Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 248
Filter
1.
Cell ; 174(5): 1200-1215.e20, 2018 08 23.
Article in English | MEDLINE | ID: mdl-30100187

ABSTRACT

Nuclear pore complexes (NPCs) regulate nuclear-cytoplasmic transport, transcription, and genome integrity in eukaryotic cells. However, their functional roles in cancer remain poorly understood. We interrogated the evolutionary transcriptomic landscape of NPC components, nucleoporins (Nups), from primary to advanced metastatic human prostate cancer (PC). Focused loss-of-function genetic screen of top-upregulated Nups in aggressive PC models identified POM121 as a key contributor to PC aggressiveness. Mechanistically, POM121 promoted PC progression by enhancing importin-dependent nuclear transport of key oncogenic (E2F1, MYC) and PC-specific (AR-GATA2) transcription factors, uncovering a pharmacologically targetable axis that, when inhibited, decreased tumor growth, restored standard therapy efficacy, and improved survival in patient-derived pre-clinical models. Our studies molecularly establish a role of NPCs in PC progression and give a rationale for NPC-regulated nuclear import targeting as a therapeutic strategy for lethal PC. These findings may have implications for understanding how NPC deregulation contributes to the pathogenesis of other tumor types.


Subject(s)
E2F1 Transcription Factor/metabolism , Membrane Glycoproteins/metabolism , Nuclear Pore/physiology , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Transcription Factors/metabolism , Active Transport, Cell Nucleus , Carcinogenesis , Cell Nucleus/metabolism , Cell Proliferation , GATA2 Transcription Factor/metabolism , Gene Expression Regulation, Neoplastic , Humans , Male , Nuclear Envelope , Nuclear Pore Complex Proteins , Signal Transduction
2.
Annu Rev Cell Dev Biol ; 31: 11-29, 2015.
Article in English | MEDLINE | ID: mdl-26566110

ABSTRACT

Schizosaccharomyces pombe is a good model to study cell-size control. These cells integrate size information into cell cycle controls at both the G1/S and G2/M transitions, although the primary control operates at the entry into mitosis. At G2/M there is both a size threshold, demonstrated by the fact that cells divide when they reach 14 µm in length, and also correction around this threshold, evident from the narrow distribution of sizes within a population. This latter property is referred to as size homeostasis. It has been argued that a population of cells accumulating mass in a linear fashion will have size homeostasis in the absence of size control, if cycle time is controlled by a fixed timer. Because fission yeast cells do not grow in a simple linear fashion, they require a size-sensing mechanism. However, current models do not fully describe all aspects of this control, especially the coordination of cell size with ploidy.


Subject(s)
Mitosis/physiology , Schizosaccharomyces/physiology , Cell Cycle/physiology , Cell Cycle Proteins/metabolism , Cell Size , Homeostasis/physiology , Schizosaccharomyces/metabolism
3.
Brain ; 147(1): 109-121, 2024 01 04.
Article in English | MEDLINE | ID: mdl-37639327

ABSTRACT

We have recently identified the aberrant nuclear accumulation of the ESCRT-III protein CHMP7 as an initiating event that leads to a significant injury to the nuclear pore complex (NPC) characterized by the reduction of specific nucleoporins from the neuronal NPC in sporadic amyotrophic lateral sclerosis (sALS) and C9orf72 ALS/frontotemporal dementia (FTD)-induced pluripotent stem cell-derived neurons (iPSNs), a phenomenon also observed in post-mortem patient tissues. Importantly, this NPC injury is sufficient to contribute to TDP-43 dysfunction and mislocalization, a common pathological hallmark of neurodegenerative diseases. However, the molecular mechanisms and events that give rise to increased nuclear translocation and/or retention of CHMP7 to initiate this pathophysiological cascade remain largely unknown. Here, using an iPSN model of sALS, we demonstrate that impaired NPC permeability barrier integrity and interactions with the LINC complex protein SUN1 facilitate CHMP7 nuclear localization and the subsequent 'activation' of NPC injury cascades. Collectively, our data provide mechanistic insights in the pathophysiological underpinnings of ALS/FTD and highlight SUN1 as a potent contributor to and modifier of CHMP7-mediated toxicity in sALS pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Pick Disease of the Brain , Humans , Amyotrophic Lateral Sclerosis/metabolism , Frontotemporal Dementia/pathology , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Neurons/metabolism , Membrane Proteins , Microtubule-Associated Proteins , Nuclear Proteins , Endosomal Sorting Complexes Required for Transport
4.
J Neurosci ; 43(4): 584-600, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36639912

ABSTRACT

High-throughput anatomic data can stimulate and constrain new hypotheses about how neural circuits change in response to experience. Here, we use fluorescence-based reagents for presynaptic and postsynaptic labeling to monitor changes in thalamocortical synapses onto different compartments of layer 5 (L5) pyramidal (Pyr) neurons in somatosensory (barrel) cortex from mixed-sex mice during whisker-dependent learning (Audette et al., 2019). Using axonal fills and molecular-genetic tags for synapse identification in fixed tissue from Rbp4-Cre transgenic mice, we found that thalamocortical synapses from the higher-order posterior medial thalamic nucleus showed rapid morphologic changes in both presynaptic and postsynaptic structures at the earliest stages of sensory association training. Detected increases in thalamocortical synaptic size were compartment specific, occurring selectively in the proximal dendrites onto L5 Pyr and not at inputs onto their apical tufts in L1. Both axonal and dendritic changes were transient, normalizing back to baseline as animals became expert in the task. Anatomical measurements were corroborated by electrophysiological recordings at different stages of training. Thus, fluorescence-based analysis of input- and target-specific synapses can reveal compartment-specific changes in synapse properties during learning.SIGNIFICANCE STATEMENT Synaptic changes underlie the cellular basis of learning, experience, and neurologic diseases. Neuroanatomical methods to assess synaptic plasticity can provide critical spatial information necessary for building models of neuronal computations during learning and experience but are technically and fiscally intensive. Here, we describe a confocal fluorescence microscopy-based analytical method to assess input, cell type, and dendritic location-specific synaptic plasticity in a sensory learning assay. Our method not only confirms prior electrophysiological measurements but allows us to predict functional strength of synapses in a pathway-specific manner. Our findings also indicate that changes in primary sensory cortices are transient, occurring during early learning. Fluorescence-based synapse identification can be an efficient and easily adopted approach to study synaptic changes in a variety of experimental paradigms.


Subject(s)
Neurons , Pyramidal Cells , Mice , Animals , Fluorescence , Neurons/physiology , Thalamus/physiology , Dendrites/physiology , Synapses/physiology , Mice, Transgenic , Neuronal Plasticity/physiology , Somatosensory Cortex/physiology
5.
Chemistry ; 30(10): e202303401, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38057690

ABSTRACT

The synthesis of highly efficient visible-light-responsive photocatalysts is fundamental to solving the problems of low efficiency and poor selectivity in photocatalytic organic synthesis reactions. We synthesized a crystalline polyoxometalate @metal-organic framework material {Zn4 (H2 O)8 [Ir(ppy)2 (dcbpy)]4 [SiW12 O40 ]} ⋅ 4H2 O (Ir-SiW) by self-assembly of Ir metalloligands with POMs. The introduction of Ir metalloligands extends the light absorbing range to visible light, improving the efficient utilization of solar energy. The transfer of photogenerated electrons from Ir metalloligands to SiW12 was observed under visible light irradiation, which boosted the carrier separation efficiency. The synergistic effect of the two components increased the photocatalytic thioether oxidation activity, and the product methyl phenyl sulfoxide for 2.5 h under visible light irradiation (λ >400 nm) reached 99.5 %, which was higher than those of other POM-based photocatalysts. Meanwhile, the yield of methyl phenyl sulfoxide was still higher than 97 % after three cycles, demonstrating the high stability and reusability of Ir-SiW.

6.
Macromol Rapid Commun ; 45(8): e2300674, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38234077

ABSTRACT

Defined, branched polymer architectures with low dispersity and architectural purity are of great interest to polymer science but are challenging to synthesize. Besides star and comb, especially the pom-pom topology is of interest as it is the simplest topology with exactly two branching points. Most synthetic approaches to a pom-pom topology reported a lack of full control and variability over one of the three topological parameters, the backbone or arm molecular weight and arm number. A new, elegant, fast, and scalable synthetic route without the need for post-polymerization modification (PPM) or purification steps during the synthesis to a pom-pom and a broad variety of topologies made from styrene and dienes is reported, with potential application to barbwire, bottlebrush, miktoarm star, Janus type polymers, or multi-graft copolymers. The key is to inset short poly(2-vinyl-pyridine) blocks (<2 mol% in the branched product) into the backbone as branching points. Carb anions can react at the C6 carbon of the pyridine ring, grafting the arms onto the backbone. Since the synthetic route to polystyrene pom-poms has only two steps and is free of PPM or purification, large amounts of up to 300 g of defined pom-pom structures can be synthesized in one batch.


Subject(s)
Anions , Polymerization , Polystyrenes , Polystyrenes/chemistry , Anions/chemistry , Molecular Structure , Polymers/chemistry , Polymers/chemical synthesis , Polyvinyls/chemistry , Polyvinyls/chemical synthesis
7.
Bioorg Chem ; 153: 107761, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39241586

ABSTRACT

This synthetic organic methodology involves the creation of novel coumarin-based hybrids of series (1-4) with pyrazole ring and (5-8) with oxadiazole moiety. The targeted compounds were tested for In vitro Antimicrobial efficacy against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans pathogenic microbes using disc diffusion and broth microdilution with ciprofloxacin and fluconazole as reference standards. Density functional theory (DFT) studies were used to study atomic structure and reactivity, including absolute electronegativity (χ), electrophilicity (ω), electron acceptor (ω+), donor capabilities (ω-), electron affinity (EA), energy gap (ΔE), global hardness (η), global softness (S), and ionisation potential (IP) and FMOs, NBOs, MEP, and Mulliken Charge analysis. The POM tests found three integrated pharmacophore sites with antibacterial, antiviral, and anticancer activities. Molecular docking studies are also used to determine the S. aureus nucleoside diphosphate kinase receptor's affinity and mode of action for the synthesized drugs. In silico analysis of thermodynamic and therapeutic effectiveness properties, including Lipinski's 'rule of five', Veber's rule, and ADME properties, predicted toxicity-free, non-carcinogenic, and risk-free oral administration of the synthesized complexes.

8.
Genes Dev ; 30(10): 1155-71, 2016 05 15.
Article in English | MEDLINE | ID: mdl-27198230

ABSTRACT

Nuclear pore complexes (NPCs) emerged as nuclear transport channels in eukaryotic cells ∼1.5 billion years ago. While the primary role of NPCs is to regulate nucleo-cytoplasmic transport, recent research suggests that certain NPC proteins have additionally acquired the role of affecting gene expression at the nuclear periphery and in the nucleoplasm in metazoans. Here we identify a widely expressed variant of the transmembrane nucleoporin (Nup) Pom121 (named sPom121, for "soluble Pom121") that arose by genomic rearrangement before the divergence of hominoids. sPom121 lacks the nuclear membrane-anchoring domain and thus does not localize to the NPC. Instead, sPom121 colocalizes and interacts with nucleoplasmic Nup98, a previously identified transcriptional regulator, at gene promoters to control transcription of its target genes in human cells. Interestingly, sPom121 transcripts appear independently in several mammalian species, suggesting convergent innovation of Nup-mediated transcription regulation during mammalian evolution. Our findings implicate alternate transcription initiation as a mechanism to increase the functional diversity of NPC components.


Subject(s)
Evolution, Molecular , Gene Expression Regulation , Membrane Glycoproteins/metabolism , Mutant Proteins/metabolism , Nuclear Pore Complex Proteins/metabolism , Transcription Factors/metabolism , Transcription, Genetic , 5' Untranslated Regions/genetics , Cell Membrane/metabolism , Cell Nucleus/metabolism , Exons/genetics , HeLa Cells , Humans , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/genetics , Mutant Proteins/chemistry , Mutant Proteins/genetics , Nuclear Localization Signals , Nuclear Pore Complex Proteins/chemistry , Nuclear Proteins/metabolism , Promoter Regions, Genetic/genetics , Protein Domains , Protein Isoforms/genetics , Protein Isoforms/metabolism , Solubility , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Initiation Site
9.
Molecules ; 29(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38257339

ABSTRACT

In this study, using the Comparative Molecular Field Analysis (CoMFA) approach, the structure-activity relationship of 33 small quinoline-based compounds with biological anti-gastric cancer activity in vitro was analyzed in 3D space. Once the 3D geometric and energy structure of the target chemical library has been optimized and their steric and electrostatic molecular field descriptions computed, the ideal 3D-QSAR model is generated and matched using the Partial Least Squares regression (PLS) algorithm. The accuracy, statistical precision, and predictive power of the developed 3D-QSAR model were confirmed by a range of internal and external validations, which were interpreted by robust correlation coefficients (RTrain2=0.931; Qcv2=0.625; RTest2=0.875). After carefully analyzing the contour maps produced by the trained 3D-QSAR model, it was discovered that certain structural characteristics are beneficial for enhancing the anti-gastric cancer properties of Quinoline derivatives. Based on this information, a total of five new quinoline compounds were developed, with their biological activity improved and their drug-like bioavailability measured using POM calculations. To further explore the potential of these compounds, molecular docking and molecular dynamics simulations were performed in an aqueous environment for 100 nanoseconds, specifically targeting serine/threonine protein kinase. Overall, the new findings of this study can serve as a starting point for further experiments with a view to the identification and design of a potential next-generation drug for target therapy against cancer.


Subject(s)
Antineoplastic Agents , Quinolines , Stomach Neoplasms , Humans , Ligands , Molecular Docking Simulation , Antineoplastic Agents/pharmacology , Quinolines/pharmacology , Quantitative Structure-Activity Relationship , Stomach Neoplasms/drug therapy
10.
Glob Chang Biol ; 29(6): 1660-1679, 2023 03.
Article in English | MEDLINE | ID: mdl-36527334

ABSTRACT

Atmospheric nitrogen (N) deposition is enriching soils with N across biomes. Soil N enrichment can increase plant productivity and affect microbial activity, thereby increasing soil organic carbon (SOC), but such responses vary across biomes. Drylands cover ~45% of Earth's land area and store ~33% of global SOC contained in the top 1 m of soil. Nitrogen fertilization could, therefore, disproportionately impact carbon (C) cycling, yet whether dryland SOC storage increases with N remains unclear. To understand how N enrichment may change SOC storage, we separated SOC into plant-derived, particulate organic C (POC), and largely microbially derived, mineral-associated organic C (MAOC) at four N deposition experimental sites in Southern California. Theory suggests that N enrichment increases the efficiency by which microbes build MAOC (C stabilization efficiency) if soil pH stays constant. But if soils acidify, a common response to N enrichment, then microbial biomass and enzymatic organic matter decay may decrease, increasing POC but not MAOC. We found that N enrichment had no effect on C fractions except for a decrease in MAOC at one site. Specifically, despite reported increases in plant biomass in three sites and decreases in microbial biomass and extracellular enzyme activities in two sites that acidified, POC did not increase. Furthermore, microbial C use and stabilization efficiency increased in a non-acidified site, but without increasing MAOC. Instead, MAOC decreased by 16% at one of the sites that acidified, likely because it lost 47% of the exchangeable calcium (Ca) relative to controls. Indeed, MAOC was strongly and positively affected by Ca, which directly and, through its positive effect on microbial biomass, explained 58% of variation in MAOC. Long-term effects of N fertilization on dryland SOC storage appear abiotic in nature, such that drylands where Ca-stabilization of SOC is prevalent and soils acidify, are most at risk for significant C loss.


Subject(s)
Carbon , Soil , Nitrogen/analysis , Ecosystem , Biomass , Minerals , Calcium , Soil Microbiology
11.
BMC Infect Dis ; 23(1): 883, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110897

ABSTRACT

BACKGROUND: Pseudomonas otitidis belongs to the genus Pseudomonas and causes various infections, including ear, skin, and soft tissue infections. P. otitidis has a unique susceptibility profile, being susceptible to penicillins and cephalosporins but resistant to carbapenems, due to the production of the metallo-ß-lactamase called POM-1. This revealed genetic similarities with Pseudomonas aeruginosa, which can sometimes lead to misidentification. CASE PRESENTATION: We report the case of a 70-year-old Japanese male who developed cellulitis and bacteremia during chemotherapy for multiple myeloma. He was initially treated with meropenem, but blood culture later revealed gram-negative bacilli identified as P. otitidis using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Carbapenem resistance was predicted from previous reports; therefore, we switched to dual therapy with levofloxacin and cefepime, and favorable treatment results were obtained. CONCLUSION: This is the first reported case of P. otitidis cellulitis and bacteremia in an immunocompromised patient. Carbapenems are typically used in immunocompromised patients and P. otitidis is often resistant to it. However, its biochemical properties are similar to those of Pseudomonas aeruginosa; therefore, its accurate identification is critical. In the present study, we rapidly identified P. otitidis using MALDI-TOF MS and switched from carbapenems to an appropriate antimicrobial therapy, resulting in a successful outcome.


Subject(s)
Bacteremia , Pseudomonas Infections , Humans , Male , Aged , Anti-Bacterial Agents/therapeutic use , Cellulitis/diagnosis , Cellulitis/drug therapy , Pseudomonas , Carbapenems/therapeutic use , Pseudomonas Infections/diagnosis , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa , Bacteremia/diagnosis , Bacteremia/drug therapy , Immunocompromised Host , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
12.
Bioorg Chem ; 141: 106910, 2023 12.
Article in English | MEDLINE | ID: mdl-37871393

ABSTRACT

The present study describes synthesizing a novel series of polyfunctionalized pyridine congeners 1-18 and assessed for cytotoxic efficacies versus HCT-116, MCF-7, and HepG-2 among one non-cancerous BJ-1 human normal cell. Most compounds were precisely potent anticancer candidate drugs. The molecular impact of the most active compounds 9, 10, 11, 13, 15, and 17 was evaluated after MCF-7 treatment. The gene expression of pro- and ant-apoptosis markers P53, Bax, Caspase-3 and Bcl-2 as well as VEGFR-2 and HER2 were determined. Compounds 13 and 15 induced upregulation of pro-apoptosis of P53, Bax, Caspase-3 and downregulation of anti-apoptosis Bcl-2 gene. However, compound 15 showed higher effect compared to 13 and respective control. Moreover, a slight reduction in HER2 gene expression was detected due to compound 15 treatment, while VEGFR-2 gene was upregulated. In agreement, the immunoblotting analysis showed higher accumulation of P53, Bax, Caspase-3 proteins and of decrease the Bcl-2 protein levels. Furthermore, docking studies united with molecular dynamic simulation exposed compounds 13 and 15 fitting in the middle of the active site at the interface linking the ATP binding site and the allosteric hydrophobic binding pocket. Finally, we performed Petra/Osiris/ Molinspiration (POM) analysis for the newly synthesized compounds. The evaluation of primary in silico parameters revealed significant differences among individual polyfunctionalized pyridine compounds, highlighting the most promising candidates. These preliminary results may help in coordinating and initiating other research projects focused on polyfunctionalized pyridine compounds, especially those with predicted bioactivity, low toxicity, optimal ADME parameters, and promising perspectives.


Subject(s)
Antineoplastic Agents , Vascular Endothelial Growth Factor Receptor-2 , Humans , Molecular Structure , Structure-Activity Relationship , Caspase 3/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , bcl-2-Associated X Protein/metabolism , Tumor Suppressor Protein p53/metabolism , Apoptosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Proto-Oncogene Proteins c-bcl-2/metabolism , Molecular Dynamics Simulation , Pyridines/pharmacology , Molecular Docking Simulation , Cell Proliferation , Drug Screening Assays, Antitumor
13.
Environ Res ; 216(Pt 3): 114653, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36328228

ABSTRACT

In intensive agricultural watersheds, riverine particulate organic matter (POM) may be transported from many sources such as rice paddies, crop uplands, forests, and livestock farming areas during rainy seasons. However, the impacts of land-use and rainfall changes on the POM sources are not well understood. In this study, changes in the sources of riverine POM were investigated in an agricultural area of Korea between 2014 and 2020/21. During this period, land-use and rainfall patterns changed dramatically. The δ13C, δ15N, and C/N of the POM sources as well as those of riverine POM were analyzed, and a stable isotope analysis in R (SIAR) model was utilized for source apportionment. There were differences in δ13C, δ15N, and C/N among the sources. For example, manure had higher δ13C (-22.6 ± 3.3‰) and δ15N (+10.6 ± 5.9‰) than soils (from -28.0 ± 0.8‰ to -25.1 ± 1.2‰ for δ13C and +3.6 ± 1.7‰ to +9.8 ± 1.4‰ for δ15N). For soils, the δ13C and δ15N were higher for upland soils, while C/N was greater for forest soils than for others. For riverine POM, the δ15N marginally changed; however, the δ13C and C/N increased from -26.1 ± 0.9‰ to -20.8 ± 5.3‰ and from +7.7 ± 1.7 to +18.8 ± 8.3 between 2014 and 2020/21, respectively. The SIAR model showed that the contributions of paddy (from 41.0% to 14.9%) and upland fields (from 48.1% to 23.7%) to riverine POM decreased between the periods due to decreased paddy area and the implementation of best management practice on upland fields, respectively. However, the contribution of forests (from 3.5% to 28.0%) and manure (from 7.4% to 33.5%) increased probably due to improper management of forest clear-cutting sites and livestock manure storage sites. The contributions of agricultural soils to riverine POM decreased in drier years. Our study suggests that land management rather than land-use area is critical in riverine POM management, particularly in wetter years.


Subject(s)
Environmental Monitoring , Particulate Matter , Nitrogen Isotopes/analysis , Manure , Bayes Theorem , Soil
14.
BMC Urol ; 23(1): 30, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36869342

ABSTRACT

OBJECTIVE: We aimed to evaluate the effectiveness and complication rates of endoscopic high-pressure balloon dilatation (HPBD) in treating primary obstructive megaureter (POM) in children based on current literature. Specifically, we wanted to clarify the evidence on the use of HPBD in children under one year of age. METHODS: A systematic search of the literature was performed via several databases. The preferred reporting items for systematic reviews and meta-analyses guidelines were followed. The primary outcomes studied in this systematic review were the effectiveness of HBPD in relieving obstruction and reducing hydroureteronephrosis in children. The secondary outcome was to study the complication rate of endoscopic high-pressure balloon dilatation. Studies that reported one or both of these outcomes (n = 13) were considered eligible for inclusion in this review. RESULTS: HPBD significantly decreased both ureteral diameter (15.8 mm [range 2-30] to 8.0 mm [0-30], p = 0.00009) and anteroposterior diameter of renal pelvis (16.7 mm [0-46] to 9.7 mm [0-36], p = 0.00107). The success rate was 71% after one HPBD and 79% after two HPBD. The median follow-up time was 3.6 years (interquartile range 2.2-6.4 years). A complication rate of 33% was observed, but no Clavien-Dindo grade IV-V complications were reported. Postoperative infections and VUR were detected in 12% and 7.8% of cases, respectively. For children under one year of age, outcomes of HPBD seem to be similar to those in older children. CONCLUSIONS: This study indicates that HPBD appears to be safe and can be used as the first-line treatment for symptomatic POM. Further comparative studies are needed addressing the effect of treatment in infants, and also long-term outcomes of the treatment. Due to the nature of POM, identifying those patients who will benefit from HPBD remains challenging.


Subject(s)
Endoscopy , Hydronephrosis , Infant , Humans , Child , Dilatation , Databases, Factual , Kidney Pelvis
15.
Molecules ; 28(18)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37764447

ABSTRACT

In order to improve photocatalytic activity and maximize solar energy use, a new composite material Fe2O3/P2Mo18 was prepared by combining polyoxometalates (P2Mo18) with Fe2O3 nanosheets. FT-IR, XRD, XPS, SEM, TEM, UV-vis, EIS, and PL were used to characterize the composite material, and nano-Fe2O3 of different sizes and morphologies with a controllable absorption range was prepared by adjusting the reaction time, and, when combined with P2Mo18, a composite photocatalyst with efficient visible light response and photocatalytic activity was constructed. The EIS, Bode, and PL spectra analysis results show that the Fe2O3/P2Mo18 composite material has outstanding interfacial charge transfer efficiency and potential photocatalytic application possibilities. Model reactions of methylene blue (MB) and Cr (VI) photodegradation were used to evaluate the redox activity of Fe2O3/P2Mo18 composites under simulated visible light. The photocatalytic degradation rate was as high as 98.98% for MB and 96.86% for Cr (VI) when the composite ratio was Fe2O3/P2Mo18-5%. This research opens up a new avenue for the development of high-performance photocatalysts.

16.
Molecules ; 28(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37175179

ABSTRACT

In the present study, we investigated the antiviral activities of 17 flavonoids as natural products. These derivatives were evaluated for their in vitro antiviral activities against HIV and SARS-CoV-2. Their antiviral activity was evaluated for the first time based on POM (Petra/Osiris/Molispiration) theory and docking analysis. POM calculation was used to analyze the atomic charge and geometric characteristics. The side effects, drug similarities, and drug scores were also assumed for the stable structure of each compound. These results correlated with the experimental values. The bioinformatics POM analyses of the relative antiviral activities of these derivatives are reported for the first time.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Angiotensin-Converting Enzyme 2 , Pharmacophore , Flavonoids/pharmacology , SARS-CoV-2 , Computers , Molecular Docking Simulation
17.
Molecules ; 28(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36985587

ABSTRACT

Due to the uneven distribution of glycosidase enzyme expression across bacteria and fungi, glycoside derivatives of antimicrobial compounds provide prospective and promising antimicrobial materials. Therefore, herein, we report the synthesis and characterization of six novel methyl 4,6-O-benzylidene-α-d-glucopyranoside (MBG) derivatives (2-7). The structures were ascertained using spectroscopic techniques and elemental analyses. Antimicrobial tests (zone of inhibition, MIC and MBC) were carried out to determine their ability to inhibit the growth of different Gram-positive, Gram-negative bacteria and fungi. The highest antibacterial activity was recorded with compounds 4, 5, 6 and 7. The compounds with the most significant antifungal efficacy were 4, 5, 6 and 7. Based on the prediction of activity spectra for substances (PASS), compounds 4 and 7 have promising antimicrobial capacity. Molecular docking studies focused on fungal and bacterial proteins where derivatives 3 and 6 exhibited strong binding affinities. The molecular dynamics study revealed that the complexes formed by these derivatives with the proteins L,D-transpeptidase Ykud and endoglucanase from Aspergillus niger remained stable, both over time and in physiological conditions. Structure-activity relationships, including in vitro and in silico results, revealed that the acyl chains [lauroyl-(CH3(CH2)10CO-), cinnamoyl-(C6H5CH=CHCO-)], in combination with sugar, were found to have the most potential against human and fungal pathogens. Synthetic, antimicrobial and pharmacokinetic studies revealed that MBG derivatives have good potential for antimicrobial activity, developing a therapeutic target for bacteria and fungi. Furthermore, the Petra/Osiris/Molinspiration (POM) study clearly indicated the presence of an important (O1δ-----O2δ-) antifungal pharmacophore site. This site can also be explored as a potential antiviral moiety.


Subject(s)
Anti-Infective Agents , Antifungal Agents , Humans , Antifungal Agents/chemistry , Molecular Structure , Molecular Docking Simulation , Pharmacophore , Benzylidene Compounds , Anti-Infective Agents/chemistry , Structure-Activity Relationship , Anti-Bacterial Agents/chemistry , Bacteria , Microbial Sensitivity Tests
18.
Saudi Pharm J ; 31(11): 101804, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37868643

ABSTRACT

Macromolecules i.e., carbohydrate derivatives are crucial to biochemical and medical research. Herein, we designed and synthesized eight methyl α-D-glucopyranoside (MGP) derivatives (2-8) in good yields following the regioselective direct acylation method. The structural configurations of the synthesized MGP derivatives were analyzed and verified using multiple physicochemical and spectroscopic techniques. Antimicrobial experiments revealed that almost all derivatives demonstrated noticeable antifungal and antibacterial efficacy. The synthesized derivatives showed minimum inhibitory concentration (MIC) values ranging from 0.75 µg/mL to 1.50 µg/mL and minimum bactericidal concentrations (MBCs) ranging from 8.00 µg/mL to 16.00 µg/mL. Compound 6 inhibited Ehrlich ascites carcinoma (EAC) cell proliferation by 10.36% with an IC50 of 2602.23 µg/mL in the MTT colorimetric assay. The obtained results were further rationalized by docking analysis of the synthesized derivatives against 4URO and 4XE3 receptors to explore the binding affinities and nonbonding interactions of MGP derivatives with target proteins. Compound 6 demonstrated the potential to bind with the target with the highest binding energy. In a stimulating environment, a molecular dynamics study showed that MGP derivatives have a stable conformation and binding pattern. The MGP derivatives were examined using POM (Petra/Osiris/Molinspiration) bioinformatics, and as a result, these derivatives showed good toxicity, bioavailability, and pharmacokinetics. Various antifungal/antiviral pharmacophore (Oδ-, O'δ-) sites were identified by using POM investigations, and compound 6 was further tested against other pathogenic fungi and viruses, such as Micron and Delta mutants of SARS-CoV-2.

19.
Agron Sustain Dev ; 43(1): 21, 2023.
Article in English | MEDLINE | ID: mdl-36777236

ABSTRACT

There is currently an intense debate about the potential for additional organic carbon storage in soil, the strategies by which it may be accomplished and what the actual benefits might be for agriculture and the climate. Controversy forms an essential part of the scientific process, but on the topic of soil carbon storage, it may confuse the agricultural community and the general public and may delay actions to fight climate change. In an attempt to shed light on this topic, the originality of this article lies in its intention to provide a balanced description of contradictory scientific opinions on soil carbon storage and to examine how the scientific community can support decision-making despite the controversy. In the first part, we review and attempt to reconcile conflicting views on the mechanisms controlling organic carbon dynamics in soil. We discuss the divergent opinions about chemical recalcitrance, the microbial or plant origin of persistent soil organic matter, the contribution of particulate organic matter to additional organic carbon storage in soil, and the spatial and energetic inaccessibility of soil organic matter to decomposers. In the second part, we examine the advantages and limitations of big data management and modeling, which are essential tools to link the latest scientific theories with the actions taken by stakeholders. Finally, we show how the analysis and discussion of controversies can guide scientists in supporting stakeholders for the design of (i) appropriate trade-offs for biomass use in agriculture and forestry and (ii) climate-smart management practices, keeping in mind their still unresolved effects on soil carbon storage.

20.
Angew Chem Int Ed Engl ; 62(30): e202306193, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37269225

ABSTRACT

Polyoxometalates (POMs) are considered as promising catalysts with unique redox activity at the molecular level for energy storage. However, eco-friendly iron-oxo clusters with special metal coordination structures have rarely been reported for Li-ion storage. Herein, three novel redox-active tetranuclear iron-oxo clusters have been synthesized using the solvothermal method with different ratios of Fe3+ and SO4 2- . Further, they can serve as anode materials for Li-ion batteries. Among them, cluster H6 [Fe4 O2 (H2 O)2 (SO4 )7 ]⋅H2 O, the stable structure extended by SO4 2- with a unique 1D pore, displays a specific discharge capacity of 1784 mAh g-1 at 0.2 C and good cycle performance (at 0.2 C and 4 C). This is the first instance of inorganic iron-oxo clusters being used for Li-ion storage. Our findings present a new molecular model system with a well-defined structure and offer new design concepts for the practical application of studying the multi-electron redox activity of iron-oxo clusters.

SELECTION OF CITATIONS
SEARCH DETAIL