was identified as a key DEM that potentially targets and regulates squamosa promoter-binding-like proteins (SPLs, 104889216 and 104897537) through the microRNA-mRNA network. Overexpression of miR156a (MIR) promoted root growth in transgenic Arabidopsis, increasing the length, surface area, and volume. In contrast, silencing miR156a (STTM) had the opposite effect. Notably, the fresh root weight decreased by 45.6% in STTM lines, while it increased by 27.4% in MIR lines, compared to the wild type (WT). It can be inferred that microRNAs, especially miR156, play crucial roles in sugar beet root's development and acclimation to LN conditions. They likely facilitate active responses to N deficiency through network regulation, enabling beet roots to take up nutrients from the environment and sustain their vital life processes.


Subject(s)
Beta vulgaris , Gene Expression Regulation, Plant , MicroRNAs , Nitrogen , Plant Roots , Beta vulgaris/genetics , Beta vulgaris/growth & development , Beta vulgaris/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Plant Roots/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Nitrogen/metabolism , Nitrogen/deficiency , Acclimatization/genetics , Gene Expression Profiling
7.
Int J Mol Sci ; 25(18)2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39337532

ABSTRACT

Abiotic stresses such as nitrogen deficiency, drought, and salinity significantly impact coconut production, yet the molecular mechanisms underlying coconut's response to these stresses are poorly understood. MYB proteins, a large and diverse family of transcription factors (TF), play crucial roles in plant responses to various abiotic stresses, but their genome-wide characterization and functional roles in coconut have not been comprehensively explored. This study identified 214 CnMYB genes (39 1R-MYB, 171 R2R3-MYB, 2 3R-MYB, and 2 4R-MYB) in the coconut genome. Phylogenetic analysis revealed that these genes are unevenly distributed across the 16 chromosomes, with conserved consensus sequences, motifs, and gene structures within the same subgroups. Synteny analysis indicated that segmental duplication primarily drove CnMYB evolution in coconut, with low nonsynonymous/synonymous ratios suggesting strong purifying selection. The gene ontology (GO) annotation of protein sequences provided insights into the biological functions of the CnMYB gene family. CnMYB47/70/83/119/186 and CnMYB2/45/85/158/195 were identified as homologous genes linked to nitrogen deficiency, drought, and salinity stress through BLAST, highlighting the key role of CnMYB genes in abiotic stress tolerance. Quantitative analysis of PCR showed 10 CnMYB genes in leaves and petioles and found that the expression of CnMYB45/47/70/83/85/119/186 was higher in 3-month-old than one-year-old coconut, whereas CnMYB2/158/195 was higher in one-year-old coconut. Moreover, the expression of CnMYB70, CnMYB2, and CnMYB2/158 was high under nitrogen deficiency, drought, and salinity stress, respectively. The predicted secondary and tertiary structures of three key CnMYB proteins involved in abiotic stress revealed distinct inter-proteomic features. The predicted interaction between CnMYB2/158 and Hsp70 supports its role in coconut's drought and salinity stress responses. These results expand our understanding of the relationships between the evolution and function of MYB genes, and provide valuable insights into the MYB gene family's role in abiotic stress in coconut.


Subject(s)
Cocos , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins , Stress, Physiological , Transcription Factors , Cocos/genetics , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Droughts , Genome, Plant , Genome-Wide Association Study , Gene Expression Profiling , Salinity
8.
BMC Genomics ; 24(1): 27, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36650452

ABSTRACT

BACKGROUND: As an economically important crop, tea is strongly nitrogen (N)-dependent. However, the physiological and molecular mechanisms underlying the response of N deficiency in tea are not fully understood. Tea cultivar "Chunlv2" [Camellia sinensis (L.) O. Kuntze] were cultured with a nutrient solution with 0 mM [N-deficiency] or 3 mM (Control) NH4NO3 in 6 L pottery pots containing clean river sands. RESULTS: N deficiency significantly decreased N content, dry weight, chlorophyll (Chl) content, L-theanine and the activities of N metabolism-related enzymes, but increased the content of total flavonoids and polyphenols in tea leaves. N deficiency delayed the sprouting time of tea buds. By using the RNA-seq technique and subsequent bioinformatics analysis, 3050 up-regulated and 2688 down-regulated differentially expressed genes (DEGs) were isolated in tea leaves in response to N deficiency. However, only 1025 genes were up-regulated and 744 down-regulated in roots. Gene ontology (GO) term enrichment analysis showed that 205 DEGs in tea leaves were enriched in seven GO terms and 152 DEGs in tea roots were enriched in 11 GO items based on P < 0.05. In tea leaves, most GO-enriched DEGs were involved in chlorophyll a/b binding activities, photosynthetic performance, and transport activities. But most of the DEGs in tea roots were involved in the metabolism of carbohydrates and plant hormones with regard to the GO terms of biological processes. N deficiency significantly increased the expression level of phosphate transporter genes, which indicated that N deficiency might impair phosphorus metabolism in tea leaves. Furthermore, some DEGs, such as probable anion transporter 3 and high-affinity nitrate transporter 2.7, might be of great potential in improving the tolerance of N deficiency in tea plants and further study could work on this area in the future. CONCLUSIONS: Our results indicated N deficiency inhibited the growth of tea plant, which might be due to altered N metabolism and expression levels of DEGs involved in the photosynthetic performance, transport activity and oxidation-reduction processes.


