Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Cell Mol Life Sci ; 81(1): 249, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836877

ABSTRACT

Protein ubiquitination is one of the most important posttranslational modifications (PTMs) in eukaryotes and is involved in the regulation of almost all cellular signaling pathways. The intracellular bacterial pathogen Legionella pneumophila translocates at least 26 effectors to hijack host ubiquitination signaling via distinct mechanisms. Among these effectors, SidC/SdcA are novel E3 ubiquitin ligases with the adoption of a Cys-His-Asp catalytic triad. SidC/SdcA are critical for the recruitment of endoplasmic reticulum (ER)-derived vesicles to the Legionella-containing vacuole (LCV). However, the ubiquitination targets of SidC/SdcA are largely unknown, which restricts our understanding of the mechanisms used by these effectors to hijack the vesicle trafficking pathway. Here, we demonstrated that multiple Rab small GTPases and target soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) proteins are bona fide ubiquitination substrates of SidC/SdcA. SidC/SdcA-mediated ubiquitination of syntaxin 3 and syntaxin 4 promotes their unconventional pairing with the vesicle-SNARE protein Sec22b, thereby contributing to the membrane fusion of ER-derived vesicles with the phagosome. In addition, our data reveal that ubiquitination of Rab7 by SidC/SdcA is critical for its association with the LCV membrane. Rab7 ubiquitination could impair its binding with the downstream effector Rab-interacting lysosomal protein (RILP), which partially explains why LCVs avoid fusion with lysosomes despite the acquisition of Rab7. Taken together, our study reveals the biological mechanisms employed by SidC/SdcA to promote the maturation of the LCVs.


Subject(s)
Legionella pneumophila , Phagosomes , SNARE Proteins , Ubiquitination , rab GTP-Binding Proteins , Legionella pneumophila/metabolism , Humans , Phagosomes/metabolism , Phagosomes/microbiology , SNARE Proteins/metabolism , rab GTP-Binding Proteins/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Animals , Qa-SNARE Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Vacuoles/metabolism , Vacuoles/microbiology , HEK293 Cells , Mice , rab7 GTP-Binding Proteins/metabolism , Monomeric GTP-Binding Proteins/metabolism , Endoplasmic Reticulum/metabolism
2.
Int J Mol Sci ; 23(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36430618

ABSTRACT

B16-F1 melanoma cells have often been used as a model to investigate melanogenesis, but the evidence that melanosome biogenesis and transport occur by the same mechanisms in normal melanocytes and B16-F1 cells is insufficient. In this study, we established knockout B16-F1 cells for each of several key factors in melanogenesis, i.e., tyrosinase (Tyr), Hps4, Rab27A, and Rab32·Rab38 (Rab32/38), and then compared their phenotypes with the phenotypes of corresponding mutant mouse melanocyte cell lines, i.e., melan-c, melan-le, melan-ash, and Rab32-deficient melan-cht cells, respectively. The results showed that Tyr and Rab27A are also indispensable for melanin synthesis and peripheral melanosome distribution, respectively, in B16-F1 cells, but that Hps4 or its downstream targets Rab32/38 are not essential for Tyr transport in B16-F1 cells, suggesting the existence of a Rab32/38-independent Tyr transport mechanism in B16-F1 cells. We then performed comprehensive knockdown screening of Rab small GTPases and identified Rab10 and Rab24, previously uncharacterized Rabs in melanocytes, as being involved in Tyr transport under Rab32/38-null conditions. Our findings indicate a difference between the Tyr transport mechanism in melanocytes and B16-F1 cells in terms of Rab32/38-dependency and a limitation in regard to using melanoma cells as a model for melanocytes, especially when investigating the mechanism of endosomal Tyr transport.


Subject(s)
Melanoma , Melanosomes , Monophenol Monooxygenase , rab GTP-Binding Proteins , Animals , Mice , Melanocytes/metabolism , Melanoma/metabolism , Melanosomes/metabolism , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/metabolism , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
3.
Cell Struct Funct ; 45(1): 45-55, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32037382

ABSTRACT

Keratinocytes uptake melanosomes from melanocytes and retain them in the perinuclear region, where they form melanin caps. Although these processes are crucial to protecting nuclear DNA against ultraviolet injury, the molecular basis of melanosome uptake and decomposition in keratinocytes is poorly understood. One of the major reasons for its being poorly understood is the lack of a specific marker protein that can be used to visualize or monitor melanosomes (or melanosome-containing compartments) that have been incorporated into keratinocytes. In this study, we performed a comprehensive localization screening for mammalian Rab family small GTPases (Rab1-45) and succeeded in identifying 11 Rabs that were enriched around melanosomes that had been incorporated into keratinocytes. We also established a new assay by using a recently developed melanosome probe (called M-INK) as a means of quantitatively assessing the degradation of proteins on incorporated melanosomes in control and each of a series of Rab-knockdown keratinocytes. The results showed that knockdown or CRISPR/Cas9-mediated knockout of Rab7B (also identified as Rab42) in keratinocytes caused strong inhibition of protein degradation on melanosomes. Our findings indicated that Rab7B/42 is recruited to melanosome-containing compartments and that it promotes protein degradation on melanosomes in keratinocytes.Key words: degradation, keratinocytes, melanocytes, melanosome, Rab small GTPase.


Subject(s)
Keratinocytes/metabolism , Melanins/metabolism , Melanosomes/genetics , rab GTP-Binding Proteins/metabolism , Animals , Biological Transport/physiology , Melanocytes/metabolism , Melanosomes/metabolism , Mice , Proteolysis
4.
J Exp Bot ; 71(22): 6932-6944, 2020 12 31.
Article in English | MEDLINE | ID: mdl-32926136

ABSTRACT

NbRabF1, a small GTPase from Nicotiana benthamiana and a homolog of Arabidopsis thaliana Ara6, plays a key role in regulating Bamboo mosaic virus (BaMV) movement by vesicle transport between endosomal membranes. Reducing the expression of NbRabF1 in N. benthamiana by virus-induced gene silencing decreased the accumulation of BaMV, and with smaller infection foci on inoculated leaves, but had no effect in protoplasts. Furthermore, transient expression of NbRabF1 increased the accumulation of BaMV in inoculated leaves. Thus, NbRabF1 may be involved in the cell-to-cell movement of BaMV. The potential acyl modification sites at the second and third amino acid positions of NbRabF1 were crucial for membrane targeting and BaMV accumulation. The localization of mutant forms of NbRabF1 with the GDP-bound (donor site) and GTP-bound (acceptor site) suggested that NbRabF1 might regulate vesicle trafficking between the Golgi apparatus and plasma membrane. Furthermore, GTPase activity could also be involved in BaMV cell-to-cell movement. Overall, in this study, we identified a small GTPase, NbRabF1, from N. benthamiana that interacts with its activation protein NbRabGAP1 and regulates vesicle transport from the Golgi apparatus to the plasma membrane. We suggest that the BaMV movement complex might move from cell to cell through this vesicle trafficking route.


Subject(s)
Monomeric GTP-Binding Proteins , Potexvirus , Plant Proteins/genetics , Plant Proteins/metabolism , Potexvirus/genetics , Nicotiana/metabolism
5.
Biochem Soc Trans ; 46(4): 911-917, 2018 08 20.
Article in English | MEDLINE | ID: mdl-30026369

ABSTRACT

Historically, studies on the maturation and intracellular transport of melanosomes in melanocytes have greatly contributed to elucidating the general mechanisms of intracellular transport in many different types of mammalian cells. During melanosome maturation, melanosome cargoes including melanogenic enzymes (e.g. tyrosinase) are transported from endosomes to immature melanosomes by membrane trafficking, which must require a membrane fusion process likely regulated by SNAREs [soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptors]. In the present study, we review the literature concerning the expression and function of SNAREs (e.g. v-SNARE vesicle-associated membrane protein 7 and t-SNAREs syntaxin-3/13 and synaptosomal-associated protein-23) in melanocytes, especially in regard to the fusion process in which melanosome cargoes are finally delivered to immature melanosomes. We also describe the recent discovery of the SNARE recycling system on mature melanosomes in melanocytes. Such SNARE dynamics, especially the SNARE recycling system, on melanosomes will be useful in understanding as yet unidentified SNARE dynamics on other organelles.


Subject(s)
Melanosomes/metabolism , SNARE Proteins/metabolism , Animals , Carrier Proteins/metabolism , Humans , Membrane Fusion , Organelles/metabolism , Protein Transport
6.
Front Cell Dev Biol ; 12: 1451988, 2024.
Article in English | MEDLINE | ID: mdl-39286483

ABSTRACT

Exosomes are extracellular vesicles involved in intercellular signaling, carrying various cargo from microRNAs to metabolites and proteins. They are released by practically all cells and are highly heterogenous due to their origin and content. Several groups of exosomes are known to be involved in various pathological conditions including autoimmune, neurodegenerative, and infectious diseases as well as cancer, and therefore a substantial understanding of their biogenesis and release is crucial. Polarized cells display an array of specific functions originated from differentiated membrane trafficking systems and could lead to hints in untangling the complex process of exosomes. Indeed, recent advances have successfully revealed specific regulation pathways for releasing different subsets of exosomes from different sides of polarized epithelial cells, underscoring the importance of polarized cells in the field. Here we review current evidence on exosome biogenesis and release, especially in polarized cells, highlight the challenges that need to be combatted, and discuss potential applications related to exosomes of polarized-cell origin.

7.
Front Cell Dev Biol ; 10: 948013, 2022.
Article in English | MEDLINE | ID: mdl-35859901

ABSTRACT

Membrane polarity, defined as the asymmetric distribution of lipids and proteins in the plasma membrane, is a critical prerequisite for the development of multicellular tissues, such as epithelia and endothelia. Membrane polarity is regulated by polarized trafficking of membrane components to specific membrane domains and requires the presence of intramembrane diffusion barriers that prevent the intermixing of asymmetrically distributed membrane components. This intramembrane diffusion barrier is localized at the tight junctions (TJs) in these cells. Both the formation of cell-cell junctions and the polarized traffic of membrane proteins and lipids are regulated by Rho and Rab family small GTPases. In this review article, we will summarize the recent developments in the regulation of apico-basal membrane polarity by polarized membrane traffic and the formation of the intramembrane diffusion barrier in epithelial cells with a particular focus on the role of Rho and Rab family small GTPases.

8.
F1000Res ; 92020.
Article in English | MEDLINE | ID: mdl-32595944

ABSTRACT

Melanin pigments are responsible for human skin and hair color, and they protect the body from harmful ultraviolet light. The black and brown melanin pigments are synthesized in specialized lysosome-related organelles called melanosomes in melanocytes. Mature melanosomes are transported within melanocytes and transferred to adjacent keratinocytes, which constitute the principal part of human skin. The melanosomes are then deposited inside the keratinocytes and darken the skin (a process called tanning). Owing to their dark color, melanosomes can be seen easily with an ordinary light microscope, and melanosome research dates back approximately 150 years; since then, biochemical studies aimed at isolating and purifying melanosomes have been conducted. Moreover, in the last two decades, hundreds of molecules involved in regulating melanosomal functions have been identified by analyses of the genes of coat-color mutant animals and patients with genetic diseases characterized by pigment abnormalities, such as hypopigmentation. In recent years, dynamic analyses by more precise microscopic observations have revealed specific functions of a variety of molecules involved in melanogenesis. This review article focuses on the latest findings with regard to the steps (or mechanisms) involved in melanosome formation and transport of mature melanosomes within epidermal melanocytes. Finally, we will touch on current topics in melanosome research, particularly on the "melanosome transfer" and "post-transfer" steps, and discuss future directions in pigment research.


Subject(s)
Melanins/biosynthesis , Melanocytes/metabolism , Melanosomes/metabolism , Animals , Humans , Keratinocytes , Skin/cytology , Skin Pigmentation
9.
Methods Mol Biol ; 1921: 267-276, 2019.
Article in English | MEDLINE | ID: mdl-30694498

ABSTRACT

Protein ubiquitination is one of the most prevalent posttranslational modifications; it regulates a wide range of critical cellular processes in eukaryotes. This modification occurs by covalent attachment of the ubiquitin molecule to other proteins via an isopeptide bond in reactions typically catalyzed by sequential actions of three enzymes, including ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin ligase (E3). Ubiquitination is a reversible process catalyzed by a group of proteins known as deubiquitinase (DUB), which specifically cleaves the isopeptide bond between ubiquitin and modified proteins. Recently, a novel form of ubiquitination catalyzed by the SidE family of effectors from the bacterial pathogen Legionella pneumophila was reported. These proteins ubiquitinate structurally diverse host proteins such as reticulons and ER-associated Rab small GTPases by a two-step mechanism that uses NAD as the energy source for ubiquitin activation prior to being transferred to serine residues in target proteins. This process bypasses the need for E1 and E2 enzymes. Intriguingly, ubiquitination induced by SidEs is regulated by SidJ, another L. pneumophila effector protein which reverses the modification by functioning as an unconventional DUB. Here, we summarize the experimental details of Rab small GTPases (use Rab33b as an example) ubiquitination catalyzed by SidEs (use SdeA as an example) as well as deubiquitination catalyzed by SidJ.


Subject(s)
Bacterial Proteins/metabolism , Host-Pathogen Interactions , Legionella pneumophila/physiology , Legionnaires' Disease/metabolism , Legionnaires' Disease/microbiology , Blotting, Western , Catalysis , Cell Line , Humans , Immunoprecipitation , Ubiquitin/metabolism , Ubiquitin-Activating Enzymes/metabolism , Ubiquitination , rab GTP-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL