Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 655
Filter
1.
Cell ; 182(6): 1545-1559.e18, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32846159

ABSTRACT

In many eukaryotes, Argonaute proteins, guided by short RNA sequences, defend cells against transposons and viruses. In the eubacterium Thermus thermophilus, the DNA-guided Argonaute TtAgo defends against transformation by DNA plasmids. Here, we report that TtAgo also participates in DNA replication. In vivo, TtAgo binds 15- to 18-nt DNA guides derived from the chromosomal region where replication terminates and associates with proteins known to act in DNA replication. When gyrase, the sole T. thermophilus type II topoisomerase, is inhibited, TtAgo allows the bacterium to finish replicating its circular genome. In contrast, loss of gyrase and TtAgo activity slows growth and produces long sausage-like filaments in which the individual bacteria are linked by DNA. Finally, wild-type T. thermophilus outcompetes an otherwise isogenic strain lacking TtAgo. We propose that the primary role of TtAgo is to help T. thermophilus disentangle the catenated circular chromosomes generated by DNA replication.


Subject(s)
Argonaute Proteins/metabolism , Bacterial Proteins/metabolism , DNA Gyrase/metabolism , DNA Replication/genetics , DNA/metabolism , Thermus thermophilus/metabolism , Argonaute Proteins/genetics , Bacterial Proteins/genetics , Cell Survival/drug effects , Cell Survival/genetics , Chromosomes/metabolism , Ciprofloxacin/pharmacology , DNA/genetics , DNA Replication/drug effects , Endonucleases/metabolism , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Models, Molecular , Recombinant Proteins , Recombination, Genetic/drug effects , Recombination, Genetic/genetics , Single Molecule Imaging , Tandem Mass Spectrometry , Thermus thermophilus/genetics , Thermus thermophilus/growth & development , Thermus thermophilus/ultrastructure , Topoisomerase II Inhibitors/pharmacology
2.
Cell ; 167(2): 484-497.e9, 2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27693359

ABSTRACT

PIWI-clade Argonaute proteins associate with PIWI-interacting RNAs (piRNAs) and silence transposable elements in animal gonads. Here, we report the crystal structure of a silkworm PIWI-clade Argonaute, Siwi, bound to the endogenous piRNA, at 2.4 Å resolution. Siwi adopts a bilobed architecture consisting of N-PAZ and MID-PIWI lobes, in which the 5' and 3' ends of the bound piRNA are anchored by the MID-PIWI and PAZ domains, respectively. A structural comparison of Siwi with AGO-clade Argonautes reveals notable differences in their nucleic-acid-binding channels, likely reflecting the distinct lengths of their guide RNAs and their mechanistic differences in guide RNA loading and cleavage product release. In addition, the structure reveals that Siwi and prokaryotic, but not eukaryotic, AGO-clade Argonautes share unexpected similarities, such as metal-dependent 5'-phosphate recognition and a potential structural transition during the catalytic-tetrad formation. Overall, this study provides a critical starting point toward a mechanistic understanding of piRNA-mediated transposon silencing.


Subject(s)
Argonaute Proteins/chemistry , Bombyx/metabolism , Insect Proteins/chemistry , RNA, Small Interfering/chemistry , Animals , Argonaute Proteins/isolation & purification , Bombyx/chemistry , Bombyx/genetics , Cell Line , Crystallography, X-Ray , DNA Transposable Elements/genetics , Gene Silencing , Humans , Insect Proteins/isolation & purification , Nucleic Acid Conformation , RNA, Small Interfering/isolation & purification
3.
Annu Rev Biochem ; 84: 405-33, 2015.
Article in English | MEDLINE | ID: mdl-25747396

ABSTRACT

PIWI-interacting RNAs (piRNAs) are a class of small RNAs that are 24-31 nucleotides in length. They associate with PIWI proteins, which constitute a germline-specific subclade of the Argonaute family, to form effector complexes known as piRNA-induced silencing complexes, which repress transposons via transcriptional or posttranscriptional mechanisms and maintain germline genome integrity. In addition to having a role in transposon silencing, piRNAs in diverse organisms function in the regulation of cellular genes. In some cases, piRNAs have shown transgenerational inheritance to pass on the memory of "self" and "nonself," suggesting a contribution to various cellular processes over generations. Many piRNA factors have been identified; however, both the molecular mechanisms leading to the production of mature piRNAs and the effector phases of gene silencing are still enigmatic. Here, we summarize the current state of our knowledge on the biogenesis of piRNA, its biological functions, and the underlying mechanisms.


Subject(s)
RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Animals , Argonaute Proteins/metabolism , DNA Transposable Elements , Gene Silencing , Humans
4.
Mol Cell ; 82(7): 1329-1342.e8, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35298909

ABSTRACT

Argonautes are nucleic acid-guided proteins that perform numerous cellular functions across all domains of life. Little is known about how distinct evolutionary pressures have shaped each Argonaute's biophysical properties. We applied high-throughput biochemistry to characterize how Thermus thermophilus Argonaute (TtAgo), a DNA-guided DNA endonuclease, finds, binds, and cleaves its targets. We found that TtAgo uses biophysical adaptations similar to those of eukaryotic Argonautes for rapid association but requires more extensive complementarity to achieve high-affinity target binding. Using these data, we constructed models for TtAgo association rates and equilibrium binding affinities that estimate the nucleic acid- and protein-mediated components of the target interaction energies. Finally, we showed that TtAgo cleavage rates vary widely based on the DNA guide, suggesting that only a subset of guides cleaves targets on physiologically relevant timescales.


Subject(s)
Argonaute Proteins , Thermus thermophilus , Argonaute Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA/genetics , Endonucleases/metabolism , Thermus thermophilus/genetics
5.
Mol Cell ; 73(1): 119-129.e5, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30503771

ABSTRACT

MicroRNAs (miRNAs) are loaded into the Argonaute subfamily of proteins (AGO) to form an effector complex that silences target genes. Empty but not miRNA-loaded AGO is selectively degraded across species. However, the mechanism and biological significance of selective AGO degradation remain unclear. We discovered a RING-type E3 ubiquitin ligase we named Iruka (Iru), which selectively ubiquitinates the empty form of Drosophila Ago1 to trigger its degradation. Iru preferentially binds empty Ago1 and ubiquitinates Lys514 in the L2 linker, which is predicted to be inaccessible in the miRNA-loaded state. Depletion of Iru results in global impairment of miRNA-mediated silencing of target genes and in the accumulation of aberrant Ago1 that is dysfunctional for canonical protein-protein interactions and miRNA loading. Our findings reveal a sophisticated mechanism for the selective degradation of empty AGO that underlies a quality control process to ensure AGO function.


Subject(s)
Argonaute Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Protein Processing, Post-Translational , Ubiquitin-Protein Ligases/metabolism , Animals , Argonaute Proteins/chemistry , Argonaute Proteins/genetics , Cell Line , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Gene Silencing , Lysine , MicroRNAs/genetics , MicroRNAs/metabolism , Protein Binding , Protein Conformation , Proteolysis , Structure-Activity Relationship , Substrate Specificity , Ubiquitin-Protein Ligases/genetics , Ubiquitination
6.
Mol Cell ; 75(3): 576-589.e5, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31398324

ABSTRACT

In eukaryotes with multiple small RNA pathways, the mechanisms that channel RNAs within specific pathways are unclear. Here, we reveal the reactions that account for channeling in the small interfering RNA (siRNA) biogenesis phase of the Arabidopsis RNA-directed DNA methylation pathway. The process begins with template DNA transcription by NUCLEAR RNA POLYMERASE IV (Pol IV), whose atypical termination mechanism, induced by nontemplate DNA base-pairing, channels transcripts to the associated RNA-dependent RNA polymerase RDR2. RDR2 converts Pol IV transcripts into double-stranded RNAs and then typically adds an extra untemplated 3' terminal nucleotide to the second strands. The dicer endonuclease DCL3 cuts resulting duplexes to generate 24- and 23-nt siRNAs. The 23-nt RNAs bear the untemplated terminal nucleotide of the RDR2 strand and are underrepresented among ARGONAUTE4-associated siRNAs. Collectively, our results provide mechanistic insights into Pol IV termination, Pol IV-RDR2 coupling, and RNA channeling, from template DNA transcription to siRNA strand discrimination.