Subject(s)
Camellia sinensis , Camellia sinensis/metabolism , Chlorophyll A , Nitrogen/metabolism , Tea/metabolism , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
9.
Plant Cell Physiol ; 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37847101

ABSTRACT

Nitrogen is one of the most essential macronutrients for plant growth and its availability in soil is vital for agricultural sustainability and productivity. However, excessive nitrogen application could reduce the nitrogen use efficiency and produce environmental pollution. Here, we systematically determined the response in lipidome and metabolome in rapeseed during nitrogen starvation. Plant growth was severely retarded during nitrogen deficiency, while the levels of most amino acids was significantly decreased. The levels of monogalactosyl diacyglycerol (MGDG) in leaves and roots was significantly decreased, while the level of digalactosyl diacylglycerol (DGDG) was significantly decreased in roots, resulting in significant reduction of MGDG/DGDG ratio during nitrogen starvation. Meanwhile, the levels of sulfoquinovosyl diacylglycerol, phosphatidylglycerol and glucuronosyl diacylglycerol was reduced to varying extents. Moreover, the levels of metabolites in the tricarboxylic acid cycle, Calvin cycle, and energy metabolism was changed during nitrogen deficiency. These findings show that nitrogen deprivation alters the membrane lipid metabolism and carbon metabolism, and our study provides valuable information to further understand the response of rapeseed to nitrogen deficiency at metabolism level.

10.
Ann Bot ; 131(7): 1097-1106, 2023 08 25.
Article in English | MEDLINE | ID: mdl-36661261

ABSTRACT

BACKGROUND AND AIMS: The abundance or decline of fern populations in response to environmental change has been found to be largely dependent on specific physiological properties that distinguish ferns from angiosperms. Many studies have focused on water use efficiency and stomatal behaviours, but the effects of nutrition acquirement and utilization strategies on niche competition between ferns and flowering plants are rarely reported. METHODS: We collected 34 ferns and 42 angiosperms from the Botanic Garden of Hokkaido University for nitrogen (N), sulphur (S), NO3- and SO42- analysis. We then used a hydroponic system to compare the different N and S utilization strategies between ferns and angiosperms under N deficiency conditions. KEY RESULTS: Ferns had a significantly higher NO3--N concentration and NO3--N/N ratio than angiosperms, although the total N concentration in ferns was remarkably lower than that in the angiosperms. Meanwhile, a positive correlation between N and S was found, indicating that nutrient concentration is involved in assimilation. Pteris cretica, a fern species subjected to further study, maintained a slow growth rate and lower N requirement in response to low N stress, while both the biomass and N concentration in wheat (Triticum aestivum) responded quickly to N deficiency conditions. CONCLUSIONS: The different nutritional strategies employed by ferns and angiosperms depended mainly on the effects of phylogenetic and evolutionary diversity. Ferns tend to adopt an opportunistic strategy of limiting growth rate to reduce N demand and store more pooled nitrate, whereas angiosperms probably utilize N nutrition to ensure as much development as possible under low N stress. Identifying the effects of mineral nutrition on the evolutionary results of ecological competition between plant species remains a challenge.


