Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 739
Filter
1.
Brain ; 147(8): 2803-2816, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38650060

ABSTRACT

In severe epileptic encephalopathies, epileptic activity contributes to progressive cognitive dysfunction. Epileptic encephalopathies share the trait of spike-wave activation during non-REM sleep (EE-SWAS), a sleep stage dominated by sleep spindles, which are brain oscillations known to coordinate offline memory consolidation. Epileptic activity has been proposed to hijack the circuits driving these thalamocortical oscillations, thereby contributing to cognitive impairment. Using a unique dataset of simultaneous human thalamic and cortical recordings in subjects with and without EE-SWAS, we provide evidence for epileptic spike interference of thalamic sleep spindle production in patients with EE-SWAS. First, we show that epileptic spikes and sleep spindles are both predicted by slow oscillations during stage two sleep (N2), but at different phases of the slow oscillation. Next, we demonstrate that sleep-activated cortical epileptic spikes propagate to the thalamus (thalamic spike rate increases after a cortical spike, P ≈ 0). We then show that epileptic spikes in the thalamus increase the thalamic spindle refractory period (P ≈ 0). Finally, we show that in three patients with EE-SWAS, there is a downregulation of sleep spindles for 30 s after each thalamic spike (P < 0.01). These direct human thalamocortical observations support a proposed mechanism for epileptiform activity to impact cognitive function, wherein epileptic spikes inhibit thalamic sleep spindles in epileptic encephalopathy with spike and wave activation during sleep.


Subject(s)
Electroencephalography , Thalamus , Humans , Thalamus/physiopathology , Male , Female , Adult , Sleep Stages/physiology , Epilepsy/physiopathology , Young Adult , Cerebral Cortex/physiopathology , Adolescent , Sleep/physiology , Middle Aged
2.
Cereb Cortex ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38602742

ABSTRACT

Prior investigations have established that the manipulation of neural activity has the potential to influence both rapid eye movement and non-rapid eye movement sleep. Low-intensity retinal ultrasound stimulation has shown effectiveness in the modulation of neural activity. Nevertheless, the specific effects of retinal ultrasound stimulation on rapid eye movement and non-rapid eye movement sleep, as well as its potential to enhance overall sleep quality, remain to be elucidated. Here, we found that: In healthy mice, retinal ultrasound stimulation: (i) reduced total sleep time and non-rapid eye movement sleep ratio; (ii) changed relative power and sample entropy of the delta (0.5-4 Hz) in non-rapid eye movement sleep; and (iii) enhanced relative power of the theta (4-8 Hz) and reduced theta-gamma coupling strength in rapid eye movement sleep. In Alzheimer's disease mice with sleep disturbances, retinal ultrasound stimulation: (i) reduced the total sleep time; (ii) altered the relative power of the gamma band during rapid eye movement sleep; and (iii) enhanced the coupling strength of delta-gamma in non-rapid eye movement sleep and weakened the coupling strength of theta-fast gamma. The results indicate that retinal ultrasound stimulation can modulate rapid eye movement and non-rapid eye movement-related neural activity; however, it is not beneficial to the sleep quality of healthy and Alzheimer's disease mice.


Subject(s)
Alzheimer Disease , Animals , Mice , Entropy , Health Status , Light , Sleep Quality
3.
Proc Natl Acad Sci U S A ; 119(28): e2107797119, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35867767

ABSTRACT

Declarative memory encoding, consolidation, and retrieval require the integration of elements encoded in widespread cortical locations. The mechanism whereby such "binding" of different components of mental events into unified representations occurs is unknown. The "binding-by-synchrony" theory proposes that distributed encoding areas are bound by synchronous oscillations enabling enhanced communication. However, evidence for such oscillations is sparse. Brief high-frequency oscillations ("ripples") occur in the hippocampus and cortex and help organize memory recall and consolidation. Here, using intracranial recordings in humans, we report that these ∼70-ms-duration, 90-Hz ripples often couple (within ±500 ms), co-occur (≥ 25-ms overlap), and, crucially, phase-lock (have consistent phase lags) between widely distributed focal cortical locations during both sleep and waking, even between hemispheres. Cortical ripple co-occurrence is facilitated through activation across multiple sites, and phase locking increases with more cortical sites corippling. Ripples in all cortical areas co-occur with hippocampal ripples but do not phase-lock with them, further suggesting that cortico-cortical synchrony is mediated by cortico-cortical connections. Ripple phase lags vary across sleep nights, consistent with participation in different networks. During waking, we show that hippocampo-cortical and cortico-cortical coripples increase preceding successful delayed memory recall, when binding between the cue and response is essential. Ripples increase and phase-modulate unit firing, and coripples increase high-frequency correlations between areas, suggesting synchronized unit spiking facilitating information exchange. co-occurrence, phase synchrony, and high-frequency correlation are maintained with little decrement over very long distances (25 cm). Hippocampo-cortico-cortical coripples appear to possess the essential properties necessary to support binding by synchrony during memory retrieval and perhaps generally in cognition.