Subject(s)
Arabidopsis Proteins/genetics , DNA-Directed RNA Polymerases/genetics , RNA-Dependent RNA Polymerase/genetics , Ribonuclease III/genetics , Transcription, Genetic , Arabidopsis/genetics , Argonaute Proteins/genetics , DNA Methylation/genetics , DNA, Plant/genetics , Gene Expression Regulation, Plant/genetics , Gene Silencing , RNA, Double-Stranded/genetics , RNA, Small Interfering/genetics , Signal Transduction
7.
Mol Cell ; 75(4): 756-768.e7, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31350118

ABSTRACT

Argonaute-bound microRNAs silence mRNA expression in a dynamic and regulated manner to control organismal development, physiology, and disease. We employed metabolic small RNA sequencing for a comprehensive view on intracellular microRNA kinetics in Drosophila. Based on absolute rate of biogenesis and decay, microRNAs rank among the fastest produced and longest-lived cellular transcripts, disposing up to 105 copies per cell at steady-state. Mature microRNAs are produced within minutes, revealing tight intracellular coupling of biogenesis that is selectively disrupted by pre-miRNA-uridylation. Control over Argonaute protein homeostasis generates a kinetic bottleneck that cooperates with non-coding RNA surveillance to ensure faithful microRNA loading. Finally, regulated small RNA decay enables the selective rapid turnover of Ago1-bound microRNAs, but not of Ago2-bound small interfering RNAs (siRNAs), reflecting key differences in the robustness of small RNA silencing pathways. Time-resolved small RNA sequencing opens new experimental avenues to deconvolute the timescales, molecular features, and regulation of small RNA silencing pathways in living cells.


Subject(s)
Argonaute Proteins/metabolism , Drosophila Proteins/metabolism , Homeostasis/physiology , MicroRNAs/metabolism , Sequence Analysis, RNA , Animals , Argonaute Proteins/genetics , Cell Line , Drosophila Proteins/genetics , Drosophila melanogaster , MicroRNAs/genetics
8.
Mol Cell ; 70(4): 722-729.e4, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29775584

ABSTRACT

Loading of small RNAs into Argonaute, the core protein in RNA silencing, requires the Hsp70/Hsp90 chaperone machinery. This machinery also activates many other clients, including steroid hormone receptors and kinases, but how their structures change during chaperone-dependent activation remains unclear. Here, we utilized single-molecule Förster resonance energy transfer (smFRET) to probe the conformational changes of Drosophila Ago2 mediated by the chaperone machinery. We found that empty Ago2 exists in various closed conformations. The Hsp70 system (Hsp40 and Hsp70) and the Hsp90 system (Hop, Hsp90, and p23) together render Ago2 into an open, active form. The Hsp70 system, but not the Hsp90 system alone, is sufficient for Ago2 to partially populate the open form. Instead, the Hsp90 system is required to extend the dwell time of Ago2 in the open state, which must be transiently primed by the Hsp70 system. Our data uncover distinct and coordinated actions of the chaperone machinery, where the Hsp70 system expands the structural ensembles of Ago2 and the Hsp90 system captures and stabilizes the active form.


Subject(s)
Argonaute Proteins/chemistry , Drosophila melanogaster/metabolism , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Protein Conformation , RNA, Small Untranslated/genetics , Animals , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , HSP70 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/genetics , Humans , Protein Binding , Protein Folding , RNA Interference
9.
Proc Natl Acad Sci U S A ; 120(14): e2216006120, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36972460