Subject(s)
Ferns , Magnoliopsida , Magnoliopsida/physiology , Phylogeny , Ferns/physiology , Biological Evolution , Triticum
11.
Int J Mol Sci ; 24(17)2023 Aug 27.
Article in English | MEDLINE | ID: mdl-37686113

ABSTRACT

The yield and quality of peanut (Arachis hypogaea L.), an oil crop planted worldwide, are often limited by drought stress (DS) and nitrogen (N) deficiency. To investigate the molecular mechanism by which peanut counteracts DS and N deficiency, we conducted comprehensive transcriptomic and metabolomic analyses of peanut leaves. Herein, 829 known differentially accumulated metabolites, 324 differentially expressed transcription factors, and 5294 differentially expressed genes (DEGs) were identified under different water and N conditions. The transcriptome analysis demonstrated that drought-related DEGs were predominantly expressed in "glycolysis/gluconeogenesis" and "glycerolipid metabolism", while N-deficiency-related DEGs were mainly expressed in starch and sucrose metabolism, as well as in the biosynthesis of amino acid pathways. The biosynthesis, transport, and catabolism of secondary metabolites accounted for a large proportion of the 1317 DEGs present in water and N co-limitation. Metabolomic analysis showed that the metabolic accumulation of these pathways was significantly dependent on the stress conditions. Additionally, the roles of metabolites and genes in these pathways, such as the biosynthesis of amino acids and phenylpropanoid biosynthesis under different stress conditions, were discussed. The results demonstrated that different genes, metabolic pathways, and metabolites were related to DS and N deficiency. Thus, this study elucidates the metabolic pathways and functional genes that can be used for the improvement of peanut resistance to abiotic stress.


Subject(s)
Arachis , Transcriptome , Arachis/genetics , Metabolome , Gene Expression Profiling , Amino Acids , Nitrogen
12.
Int J Mol Sci ; 24(22)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38003319

ABSTRACT

Non-mycorrhizal but beneficial fungi often mitigate (a)biotic stress-related traits in host plants. The underlying molecular mechanisms are mostly still unknown, as in the interaction between the endophytic growth-promoting soil fungus Mortierella hyalina and Arabidopsis thaliana. Here, abiotic stress in the form of nitrogen (N) deficiency was used to investigate the effects of the fungus on colonized plants. In particular, the hypothesis was investigated that fungal infection could influence N deficiency via an interaction with the high-affinity nitrate transporter NRT2.4, which is induced by N deficiency. For this purpose, Arabidopsis wild-type nrt2.4 knock-out and NRT2.4 reporter lines were grown on media with different nitrate concentrations with or without M. hyalina colonization. We used chemical analysis methods to determine the amino acids and phytohormones. Experimental evidence suggests that the fungus does not modulate NRT2.4 expression under N starvation. Instead, M. hyalina alleviates N starvation in other ways: The fungus supplies nitrogen (15N) to the N-starved plant. The presence of the fungus restores the plants' amino acid homeostasis, which was out of balance due to N deficiency, and causes a strong accumulation of branched-chain amino acids. We conclude that the plant does not need to invest in defense and resources for growth are maintained, which in turn benefits the fungus, suggesting that this interaction should be considered a mutualistic symbiosis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Mortierella , Arabidopsis Proteins/genetics , Nitrogen/metabolism , Mortierella/metabolism , Nitrates/metabolism , Amino Acids/metabolism , Homeostasis , Gene Expression Regulation, Plant , Anion Transport Proteins/metabolism , Plant Roots/metabolism
13.
Plant Cell Physiol ; 63(1): 30-44, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-34508646

ABSTRACT

To investigate physiological and transcriptomic regulation mechanisms underlying the distinct net fluxes of NH4+ and NO3- in different root segments of Populus species under low nitrogen (N) conditions, we used saplings of Populus × canescens supplied with either 500 (normal N) or 50 (low N) µM NH4NO3. The net fluxes of NH4+ and NO3-, the concentrations of NH4+, amino acids and organic acids and the enzymatic activities of nitrite reductase (NiR) and glutamine synthetase (GS) in root segment II (SII, 35-70 mm to the apex) were lower than those in root segment I (SI, 0-35 mm to the apex). The net NH4+ influxes and the concentrations of organic acids were elevated, whereas the concentrations of NH4+ and NO3- and the activities of NiR and GS were reduced in SI and SII in response to low N. A number of genes were significantly differentially expressed in SII vs SI and in both segments grown under low vs normal N conditions, and these genes were mainly involved in the transport of NH4+ and NO3-, N metabolism and adenosine triphosphate synthesis. Moreover, the hub gene coexpression networks were dissected and correlated with N physiological processes in SI and SII under normal and low N conditions. These results suggest that the hub gene coexpression networks play pivotal roles in regulating N uptake and assimilation, amino acid metabolism and the levels of organic acids from the tricarboxylic acid cycle in the two root segments of poplars in acclimation to low N availability.


Subject(s)
Adaptation, Physiological/genetics , Ammonium Compounds/metabolism , Biological Transport/genetics , Nitrates/metabolism , Nitrogen/deficiency , Plant Roots/metabolism , Populus/metabolism , Genetic Variation , Genotype , Populus/genetics , Transcriptome
14.
Plant Cell Physiol ; 63(5): 605-617, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35137209

ABSTRACT

Crop plants experience various abiotic stresses that reduce yield and quality. Although several adaptative physiological and defense responses to single stress have been identified, the behavior and mechanisms of plant response to multiple stresses remain underexamined. Herein, we determined that the leaf and vascular changes in Cucumis sativus Irregular Vasculature Patterning (CsIVP)-RNAi cucumber plants can enhance resistance to nitrogen deficiency and high-temperature stress. CsIVP negatively regulated high nitrate affinity transporters (NRT2.1, NRT2.5) and reallocation transporters (NRT1.7, NRT1.9, NRT1.12) under low nitrogen stress. Furthermore, CsIVP-RNAi plants have high survival rate with low heat injury level under high-temperature condition. Several key high-temperature regulators, including Hsfs, Hsps, DREB2C, MBF1b and WRKY33 have significant expression in CsIVP-RNAi plants. CsIVP negatively mediated high-temperature responses by physically interacting with CsDREB2C. Altogether, these results indicated that CsIVP integrates innate programming of plant development, nutrient transport and high-temperature resistance, providing a potentially valuable target for breeding nutrient-efficient and heat-resistant crops.


Subject(s)
Cucumis sativus , Cucumis sativus/metabolism , Gene Expression Regulation, Plant , Hot Temperature , Nitrogen/metabolism , Plant Breeding , Plant Proteins/genetics , Plant Proteins/metabolism , Temperature
15.
BMC Plant Biol ; 22(1): 370, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35879653

ABSTRACT

BACKGROUND: In China, nitrogen (N)-deficiency often occurs in Citrus orchards, which is one of the main causes of yield loss and fruit quality decline. Little information is known about the adaptive responses of Citrus carbon (C) and N metabolisms to N-deficiency. Seedlings of 'Xuegan' (Citrus sinensis (L.) Osbeck) were supplied with nutrient solution at an N concentration of 0 (N-deficiency), 5, 10, 15 or 20 mM for 10 weeks. Thereafter, we examined the effects of N supply on the levels of C and N in roots, stems and leaves, and the levels of organic acids, nonstructural carbohydrates, NH4+-N, NO3--N, total soluble proteins, free amino acids (FAAs) and derivatives (FAADs), and the activities of key enzymes related to N assimilation and organic acid metabolism in roots and leaves. RESULTS: N-deficiency elevated sucrose export from leaves to roots, C and N distributions in roots and C/N ratio in roots, stems and leaves, thus enhancing root dry weight/shoot dry weight ratio and N use efficiency. N-deficient leaves displayed decreased accumulation of starch and total nonstructural carbohydrates (TNC) and increased sucrose/starch ratio as well as a partitioning trend of assimilated C toward to sucrose, but N-deficient roots displayed elevated accumulation of starch and TNC and reduced sucrose/starch ratio as well as a partitioning trend of assimilated C toward to starch. N-deficiency reduced the concentrations of most FAADs and the ratios of total FAADs (TFAADs)/N in leaves and roots. N-deficiency reduced the demand for C skeleton precursors for amino acid biosynthesis, thus lowering TFAADs/C ratio in leaves and roots. N-deficiency increased (decreased) the relative amounts of C-rich (N-rich) FAADs, thus increasing the molar ratio of C/N in TFAADs in leaves and roots. CONCLUSIONS: Our findings corroborated our hypothesis that C and N metabolisms displayed adaptive responses to N-deficiency in C. sinensis seedlings, and that some differences existed between roots and leaves in N-deficiency-induced alterations of and C and N metabolisms.