Subject(s)
Cerebral Cortex , Hippocampus , Memory Consolidation , Mental Recall , Sleep , Wakefulness , Cerebral Cortex/physiology , Electrocorticography , Hippocampus/physiology , Humans , Memory Consolidation/physiology , Mental Recall/physiology , Sleep/physiology , Wakefulness/physiology
4.
Proc Natl Acad Sci U S A ; 119(33): e2204754119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35939710

ABSTRACT

Sleep and sleep-like states are present across the animal kingdom, with recent studies convincingly demonstrating sleep-like states in arthropods, nematodes, and even cnidarians. However, the existence of different sleep phases across taxa is as yet unclear. In particular, the study of rapid eye movement (REM) sleep is still largely centered on terrestrial vertebrates, particularly mammals and birds. The most salient indicator of REM sleep is the movement of eyes during this phase. Movable eyes, however, have evolved only in a limited number of lineages-an adaptation notably absent in insects and most terrestrial arthropods-restricting cross-species comparisons. Jumping spiders, however, possess movable retinal tubes to redirect gaze, and in newly emerged spiderlings, these movements can be directly observed through their temporarily translucent exoskeleton. Here, we report evidence for an REM sleep-like state in a terrestrial invertebrate: periodic bouts of retinal movements coupled with limb twitching and stereotyped leg curling behaviors during nocturnal resting in a jumping spider. Observed retinal movement bouts were consistent, including regular durations and intervals, with both increasing over the course of the night. That these characteristic REM sleep-like behaviors exist in a highly visual, long-diverged lineage further challenges our understanding of this sleep state. Comparisons across such long-diverged lineages likely hold important questions and answers about the visual brain as well as the origin, evolution, and function of REM sleep.


Subject(s)
Eye Movements , Retina , Sleep, REM , Spiders , Animals , Retina/physiology , Spiders/physiology
5.
Neurobiol Dis ; 194: 106472, 2024 May.
Article in English | MEDLINE | ID: mdl-38479482

ABSTRACT

BACKGROUND: Whether there is hypothalamic degeneration in Parkinson's disease (PD) and its association with clinical symptoms and pathophysiological changes remains controversial. OBJECTIVES: We aimed to quantify microstructural changes in hypothalamus using a novel deep learning-based tool in patients with PD and those with probable rapid-eye-movement sleep behavior disorder (pRBD). We further assessed whether these microstructural changes associated with clinical symptoms and free thyroxine (FT4) levels. METHODS: This study included 186 PD, 67 pRBD, and 179 healthy controls. Multi-shell diffusion MRI were scanned and mean kurtosis (MK) in hypothalamic subunits were calculated. Participants were assessed using Unified Parkinson's Disease Rating Scale (UPDRS), RBD Questionnaire-Hong Kong (RBDQ-HK), Hamilton Depression Rating Scale (HAMD), and Activity of Daily Living (ADL) Scale. Additionally, a subgroup of PD (n = 31) underwent assessment of FT4. RESULTS: PD showed significant decreases of MK in anterior-superior (a-sHyp), anterior-inferior (a-iHyp), superior tubular (supTub), and inferior tubular hypothalamus when compared with healthy controls. Similarly, pRBD exhibited decreases of MK in a-iHyp and supTub. In PD group, MK in above four subunits were significantly correlated with UPDRS-I, HAMD, and ADL. Moreover, MK in a-iHyp and a-sHyp were significantly correlated with FT4 level. In pRBD group, correlations were observed between MK in a-iHyp and UPDRS-I. CONCLUSIONS: Our study reveals that microstructural changes in the hypothalamus are already significant at the early neurodegenerative stage. These changes are associated with emotional alterations, daily activity levels, and thyroid hormone levels.


Subject(s)
Parkinson Disease , Pindolol/analogs & derivatives , REM Sleep Behavior Disorder , Humans , Parkinson Disease/complications , Surveys and Questionnaires
6.
Eur J Neurosci ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39032002

ABSTRACT

Sleep/wake cycles intricately shape physiological activities including cognitive brain functions, yet the precise molecular orchestrators of sleep remain elusive. Notably, the clinical impact of benzodiazepine drugs underscores the pivotal role of GABAergic neurotransmission in sleep regulation. However, the specific contributions of distinct GABAA receptor subtypes and their principal scaffolding protein, gephyrin, in sleep dynamics remain unclear. The evolving role of synaptic phospho-proteome alterations at excitatory and inhibitory synapses suggests a potential avenue for modulating gephyrin and, consequently, GABAARs for sleep through on-demand kinase recruitment. Our study unveils the distinctive roles of two prevalent GABAA receptor subtypes, α1- and α2-GABAARs, in influencing sleep duration and electrical sleep activity. Notably, the absence of α1-GABAARs emerges as central in sleep regulation, manifesting significant alterations in both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep during dark or active phases, accompanied by altered electroencephalogram (EEG) patterns across various frequencies. Gephyrin proteomics analysis reveals sleep/wake-dependent interactions with a repertoire of known and novel kinases. Crucially, we identify the regulation of gephyrin interaction with ERK1/2, and phosphorylations at serines 268 and 270 are dictated by sleep/wake cycles. Employing AAV-eGFP-gephyrin or its phospho-null variant (S268A/S270A), we disrupt sleep either globally or locally to demonstrate gephyrin phosphorylation as a sleep regulator. In summary, our findings support the local cortical sleep hypothesis and we unveil a molecular mechanism operating at GABAergic synapses, providing critical insights into the intricate regulation of sleep.

7.
J Neurosci Res ; 102(4): e25325, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38562056

ABSTRACT

Brain states (wake, sleep, general anesthesia, etc.) are profoundly associated with the spatiotemporal dynamics of brain oscillations. Previous studies showed that the EEG alpha power shifted from the occipital cortex to the frontal cortex (alpha anteriorization) after being induced into a state of general anesthesia via propofol. The sleep research literature suggests that slow waves and sleep spindles are generated locally and propagated gradually to different brain regions. Since sleep and general anesthesia are conceptualized under the same framework of consciousness, the present study examines whether alpha anteriorization similarly occurs during sleep and how the EEG power in other frequency bands changes during different sleep stages. The results from the analysis of three polysomnography datasets of 234 participants show consistent alpha anteriorization during the sleep stages N2 and N3, beta anteriorization during stage REM, and theta posteriorization during stages N2 and N3. Although it is known that the neural circuits responsible for sleep are not exactly the same for general anesthesia, the findings of alpha anteriorization in this study suggest that, at macro level, the circuits for alpha oscillations are organized in the similar cortical areas. The spatial shifts of EEG power in different frequency bands during sleep may offer meaningful neurophysiological markers for the level of consciousness.


Subject(s)
Electroencephalography , Sleep, Slow-Wave , Humans , Electroencephalography/methods , Sleep, Slow-Wave/physiology , Sleep/physiology , Sleep Stages/physiology , Polysomnography
8.
J Neurosci Res ; 102(7): e25367, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39001670

ABSTRACT

The ventral subiculum regulates emotion, stress responses, and spatial and social cognition. In our previous studies, we have demonstrated anxiety- and depression-like symptoms, deficits in spatial and social cognition in ventral subicular lesioned (VSL) rats, and restoration of affective and cognitive behaviors following photoperiod manipulation (short photoperiod regime, SPR; 6:18 LD cycle). In the present study, we have studied the impact of VSL on sleep-wake behavioral patterns and the effect of SPR on sleep-wakefulness behavior. Adult male Wistar rats subjected to VSL demonstrated decreased wake duration and enhanced total sleep time due to increased non-rapid eye movement sleep (NREMS) and rapid eye movement sleep (REMS). Power spectral analysis indicated increased delta activity during NREMS and decreased sigma band power during all vigilance states. Light is one of the strongest entrainers of the circadian rhythm, and its manipulation may have various physiological and functional consequences. We investigated the effect of 21-day exposure to SPR on sleep-wakefulness (S-W) behavior in VSL rats. We observed that SPR exposure restored S-W behavior in VSL rats, resulting in an increase in wake duration and a significant increase in theta power during wake and REMS. This study highlights the crucial role of the ventral subiculum in maintaining normal sleep-wakefulness patterns and highlights the effectiveness of photoperiod manipulation as a non-pharmacological treatment for reversing sleep disturbances reported in mood and neuropsychiatric disorders like Alzheimer's disease, bipolar disorder, and major depressive disorder, which also involve alterations in circadian rhythm.


Subject(s)
Electroencephalography , Hippocampus , Photoperiod , Rats, Wistar , Sleep , Wakefulness , Animals , Male , Wakefulness/physiology , Rats , Hippocampus/physiopathology , Sleep/physiology , Circadian Rhythm/physiology
9.
BMC Neurosci ; 25(1): 34, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039434

ABSTRACT

The regulation of circadian rhythms and the sleep-wake states involves in multiple neural circuits. The suprachiasmatic nucleus (SCN) is a circadian pacemaker that controls the rhythmic oscillation of mammalian behaviors. The basal forebrain (BF) is a critical brain region of sleep-wake regulation, which is the downstream of the SCN. Retrograde tracing of cholera toxin subunit B showed a direct projection from the SCN to the horizontal limbs of diagonal band (HDB), a subregion of the BF. However, the underlying function of the SCN-HDB pathway remains poorly understood. Herein, activation of this pathway significantly increased non-rapid eye movement (NREM) sleep during the dark phase by using optogenetic recordings. Moreover, activation of this pathway significantly induced NREM sleep during the dark phase for first 4 h by using chemogenetic methods. Taken together, these findings reveal that the SCN-HDB pathway participates in NREM sleep regulation and provides direct evidence of a novel SCN-related pathway involved in sleep-wake states regulation.


Subject(s)
Efferent Pathways , Optogenetics , Suprachiasmatic Nucleus , Animals , Suprachiasmatic Nucleus/physiology , Male , Mice , Efferent Pathways/physiology , Mice, Inbred C57BL , Sleep Stages/physiology , Basal Forebrain/physiology , Circadian Rhythm/physiology , Electroencephalography
10.
Mov Disord ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962883

ABSTRACT

BACKGROUND: Isolated rapid eye movement sleep behavioral disorder (iRBD) can precede neurodegenerative diseases. There is an urgent need for biomarkers to aid early intervention and neuroprotection. OBJECTIVE: The aim is to assess quantitative motor, cognitive, and brain magnetic resonance imaging (MRI) characteristics in iRBD patients. METHODS: Thirty-eight polysomnography-confirmed iRBD patients and 28 age- and sex-matched healthy controls underwent clinical, cognitive, and motor functional evaluations, along with brain MRI. Motor tasks included nine-hole peg test, five-times-sit-to-stand test, timed-up-and-go test, and 4-meter walking test with and without cognitive dual task. Quantitative spatiotemporal gait parameters were obtained using an optoelectronic system. Brain MRI analysis included functional connectivity (FC) of the main resting-state networks, gray matter (GM) volume using voxel-based morphometry, cortical thickness, and deep GM and brainstem volumes using FMRIB's Integrated Registration and Segmentation Tool and FreeSurfer. RESULTS: iRBD patients relative to healthy subjects exhibited a poorer performance during the nine-hole peg test and five-times-sit-to-stand test, and greater asymmetry of arm-swing amplitude and stride length variability during dual-task gait. Dual task significantly worsened the walking performance of iRBD patients more than healthy controls. iRBD patients exhibited nonmotor symptoms, and memory, abstract reasoning, and visuospatial deficits. iRBD patients exhibited decreased FC of pallidum and putamen within the basal ganglia network and occipital and temporal areas within the visuo-associative network, and a reduced volume of the supramarginal gyrus. Brain functional alterations correlated with gait changes. CONCLUSIONS: Subtle motor and nonmotor alterations were identified in iRBD patients, alongside brain structural and functional MRI changes. These findings may represent early signs of neurodegeneration and contribute to the development of predictive models for progression to parkinsonism. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

11.
Mov Disord ; 39(5): 814-824, 2024 May.
Article in English | MEDLINE | ID: mdl-38456361

ABSTRACT

BACKGROUND: Evidence regarding cortical atrophy patterns in Parkinson's disease (PD) with probable rapid eye movement sleep behavior disorder (RBD) (PD-pRBD) remains scarce. Cortical mean diffusivity (cMD), as a novel imaging biomarker highly sensitive to detecting cortical microstructural changes in different neurodegenerative diseases, has not been investigated in PD-pRBD yet. OBJECTIVES: The aim was to investigate cMD as a sensitive measure to identify subtle cortical microstructural changes in PD-pRBD and its relationship with cortical thickness (CTh). METHODS: Twenty-two PD-pRBD, 31 PD without probable RBD (PD-nonpRBD), and 28 healthy controls (HC) were assessed using 3D T1-weighted and diffusion-weighted magnetic resonance imaging on a 3-T scanner and neuropsychological testing. Measures of cortical brain changes were obtained through cMD and CTh. Two-class group comparisons of a general linear model were performed (P < 0.05). Cohen's d effect size for both approaches was computed. RESULTS: PD-pRBD patients showed higher cMD than PD-nonpRBD patients in the left superior temporal, superior frontal, and precentral gyri, precuneus cortex, as well as in the right middle frontal and postcentral gyri and paracentral lobule (d > 0.8), whereas CTh did not detect significant differences. PD-pRBD patients also showed increased bilateral posterior cMD in comparison with HCs (d > 0.8). These results partially overlapped with CTh results (0.5 < d < 0.8). PD-nonpRBD patients showed no differences in cMD when compared with HCs but showed cortical thinning in the left fusiform gyrus and lateral occipital cortex bilaterally (d > 0.5). CONCLUSIONS: cMD may be more sensitive than CTh displaying significant cortico-structural differences between PD subgroups, indicating this imaging biomarker's utility in studying early cortical changes in PD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Cerebral Cortex , Parkinson Disease , REM Sleep Behavior Disorder , Humans , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , Parkinson Disease/complications , Parkinson Disease/physiopathology , REM Sleep Behavior Disorder/diagnostic imaging , REM Sleep Behavior Disorder/pathology , Male , Female , Aged , Middle Aged , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Magnetic Resonance Imaging , Diffusion Magnetic Resonance Imaging/methods , Atrophy/pathology , Neuropsychological Tests
12.
Mov Disord ; 39(1): 53-63, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37955157

ABSTRACT

BACKGROUND: Reduced gastric motility in Parkinson's disease (PD) has been reported, but hardly any study exists in subjects with isolated rapid-eye-movement (REM) sleep behavior disorder (iRBD), a specific prodrome of α-synucleinopathies. OBJECTIVES: We compared the gastric motility of 17 iRBD subjects with that of 18 PD subjects (15 drug naive, 3 early treated in defined off) and 15 healthy controls (HC) with real-time magnetic resonance imaging (rtMRI). METHODS: After overnight fasting, participants consumed a standardized breakfast and underwent a 3-T rtMRI of the stomach. Amplitude and velocity of the peristaltic waves were analyzed under blinded conditions. Gastric motility index (GMI) was calculated. The procedure was repeated in 12 of 17 iRBD subjects ~2.5 years later. Nine of these 12 iRBD subjects were hyposmic. RESULTS: In iRBD and PD subjects the amplitude of the peristaltic waves was significantly reduced compared with HCs (iRBD vs. HC: 8.7 ± 3.7 vs. 11.9 ± 4.1 mm, P = 0.0097; PD vs. HC: 6.8 ± 2.2 vs. 11.9 ± 4.1 mm, P = 0.0001). The amplitude in iRBD and PD subjects was decreased to the same extent. The GMI was reduced in only PD subjects (PD vs. HC: P = 0.0027; PD vs. iRBD: P = 0.0203). After ~2.5 years the amplitude in iRBD subjects did not significantly decrease further. CONCLUSION: The amplitude of the peristaltic waves was markedly reduced in iRBD, a prodrome of α-synucleinopathies. This reduction was similar to the extent observed already in manifest early PD. This finding implies that the α-synuclein pathology affects the innervation of the stomach already in the prodromal stage. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , REM Sleep Behavior Disorder , Synucleinopathies , Humans , Parkinson Disease/complications , Parkinson Disease/pathology , REM Sleep Behavior Disorder/pathology , Stomach/pathology , Sleep
13.
Neuroepidemiology ; 58(4): 256-263, 2024.
Article in English | MEDLINE | ID: mdl-38325344

ABSTRACT

OBJECTIVE: To examine the associations of excessive daytime sleepiness (EDS) and probable rapid eye movement sleep behavior disorder (pRBD), respectively, with impulsive-compulsive behaviors (ICBs) over a 5-year follow-up in patients with early Parkinson's disease (PD). METHODS: The Parkinson's Progression Markers Initiative is a multicenter cohort study based on an ongoing and open-ended registry. Longitudinal associations of sleep disorders with ICB over 5-year follow-up visits were estimated using generalized linear mixed-effects models among PD participants. RESULTS: A total of 825 PD participants were enrolled at baseline. The study sample had a median baseline age of 63.1 (interquartile range: 55.6-69.3) years and comprised 496 (61.5%) men. Among them, 201 (24.9%) had ICB at baseline. In the generalized mixed-effects models, EDS (odds ratio [OR] = 1.09, 95% confidence interval [CI] 1.05, 1.12) and RBD (OR = 1.07, 95% CI 1.03, 1.12) were substantially associated with higher odds of developing ICB over time in PD patients, after multivariate adjustment including age, gender, family history, GDS score, STAI-Y score, MDS-UPDRS part III score, LEDD, and disease duration. Consistent results were observed when stratifying by age at baseline, gender, and PD family history. CONCLUSIONS: The study findings suggest a longitudinal association between EDS and pRBD with an increased risk of developing ICB in patients with PD. The findings emphasize the significance of evaluating and addressing sleep disorders in PD patients as a potential approach to managing ICB.


Subject(s)
Parkinson Disease , Humans , Male , Female , Parkinson Disease/epidemiology , Parkinson Disease/complications , Parkinson Disease/psychology , Middle Aged , Aged , Prospective Studies , REM Sleep Behavior Disorder/epidemiology , REM Sleep Behavior Disorder/complications , Sleep Wake Disorders/epidemiology , Compulsive Behavior/epidemiology , Impulsive Behavior , Disorders of Excessive Somnolence/epidemiology , Cohort Studies
14.
J Neural Transm (Vienna) ; 131(2): 141-148, 2024 02.
Article in English | MEDLINE | ID: mdl-38110521

ABSTRACT

Visuoperceptual dysfunction is common in Parkinson's disease (PD) and is also reported in its prodromal phase, isolated REM sleep behavior disorder (iRBD). We aimed to investigate color discrimination ability and complex visual illusions known as pareidolias in patients with iRBD and PD compared to healthy controls, and their associating clinical factors. 46 iRBD, 43 PD, and 64 healthy controls performed the Farnsworth-Munsell 100 hue test and noise pareidolia tests. Any relationship between those two visual functions and associations with prodromal motor and non-motor manifestations were evaluated, including MDS-UPDRS part I to III, Cross-Cultural Smell Identification Test, sleep questionnaires, and comprehensive neuropsychological assessment. iRBD and PD patients both performed worse on the Farnsworth-Munsell 100 hue test and had greater number of pareidolias compared to healthy controls. No correlations were found between the extent of impaired color discrimination and pareidolia scores in either group. In iRBD patients, pareidolias were associated with frontal executive dysfunction, while impaired color discrimination was associated with visuospatial dysfunction, hyposmia, and higher MDS-UPDRS-III scores. Pareidolias in PD patients correlated with worse global cognition, whereas color discrimination deficits were associated with frontal executive dysfunction. Color discrimination deficits and pareidolias are frequent but does not correlate with each other from prodromal to clinically established stage of PD. The different pattern of clinical associates with the two visual symptoms suggests that evaluation of both color and pareidolias may aid in revealing the course of neurodegeneration in iRBD and PD patients.


Subject(s)
Cognitive Dysfunction , Parkinson Disease , REM Sleep Behavior Disorder , Humans , REM Sleep Behavior Disorder/complications , REM Sleep Behavior Disorder/diagnosis , Cognitive Dysfunction/complications , Cognition , Neuropsychological Tests
15.
J Sleep Res ; : e14208, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38606675

ABSTRACT

While commonly treated as a uniform state in practice, rapid eye movement sleep contains two distinct microstructures-phasic (presence of rapid eye movement) and tonic (no rapid eye movement). This study aims to identify technical challenges during rapid eye movement sleep microstructure visual classification in patients with rapid eye movement sleep behaviour disorder, and to propose solutions to enhance reliability between scorers. Fifty-seven sleep recordings were randomly allocated into three subsequent batches (n = 10, 13 and 34) for scoring. To reduce single-centre bias, we recruited three raters/scorers, with each trained from a different institution. Two raters independently scored each 30-s rapid eye movement sleep into 10â€…× fSEM3-s phasic/tonic microstructures based on the AASM guidelines. The third rater acted as an "arbitrator" to resolve opposite opinions persisting during the revision between batches. Besides interrater differences in artefact rejection rate, interrater variance frequently occurred due to transitioning between microstructures and moderate-to-severe muscular/electrode artefact interference. To enhance interrater agreement, a rapid eye movement scoring schematic graph was developed, incorporating proxy electrode use, filters and cut-offs for microstructure transitioning. To assess potential effectiveness of the schematic graph proposed, raters were instructed to systematically apply it in scoring for the third batch. Of the 34 recordings, 27 reached a Cohen's kappa score above 0.8 (i.e. almost perfect agreement between raters), significantly improved from the prior batches (p = 0.0003, Kruskal-Wallis test). Our study illustrated potential solutions and guidance for challenges that may be encountered during rapid eye movement sleep microstructure classification.

16.
J Sleep Res ; : e14223, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38650539

ABSTRACT

Rapid eye movement sleep is associated with distinct changes in various biomedical signals that can be easily captured during sleep, lending themselves to automated sleep staging using machine learning systems. Here, we provide a perspective on the critical characteristics of biomedical signals associated with rapid eye movement sleep and how they can be exploited for automated sleep assessment. We summarise key historical developments in automated sleep staging systems, having now achieved classification accuracy on par with human expert scorers and their role in the clinical setting. We also discuss rapid eye movement sleep assessment with consumer sleep trackers and its potential for unprecedented sleep assessment on a global scale. We conclude by providing a future outlook of computerised rapid eye movement sleep assessment and the role AI systems may play.

17.
J Sleep Res ; : e14322, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39168479

ABSTRACT

A reduction of physiological muscle atonia during rapid eye movement sleep is characteristic in patients with rapid eye movement sleep behaviour disorder, however, it can also be found in narcolepsy patients. We evaluated rapid eye movement sleep associated electromyographic activity to set cut-off values of rapid eye movement sleep without atonia, differentiating rapid eye movement sleep behaviour disorder and narcolepsy patients from controls to enable more precise future diagnostic criteria for these disorders. We retrospectively analysed polysomnography recordings of 16 rapid eye movement sleep behaviour disorder patients, 15 narcolepsy patients, and 19 controls. The combination of phasic and tonic electromyographic activity was recorded in the mentalis and tibialis anterior muscles and analysed in 3 second miniepochs. The cut-off value for a diagnosis of rapid eye movement sleep behaviour disorder was 17.07% (100% sensitivity, 94.7% specificity, area under the curve 0.997). For the diagnosis of narcolepsy, we yielded a cut-off value of 8.4% (86.4% sensitivity, 68.4% specificity, area under the curve 0.850). Rapid eye movement sleep without atonia significantly (p = 0.046) increased in the second night half in rapid eye movement sleep behaviour disorder patients, while it remained moderately increased in the narcolepsy group. Polysomnographic evaluation proves significantly higher rates of rapid eye movement sleep without atonia in rapid eye movement sleep behaviour disorder than in narcolepsy patients, allowing differentiation from controls with high sensitivity and specificity. An increase throughout the night is characteristic for rapid eye movement sleep behaviour disorder, whereas a consistent elevation is typical in narcolepsy patients.

18.
J Sleep Res ; : e14270, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960862

ABSTRACT

Breathing and sleep state are tightly linked. The traditional approach to evaluation of breathing in rapid eye movement sleep has been to focus on apneas and hypopneas, and associated hypoxia or hypercapnia. However, rapid eye movement sleep breathing offers novel insights into sleep physiology and pathology, secondary to complex interactions of rapid eye movement state and cardiorespiratory biology. In this review, morphological analysis of clinical polysomnogram data to assess respiratory patterns and associations across a range of health and disease is presented. There are several relatively unique insights that may be evident by assessment of breathing during rapid eye movement sleep. These include the original discovery of rapid eye movement sleep and scoring of neonatal sleep, control of breathing in rapid eye movement sleep, rapid eye movement sleep homeostasis, sleep apnea endotyping and pharmacotherapy, rapid eye movement sleep stability, non-electroencephalogram sleep staging, influences on cataplexy, mimics of rapid eye movement behaviour disorder, a reflection of autonomic health, and insights into cardiac arrhythmogenesis. In summary, there is rich clinically actionable information beyond sleep apnea encoded in the respiratory patterns of rapid eye movement sleep.

19.
J Sleep Res ; : e14263, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867555

ABSTRACT

Several brainstem, subcortical and cortical areas are involved in the generation of rapid eye movement (REM) sleep. The alteration of these structures as a result of a neurodegenerative process may therefore lead to REM sleep anomalies. REM sleep behaviour disorder is associated with nightmares, dream-enacting behaviours and increased electromyographic activity in REM sleep. Its isolated form is a harbinger of synucleinopathies such as Parkinson's disease or dementia with Lewy bodies, and neuroprotective interventions are advocated. This link might also be present in patients taking antidepressants, with post-traumatic stress disorder, or with a history of repeated traumatic head injury. REM sleep likely contributes to normal memory processes. Its alteration has also been proposed to be part of the neuropathological changes occurring in Alzheimer's disease.

20.
J Sleep Res ; 33(1): e13982, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37730206

ABSTRACT

Rapid eye movement sleep fragmentation is hypothesised to be a reliable feature of insomnia, which may contribute to emotion dysregulation. Sleep restriction therapy, an effective intervention for insomnia, has the potential to reduce rapid eye movement sleep fragmentation through its manipulation of basic sleep-wake processes. We performed secondary data analysis of a randomised controlled trial to examine whether sleep restriction therapy reduces rapid eye movement sleep fragmentation in comparison to a matched control arm. Participants (n = 56; 39 female, mean age = 40.78 ± 9.08 years) were randomly allocated to 4 weeks of sleep restriction therapy or 4 weeks of time in bed regularisation. Ambulatory polysomnographic recordings were performed at baseline, week 1 and week 4. Arousals during rapid eye movement and non-rapid eye movement sleep were scored blind to group allocation. The following rapid eye movement sleep fragmentation index was the primary outcome: index 1 = (rapid eye movement arousals + rapid eye movement awakenings + non-rapid eye movement intrusions)/rapid eye movement duration in hours. Secondary outcomes were two further indices of rapid eye movement sleep fragmentation: index 2 = (rapid eye movement arousals + rapid eye movement awakenings)/rapid eye movement duration in hours; and index 3 = rapid eye movement arousals/rapid eye movement duration in hours. A non-rapid eye movement fragmentation index was also calculated (non-rapid eye movement arousals/non-rapid eye movement duration in hours). Linear-mixed models were fitted to assess between-group differences. There was no significant group difference for the primary rapid eye movement fragmentation index at week 1 (p = 0.097, d = -0.31) or week 4 (p = 0.741, d = -0.06). There was some indication that secondary indices of rapid eye movement fragmentation decreased more in the sleep restriction therapy group relative to control at week 1 (index 2: p = 0.023, d = -0.46; index 3: p = 0.051, d = -0.39), but not at week 4 (d ≤ 0.13). No group effects were found for arousals during non-rapid eye movement sleep. We did not find clear evidence that sleep restriction therapy modifies rapid eye movement sleep fragmentation. Small-to-medium effect sizes in the hypothesised direction, across several indices of rapid eye movement fragmentation during early treatment, demand further investigation in future studies.


Subject(s)
Sleep Initiation and Maintenance Disorders , Sleep, REM , Humans , Female , Adult , Middle Aged , Sleep Deprivation/complications , Sleep Deprivation/therapy , Sleep Initiation and Maintenance Disorders/therapy , Sleep
SELECTION OF CITATIONS
SEARCH DETAIL