ABSTRACT

Intrinsically disordered proteins (IDPs) SAID1/2 are hypothetic dentin sialophosphoprotein-like proteins, but their true functions are unknown. Here, we identified SAID1/2 as negative regulators of SERRATE (SE), a core factor in miRNA biogenesis complex (microprocessor). Loss-of-function double mutants of said1; said2 caused pleiotropic developmental defects and thousands of differentially expressed genes that partially overlapped with those in se. said1; said2 also displayed increased assembly of microprocessor and elevated accumulation of microRNAs (miRNAs). Mechanistically, SAID1/2 promote pre-mRNA processing 4 kinase A-mediated phosphorylation of SE, causing its degradation in vivo. Unexpectedly, SAID1/2 have strong binding affinity to hairpin-structured pri-miRNAs and can sequester them from SE. Moreover, SAID1/2 directly inhibit pri-miRNA processing by microprocessor in vitro. Whereas SAID1/2 did not impact SE subcellular compartmentation, the proteins themselves exhibited liquid-liquid phase condensation that is nucleated on SE. Thus, we propose that SAID1/2 reduce miRNA production through hijacking pri-miRNAs to prevent microprocessor activity while promoting SE phosphorylation and its destabilization in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Intrinsically Disordered Proteins , MicroRNAs , Arabidopsis/genetics , Arabidopsis/metabolism , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , RNA-Binding Proteins/metabolism , RNA Processing, Post-Transcriptional , MicroRNAs/metabolism , Ribonuclease III/metabolism , Gene Expression Regulation, Plant
10.
Genes Dev ; 32(17-18): 1155-1160, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30150254

ABSTRACT

Tomato Dicer-like2 (slDCL2) is a key component of resistance pathways against potato virus X (PVX) and tobacco mosaic virus (TMV). It is also required for production of endogenous small RNAs, including miR6026 and other noncanonical microRNAs (miRNAs). The slDCL2 mRNAs are targets of these slDCL2-dependent RNAs in a feedback loop that was disrupted by target mimic RNAs of miR6026. In lines expressing these RNAs, there was correspondingly enhanced resistance against PVX and TMV. These findings illustrate a novel miRNA pathway in plants and a crop protection strategy in which miRNA target mimicry elevates expression of defense-related mRNAs.


Subject(s)
MicroRNAs/metabolism , RNA Viruses/physiology , Ribonuclease III/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/virology , CRISPR-Cas Systems , Disease Susceptibility , Solanum lycopersicum/enzymology , Mutation , Plant Diseases/virology , RNA, Small Untranslated/metabolism , Ribonuclease III/genetics
11.
Plant J ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39312631

ABSTRACT

In plants, RNA silencing constitutes a strong defense against viral infection, which viruses counteract with RNA-silencing suppressors (RSSs). Understanding the interactions between viral RSSs and host factors is crucial for elucidating the molecular arms race between viruses and host plants. We report that the helicase motif (Hel) of the replicase encoded by apple stem grooving virus (ASGV)-the main virus affecting pear trees in China-is an RSS that can inhibit both local and systemic RNA silencing, possibly by binding double-stranded (ds) siRNA. The transcription factor related to ABSCISIC ACID INSENSITIVE3/VIVIPAROUS1 from pear (PbRAV1) enters the cytoplasm and binds Hel through its C terminus, thereby attenuating its RSS activity by reducing its binding affinity to 21- and 24-nt ds siRNA, and suppressing ASGV infection. PbRAV1 can also target p24, an RSS encoded by grapevine leafroll-associated virus 2 (GLRaV-2), with similar negative effects on p24's suppressive function and inhibition of GLRaV-2 infection. Moreover, like the positive role of the PbRAV1 homolog from grapevine (VvRAV1) in p24's previously reported RSS activity, ASGV Hel can also hijack VvRAV1 and employ the protein to sequester 21-nt ds siRNA, thereby enhancing its own RSS activity and promoting ASGV infection. Furthermore, PbRAV1 neither interacts with CP, an RSS encoded by grapevine inner necrosis virus, nor has any obvious effect on CP's RSS activity. Our results identify an RSS encoded by ASGV and demonstrate that PbRAV1, representing a novel type of RAV transcription factor, plays a defensive role against viral infection by targeting viral RSSs.

12.
EMBO J ; 40(15): e108050, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34155657

ABSTRACT

Selective autophagy mediates specific degradation of unwanted cytoplasmic components to maintain cellular homeostasis. The suppressor of gene silencing 3 (SGS3) and RNA-dependent RNA polymerase 6 (RDR6)-formed bodies (SGS3/RDR6 bodies) are essential for siRNA amplification in planta. However, whether autophagy receptors regulate selective turnover of SGS3/RDR6 bodies is unknown. By analyzing the transcriptomic response to virus infection in Arabidopsis, we identified a virus-induced small peptide 1 (VISP1) composed of 71 amino acids, which harbor a ubiquitin-interacting motif that mediates interaction with autophagy-related protein 8. Overexpression of VISP1 induced selective autophagy and compromised antiviral immunity by inhibiting SGS3/RDR6-dependent viral siRNA amplification, whereas visp1 mutants exhibited opposite effects. Biochemistry assays demonstrate that VISP1 interacted with SGS3 and mediated autophagic degradation of SGS3/RDR6 bodies. Further analyses revealed that overexpression of VISP1, mimicking the sgs3 mutant, impaired biogenesis of endogenous trans-acting siRNAs and up-regulated their targets. Collectively, we propose that VISP1 is a small peptide receptor functioning in the crosstalk between selective autophagy and RNA silencing.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/immunology , Peptides/genetics , RNA-Dependent RNA Polymerase/metabolism , Arabidopsis/metabolism , Arabidopsis/virology , Arabidopsis Proteins/genetics , Autophagosomes/physiology , Autophagy/physiology , Autophagy-Related Protein 8 Family/metabolism , Gene Expression Regulation, Plant , Mutation , Peptides/metabolism , Plant Immunity , Plants, Genetically Modified , RNA, Small Interfering , RNA-Dependent RNA Polymerase/genetics , Nicotiana/genetics
13.
EMBO J ; 40(18): e108345, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34337769

ABSTRACT

PIWI-interacting RNAs (piRNAs) are germline-specific small RNAs that form effector complexes with PIWI proteins (Piwi-piRNA complexes) and play critical roles for preserving genomic integrity by repressing transposable elements (TEs). Drosophila Piwi transcriptionally silences specific targets through heterochromatin formation and increases histone H3K9 methylation (H3K9me3) and histone H1 deposition at these loci, with nuclear RNA export factor variant Nxf2 serving as a co-factor. Using ChEP and DamID-seq, we now uncover a Piwi/Nxf2-dependent target association with nuclear lamins. Hi-C analysis of Piwi or Nxf2-depleted cells reveals decreased intra-TAD and increased inter-TAD interactions in regions harboring Piwi-piRNA target TEs. Using a forced tethering system, we analyze the functional effects of Piwi-piRNA/Nxf2-mediated recruitment of piRNA target regions to the nuclear periphery. Removal of active histone marks is followed by transcriptional silencing, chromatin conformational changes, and H3K9me3 and H1 association. Our data show that the Piwi-piRNA pathway can induce stepwise changes in nuclear architecture and chromatin state at target loci for transcriptional silencing.


Subject(s)
Argonaute Proteins/metabolism , Cell Nucleus/genetics , Cell Nucleus/metabolism , Drosophila Proteins/metabolism , Gene Expression Regulation , Genetic Loci , RNA, Small Interfering/metabolism , Animals , Chromatin Assembly and Disassembly , Drosophila melanogaster , Heterochromatin/genetics , Heterochromatin/metabolism , Protein Binding , RNA, Small Interfering/genetics
14.
J Virol ; 98(9): e0099324, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39162432

ABSTRACT

The cucumber mosaic virus (CMV) 2b protein is a potent counter-defense factor and symptom determinant that inhibits antiviral silencing by titrating short double-stranded RNAs. Expression of the CMV subgroup IA strain Fny-CMV 2b protein in transgenic Arabidopsis thaliana plants disrupts microRNA-mediated cleavage of host mRNAs by binding Argonaute 1 (AGO1), leading to symptom-like phenotypes. This also triggers AGO2-mediated antiviral resistance and resistance to CMV's aphid vectors. However, in authentic viral infections, the Fny-CMV 1a protein modulates 2b-AGO1 interactions, inhibiting induction of AGO2-mediated virus resistance and aphid resistance. Contrastingly, 2b proteins encoded by the subgroup II strain LS-CMV and the recently discovered subgroup IA strain Ho-CMV induce no symptoms. Confocal laser scanning microscopy, bimolecular fluorescence complementation, and co-immunoprecipitation showed that Fny-CMV and Ho-CMV 2b proteins interact with Fny-CMV and LS-CMV 1a proteins, while the CMV-LS 2b protein cannot. However, Fny-CMV, Ho-CMV, and LS-CMV 2b proteins, all interacted with AGO1, but while AGO1-Fny2b complexes occurred in the nucleus and cytoplasm, corresponding AGO1-2b complexes for LS-CMV and Ho-CMV accumulated almost exclusively in nuclei. AGO2 transcript accumulation was used to assess the inhibition of AGO1-mediated mRNA degradation. Fny-CMV 2b induced a fivefold increase in AGO2 accumulation, but LS-CMV and Ho-CMV 2b proteins induced only twofold increases. Thus, these 2b proteins bind AGO1 but are less effective at inhibiting AGO1 activity. We conclude that the intracellular localization of 2b-AGO1 complexes influences the degree to which a 2b protein inhibits microRNA-mediated host mRNA degradation and that cytoplasmic AGO1 has the strongest influence on miRNA-mediated cellular mRNA turnover. IMPORTANCE: The cucumber mosaic virus (CMV) 2b protein was among the first discovered viral suppressors of RNA silencing. It has additional pro-viral functions through effects on plant defensive signaling pathways mediated by salicylic acid and jasmonic acid, the abscisic acid pathway and virus-induced drought resistance, and on host plant interactions with insect vectors. Many of these effects occur due to interaction with the important host RNA silencing component Argonaute 1 (AGO1). It was thought that only 2b proteins of "severe" CMV strains interacted with AGO1 and inhibited its microRNA-mediated "slicing" of cellular mRNAs and that the lack of interaction with AGO1 explained the moderate symptoms typically seen in plants infected with mild CMV strains. Our work overthrows this paradigm by showing that mild strain CMV 2b proteins can interact with AGO1, but their in vivo localization prevents them from interacting with AGO1 molecules present in the infected cell cytoplasm.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Argonaute Proteins , Cucumovirus , Viral Proteins , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , Cucumovirus/metabolism , Arabidopsis/virology , Arabidopsis/metabolism , Arabidopsis/genetics , Viral Proteins/metabolism , Viral Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Plant Diseases/virology , Host-Pathogen Interactions , Plants, Genetically Modified , MicroRNAs/metabolism , MicroRNAs/genetics , Methyltransferases
15.
BMC Biol ; 22(1): 219, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39343898

ABSTRACT

BACKGROUND: Small RNA (sRNAs)- mediated RNA silencing is emerging as a key player in host-microbe interactions. However, its role in fungus-plant interactions relevant to biocontrol of plant diseases is yet to be explored. This study aimed to investigate Dicer (DCL)-mediated endogenous and cross-kingdom gene expression regulation in the biocontrol fungus Clonostachys rosea and wheat roots during interactions. RESULTS: C. rosea Δdcl2 strain exhibited significantly higher root colonization than the WT, whereas no significant differences were observed for Δdcl1 strains. Dual RNA-seq revealed the upregulation of CAZymes, membrane transporters, and effector coding genes in C. rosea, whereas wheat roots responded with the upregulation of stress-related genes and the downregulation of growth-related genes. The expression of many of these genes was downregulated in wheat during the interaction with DCL deletion strains, underscoring the influence of fungal DCL genes on wheat defense response. sRNA sequencing identified 18 wheat miRNAs responsive to C. rosea, and three were predicted to target the C. rosea polyketide synthase gene pks29. Two of these miRNAs (mir_17532_x1 and mir_12061_x13) were observed to enter C. rosea from wheat roots with fluorescence analyses and to downregulate the expression of pks29, showing plausible cross-kingdom RNA silencing of the C. rosea gene by wheat miRNAs. CONCLUSIONS: We provide insights into the mechanisms underlying the interaction between biocontrol fungi and plant roots. Moreover, the study sheds light on the role of sRNA-mediated gene expression regulation in C. rosea-wheat interactions and provides preliminary evidence of cross-kingdom RNA silencing between plants and biocontrol fungi.


Subject(s)
Hypocreales , RNA Interference , Triticum , Triticum/microbiology , Triticum/genetics , Hypocreales/genetics , Hypocreales/physiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Gene Expression Regulation, Fungal , Plant Roots/microbiology , MicroRNAs/genetics , MicroRNAs/metabolism
16.
Plant J ; 116(3): 744-755, 2023 11.
Article in English | MEDLINE | ID: mdl-37522642

ABSTRACT

Plant cells employ intricate defense mechanisms, including mRNA decay pathways, to counter viral infections. Among the RNA quality control (RQC) mechanisms, nonsense-mediated decay (NMD), no-go decay (NGD), and nonstop decay (NSD) pathways play critical roles in recognizing and cleaving aberrant mRNA molecules. Turnip crinkle virus (TCV) is a plant virus that triggers mRNA decay pathways, but it has also evolved strategies to evade this antiviral defense. In this study, we investigated the activation of mRNA decay during TCV infection and its impact on TCV RNA accumulation. We found that TCV infection induced the upregulation of essential mRNA decay factors, indicating their involvement in antiviral defense and the capsid protein (CP) of TCV, a well-characterized viral suppressor of RNA silencing (VSR), also compromised the mRNA decay-based antiviral defense by targeting AtXRN4. This interference with mRNA decay was supported by the observation that TCV CP stabilized a reporter transcript with a long 3' untranslated region (UTR). Moreover, TCV CP suppressed the decay of known NMD target transcripts, further emphasizing its ability to modulate host RNA control mechanisms. Importantly, TCV CP physically interacted with AtXRN4, providing insight into the mechanism of viral interference with mRNA decay. Overall, our findings reveal an alternative strategy employed by TCV, wherein the viral coat protein suppresses the mRNA decay pathway to facilitate viral infection.


Subject(s)
Arabidopsis , Carmovirus , Arabidopsis/genetics , RNA Interference , Carmovirus/genetics , Nonsense Mediated mRNA Decay/genetics , RNA , Antiviral Agents , RNA, Viral/genetics
17.
Plant J ; 113(1): 186-204, 2023 01.
Article in English | MEDLINE | ID: mdl-36403224

ABSTRACT

Transient transgenic expression accelerates pharming and facilitates protein studies in plants. One embodiment of the approach involves leaf infiltration of Agrobacterium strains whose T-DNA is engineered with the gene(s) of interest. However, gene expression during 'agro-infiltration' is intrinsically and universally impeded by the onset of post-transcriptional gene silencing (PTGS). Nearly 20 years ago, a simple method was developed, whereby co-expression of the tombusvirus-encoded P19 protein suppresses PTGS and thus enhances transient gene expression. Yet, how PTGS is activated and suppressed by P19 during the process has remained unclear to date. Here, we address these intertwined questions in a manner also rationalizing how vastly increased protein yields are achieved using a minimal viral replicon as a transient gene expression vector. We also explore, in side-by-side analyses, why some proteins do not accumulate to the expected high levels in the assay, despite vastly increased mRNA levels. We validate that enhanced co-expression of multiple constructs is achieved within the same transformed cells, and illustrate how the P19 system allows rapid protein purification for optimized downstream in vitro applications. Finally, we assess the suitability of the P19 system for subcellular localization studies - an originally unanticipated, yet increasingly popular application - and uncover shortcomings of this specific implement. In revisiting the P19 system using contemporary knowledge, this study sheds light onto its hitherto poorly understood mechanisms while further illustrating its versatility but also some of its limits.


Subject(s)
Agrobacterium , Plant Leaves , Plants, Genetically Modified/genetics , RNA Interference , Agrobacterium/genetics , Agrobacterium/metabolism , Green Fluorescent Proteins/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Nicotiana/metabolism , RNA, Small Interfering/genetics
18.
Plant J ; 116(6): 1717-1736, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37751381

ABSTRACT

Wheat yellow mosaic virus (WYMV) causes severe wheat viral disease in Asia. However, the viral suppressor of RNA silencing (VSR) encoded by WYMV has not been identified. Here, the P1 protein encoded by WYMV RNA2 was shown to suppress RNA silencing in Nicotiana benthamiana. Mutagenesis assays revealed that the alanine substitution mutant G175A of P1 abolished VSR activity and mutant Y10A VSR activity remained only in younger leaves. P1, but not G175A, interacted with gene silencing-related protein, N. benthamiana calmodulin-like protein (NbCaM), and calmodulin-binding transcription activator 3 (NbCAMTA3), and Y10A interacted with NbCAMTA3 only. Competitive Bimolecular fluorescence complementation and co-immunoprecipitation assays showed that the ability of P1 disturbing the interaction between NbCaM and NbCAMTA3 was stronger than Y10A, Y10A was stronger than G175A. In vitro transcript inoculation of infectious WYMV clones further demonstrated that VSR-defective mutants G175A and Y10A reduced WYMV infection in wheat (Triticum aestivum L.), G175A had a more significant effect on virus accumulation in upper leaves of wheat than Y10A. Moreover, RNA silencing, temperature, and autophagy have significant effects on the accumulation of P1 in N. benthamiana. Taken together, WYMV P1 acts as VSR by interfering with calmodulin-associated antiviral RNAi defense to facilitate virus infection in wheat, which has provided clear insights into the function of P1 in the process of WYMV infection.


Subject(s)
Mosaic Viruses , Virus Diseases , RNA Interference , Triticum/genetics , Calmodulin/genetics , Virus Diseases/genetics , Mosaic Viruses/genetics , Plant Diseases/genetics
19.
Plant Mol Biol ; 114(3): 61, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764076

ABSTRACT

Transient expression and induction of RNA silencing by agroinfiltration is a fundamental method in plant RNA biology. Here, we introduce a new reporter assay using RUBY, which encodes three key enzymes of the betalain biosynthesis pathway, as a polycistronic mRNA. The red pigmentation conferred by betalains allows visual confirmation of gene expression or silencing levels without tissue disruption, and the silencing levels can be quantitatively measured by absorbance in as little as a few minutes. Infiltration of RUBY in combination with p19, a well-known RNA silencing suppressor, induced a fivefold higher accumulation of betalains at 7 days post infiltration compared to infiltration of RUBY alone. We demonstrated that co-infiltration of RUBY with two RNA silencing inducers, targeting either CYP76AD1 or glycosyltransferase within the RUBY construct, effectively reduces RUBY mRNA and betalain levels, indicating successful RNA silencing. Therefore, compared to conventional reporter assays for RNA silencing, the RUBY-based assay provides a simple and rapid method for quantitative analysis without the need for specialized equipment, making it useful for a wide range of RNA silencing studies.


Subject(s)
Betalains , Nicotiana , RNA Interference , Betalains/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Plants, Genetically Modified , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism
20.
Plant Biotechnol J ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39166471

ABSTRACT

RNA silencing plays a crucial role in defending against viral infections in diverse eukaryotic hosts. Despite extensive studies on core components of the antiviral RNAi pathway such as DCLs, AGOs and RDRs proteins, host factors involved in antiviral RNAi remain incompletely understood. In this study, we employed the proximity labelling approach to identify the host factors required for antiviral RNAi in Nicotiana benthamiana. Using the barley stripe mosaic virus (BSMV)-encoded γb, a viral suppressor of RNA silencing (VSR), as the bait protein, we identified the DEAD-box RNA helicase RH20, a broadly conserved protein in plants and animals with a homologous human protein known as DDX5. We demonstrated the interaction between RH20 and BSMV γb. Knockdown or knockout of RH20 attenuates the accumulation of viral small interfering RNAs, leading to increased susceptibility to BSMV, while overexpression of RH20 enhances resistance to BSMV, a process requiring the cytoplasmic localization and RNA-binding activity of RH20. In addition to BSMV, RH20 also negatively regulates the infection of several other positive-sense RNA viruses, suggesting the broad-spectrum antiviral activity of RH20. Mechanistic analysis revealed the colocalization and interaction of RH20 with SGS3/RDR6, and disruption of either SGS3 or RDR6 undermines the antiviral function of RH20, suggesting RH20 as a new component of the SGS3/RDR6 bodies. As a counter-defence, BSMV γb VSR subverts the RH20-mediated antiviral defence by interfering with the RH20-SGS3 interaction. Our results uncover RH20 as a new positive regulator of antiviral RNAi and provide new potential targets for controlling plant viral diseases.

SELECTION OF CITATIONS
SEARCH DETAIL