Subject(s)
Citrus sinensis , Citrus , Carbohydrates , Carbon/metabolism , Citrus/metabolism , Citrus sinensis/metabolism , Nitrogen/metabolism , Plant Leaves/metabolism , Plant Roots/metabolism , Seedlings/physiology , Starch/metabolism , Sucrose/metabolism
16.
BMC Plant Biol ; 22(1): 292, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35701737

ABSTRACT

BACKGROUND: Modification of histone acetylation is a ubiquitous and reversible process in eukaryotes and prokaryotes and plays crucial roles in the regulation of gene expression during plant development and stress responses. Histone acetylation is co-regulated by histone acetyltransferase (HAT) and histone deacetylase (HDAC). HAT plays an essential regulatory role in various growth and development processes by modifying the chromatin structure through interactions with other histone modifications and transcription factors in eukaryotic cells, affecting the transcription of genes. Comprehensive analyses of HAT genes have been performed in Arabidopsis thaliana and Oryza sativa. However, little information is available on the HAT genes in foxtail millet (Setaria italica [L.] P. Beauv). RESULTS: In this study, 24 HAT genes (SiHATs) were identified and divided into four groups with conserved gene structures via motif composition analysis. Phylogenetic analysis of the genes was performed to predict functional similarities between Arabidopsis thaliana, Oryza sativa, and foxtail millet; 19 and 2 orthologous gene pairs were individually identified. Moreover, all identified HAT gene pairs likely underwent purified selection based on their non-synonymous/synonymous nucleotide substitutions. Using published transcriptome data, we found that SiHAT genes were preferentially expressed in some tissues and organs. Stress responses were also examined, and data showed that SiHAT gene transcription was influenced by drought, salt, low nitrogen, and low phosphorus stress, and that the expression of four SiHATs was altered as a result of infection by Sclerospora graminicola. CONCLUSIONS: Results indicated that histone acetylation may play an important role in plant growth and development and stress adaptations. These findings suggest that SiHATs play specific roles in the response to abiotic stress and viral infection. This study lays a foundation for further analysis of the biological functions of SiHATs in foxtail millet.


Subject(s)
Arabidopsis , Oryza , Setaria Plant , Arabidopsis/genetics , Gene Expression Regulation, Plant , Histone Acetyltransferases/genetics , Histones/genetics , Histones/metabolism , Oryza/genetics , Oryza/metabolism , Phylogeny , Plant Proteins/metabolism , Setaria Plant/physiology , Stress, Physiological/genetics
17.
Plant Biotechnol J ; 20(8): 1606-1621, 2022 08.
Article in English | MEDLINE | ID: mdl-35514029

ABSTRACT

Genetically enhancing drought tolerance and nutrient use efficacy enables sustainable and stable wheat production in drought-prone areas exposed to water shortages and low soil fertility, due to global warming and declining natural resources. In this study, wheat plants, exhibiting improved drought tolerance and N-use efficacy, were developed by introducing GmTDN1, a gene encoding a DREB-like transcription factor, into two modern winter wheat varieties, cv Shi4185 and Jimai22. Overexpressing GmTDN1 in wheat resulted in significantly improved drought and low-N tolerance under drought and N-deficient conditions in the greenhouse. Field trials conducted at three different locations over a period of 2-3 consecutive years showed that both Shi4185 and Jimai22 GmTDN1 transgenic lines were agronomically superior to wild-type plants, and produced significantly higher yields under both drought and N-deficient conditions. No yield penalties were observed in these transgenic lines under normal well irrigation conditions. Overexpressing GmTDN1 enhanced photosynthetic and osmotic adjustment capacity, antioxidant metabolism, and root mass of wheat plants, compared to those of wild-type plants, by orchestrating the expression of a set of drought stress-related genes as well as the nitrate transporter, NRT2.5. Furthermore, transgenic wheat with overexpressed NRT2.5 can improve drought tolerance and nitrogen (N) absorption, suggesting that improving N absorption in GmTDN1 transgenic wheat may contribute to drought tolerance. These findings may lead to the development of new methodologies with the capacity to simultaneously improve drought tolerance and N-use efficacy in cereal crops to ensure sustainable agriculture and global food security.


Subject(s)
Droughts , Triticum , Gene Expression Regulation, Plant , Photosynthesis , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics , Transcription Factors/genetics , Triticum/genetics , Triticum/metabolism
18.
New Phytol ; 236(5): 1779-1795, 2022 12.
Article in English | MEDLINE | ID: mdl-36093737

ABSTRACT

The mediator complex is highly conserved in eukgaryotes and is integral for transcriptional responses. Mediator subunits associate with signal-responsive transcription factors (TF) to activate expression of specific signal-responsive genes. As the key TF of Arabidopsis thaliana senescence, ORESARA1 (ORE1) is required for nitrogen deficiency (-N) induced senescence; however, the mediator subunit that associates with ORE1 remains unknown. Here, we show that Arabidopsis MED19a associates with ORE1 to activate -N senescence-responsive genes. Disordered MED19a forms inducible nuclear condensates under -N that is regulated by decreasing MED19a lysine acetylation. MED19a carboxyl terminus (cMED19a) harbors a mixed-charged intrinsically disordered region (MC-IDR) required for ORE1 interaction and liquid-liquid phase separation (LLPS). Plant and human cMED19 are sufficient to form heterotypic condensates with ORE1. Human cMED19 MC-IDR, but not yeast cMED19 IDR, partially complements med19a suggesting functional conservation in evolutionarily distant eukaryotes. Phylogenetic analysis of eukaryotic cMED19 revealed that the MC-IDR could arise through convergent evolution. Our result of MED19 MC-IDR suggests that plant MED19 is regulated by phase separation during stress responses.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Mediator Complex , Humans , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Mediator Complex/genetics , Mediator Complex/metabolism , Nutrients , Phylogeny , Trans-Activators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
19.
Photosynth Res ; 154(3): 259-276, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36181569

ABSTRACT

Nitrogen (N) deficiency represents an important limiting factor affecting photosynthetic productivity and the yields of crop plants. Significant reported differences in N use efficiency between the crop species and genotypes provide a good background for the studies of diversity of photosynthetic and photoprotective responses associated with nitrogen deficiency. Using distinct wheat (Triticum aestivum L.) genotypes with previously observed contrasting responses to nitrogen nutrition (cv. Enola and cv. Slomer), we performed advanced analyses of CO2 assimilation, PSII, and PSI photochemistry, also focusing on the heterogeneity of the stress responses in the different leaf levels. Our results confirmed the loss of photosynthetic capacity and enhanced more in lower positions. Non-stomatal limitation of photosynthesis was well reflected by the changes in PSII and PSI photochemistry, including the parameters derived from the fast-fluorescence kinetics. Low photosynthesis in N-deprived leaves, especially in lower positions, was associated with a significant decrease in the activity of alternative electron flows. The exception was the cyclic electron flow around PSI that was enhanced in most of the samples with a low photosynthetic rate. We observed significant genotype-specific responses. An old genotype Slomer with a lower CO2 assimilation rate demonstrated enhanced alternative electron flow and photorespiration capacity. In contrast, a modern, highly productive genotype Enola responded to decreased photosynthesis by a significant increase in nonphotochemical dissipation and cyclic electron flow. Our results illustrate the importance of alternative electron flows for eliminating the excitation pressure at the PSII acceptor side. The decrease in capacity of electron acceptors was balanced by the structural and functional changes of the components of the electron transport chain, leading to a decline of linear electron transport to prevent the overreduction of the PSI acceptor side and related photooxidative damage of photosynthetic structures in leaves exposed to nitrogen deficiency.


Subject(s)
Chlorophyll , Triticum , Triticum/genetics , Chlorophyll/genetics , Nitrogen , Electrons , Carbon Dioxide , Genotype
20.
J Exp Bot ; 73(11): 3726-3742, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35182426

ABSTRACT

Anthocyanin accumulation is a hallmark response to nitrogen (N) deficiency in Arabidopsis. Although the regulation of anthocyanin biosynthesis has been extensively studied, the roles of chromatin modification in this process are largely unknown. In this study we show that anthocyanin accumulation induced by N deficiency is modulated by HISTONE DEACETYLASE15 (HDA15) in Arabidopsis seedlings. The hda15-1 T-DNA insertion mutant accumulated more anthocyanins than the wild-type when the N supply was limited, and this was caused by up-regulation of anthocyanin biosynthetic and regulatory genes in the mutant. The up-regulated genes also had increased levels of histone acetylation in the mutant. The accumulation of anthocyanins induced by sucrose and methyl jasmonate, but not that induced by H2O2 and phosphate starvation, was also greater in the hda15-1 mutant. While sucrose increased histone acetylation in the hda15-1 mutant in genes in a similar manner to that caused by N deficiency, methyl jasmonate only enhanced histone acetylation in the genes involved in anthocyanin biosynthesis. Our results suggest that different stresses act through distinct regulatory modules to activate anthocyanin biosynthesis, and that HDA15-mediated histone modification modulates the expression of anthocyanin biosynthetic and regulatory genes to avoid overaccumulation in response to N deficiency and other stresses.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Anthocyanins/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Histone Deacetylases/genetics , Histones/metabolism , Hydrogen Peroxide/metabolism , Nitrogen/metabolism , Sucrose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL