Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Toxicol Appl Pharmacol ; 487: 116976, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777097

ABSTRACT

Staff and animals in livestock buildings are constantly exposed to fine particulate matter (PM2.5), which affects their respiratory health. However, its exact pathogenic mechanism remains unclear. Regulator of G-protein signaling 2 (RGS2) has been reported to play a regulatory role in pneumonia. The aim of this study was to explore the therapeutic potential of RGS2 in cowshed PM2.5-induced respiratory damage. PM2.5 was collected from a cattle farm, and the alveolar macrophages (NR8383) of the model animal rat were stimulated with different treatment conditions of cowshed PM2.5. The RGS2 overexpression vector was constructed and transfected it into cells. Compared with the control group, cowshed PM2.5 significantly induced a decrease in cell viability and increased the levels of apoptosis and proinflammatory factor expression. Overexpression of RGS2 ameliorated the above-mentioned cellular changes induced by cowshed PM2.5. In addition, PM2.5 has significantly induced intracellular Ca2+ dysregulation. Affinity inhibition of Gq/11 by RGS2 attenuated the cytosolic calcium signaling pathway mediated by PLCß/IP3R. To further investigate the causes and mechanisms of action of differential RGS2 expression, the possible effects of oxidative stress and TLR2/4 activation were investigated. The results have shown that RGS2 expression was not only regulated by oxidative stress-induced nitric oxide during cowshed PM2.5 cells stimulation but the activation of TLR2/4 had also an important inhibitory effect on its protein expression. The present study demonstrates the intracellular Ca2+ regulatory role of RGS2 during cellular injury, which could be a potential target for the prevention and treatment of PM2.5-induced respiratory injury.


Subject(s)
Macrophages, Alveolar , Particulate Matter , RGS Proteins , Toll-Like Receptor 2 , Toll-Like Receptor 4 , Animals , RGS Proteins/genetics , RGS Proteins/metabolism , Particulate Matter/toxicity , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Rats , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Cattle , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , Cell Line , Calcium Signaling/drug effects , Calcium/metabolism , Apoptosis/drug effects , Air Pollutants/toxicity
2.
Cancer Sci ; 112(5): 1758-1771, 2021 May.
Article in English | MEDLINE | ID: mdl-33440047

ABSTRACT

Clinically, patients with urothelial carcinoma of the bladder (UCB) with tumor metastasis are incurable. To find new therapeutic strategies, the mechanisms underlying UCB invasion and metastasis should be further investigated. In this study, zinc finger and homeobox 3 (ZHX3) was first screened as a critical oncogenic factor associated with poor prognosis in a UCB dataset from The Cancer Genome Atlas (TCGA). These results were also confirmed in a large cohort of clinical UCB clinical samples. Next, we found that ZHX3 could promote the migration and invasion capacities of UCB cells both in vitro and in vivo. Mechanistically, coimmunoprecipitation (coIP) and mass spectrometry (MS) analysis indicated that ZHX3 was a target of tripartite motif 21 (TRIM21), which mediates its ubiquitination, and subsequent degradation. Notably, RNA-seq analysis showed that ZHX3 repressed the expression of regulator of G protein signaling 2 (RGS2). Generally, our results suggest that ZHX3 plays an oncogenic role in UCB pathogenesis and might serve as a novel therapeutic target for UCB.


Subject(s)
Carcinoma, Transitional Cell/metabolism , Homeodomain Proteins/metabolism , RGS Proteins/metabolism , Repressor Proteins/metabolism , Ribonucleoproteins/metabolism , Urinary Bladder Neoplasms/metabolism , Animals , Carcinoma, Transitional Cell/etiology , Carcinoma, Transitional Cell/pathology , Carcinoma, Transitional Cell/secondary , Cell Line, Tumor , Cell Movement , Disease Progression , Down-Regulation , Female , Homeodomain Proteins/genetics , Humans , Kaplan-Meier Estimate , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Neoplasm Invasiveness , Neoplasm Proteins/metabolism , Prognosis , RGS Proteins/genetics , RNA, Small Interfering , Repressor Proteins/genetics , Ubiquitination , Up-Regulation , Urinary Bladder Neoplasms/etiology , Urinary Bladder Neoplasms/pathology , rhoA GTP-Binding Protein/metabolism
3.
Prostate ; 80(11): 799-810, 2020 08.
Article in English | MEDLINE | ID: mdl-32449815

ABSTRACT

BACKGROUND: Regulator of G-protein signaling 2 (RGS2) is a multifaceted protein with a prognostic value in hormone-naïve prostate cancer (PC). It has previously been associated with the development of castration resistance. However, RGS2 expression in clinical specimens of castration-resistant prostate cancer (CRPC) and its clinical relevance has not been explored. In the present study, RGS2 was assessed in CRPC and in relation to the development of castration resistance. METHODS: In the present study, RGS2 expression was evaluated with immunohistochemistry in patient materials of hormone-naïve and castration-resistant primary tumors, also in matched specimens before and after 3 months of androgen deprivation therapy (ADT). Cox regression and Kaplan-Meier curves were used to evaluate the clinical significance of RGS2 expression. RGS2 expression in association to castration-resistant growth was assessed experimentally in an orthotopic xenograft mouse model of CRPC. In vitro, hormone depletion of LNCaP and enzalutamide treatment of LNCaP, 22Rv1, and VCaP was performed to evaluate the association between RGS2 and the androgen receptor (AR). Stable RGS2 knockdown was used to evaluate the impact of RGS2 in association to PC cell growth under hormone-reduced conditions. Gene and protein expression were evaluated with quantitative polymerase chain reaction and Western blot analysis, respectively. RESULTS: RGS2 expression is increased in CRPC and enriched under ADT. Furthermore, a high RGS2 level is prognostic for poor cancer-specific survival for CRPC patients and significantly reduced failure-free survival (FFS) after an initiated ADT. Additionally, the prognostic value of RGS2 outperforms prostate-specific antigen (PSA) in terms of FFS. The present study furthermore suggests that RGS2 expression is reflective of AR activity. Moreover, low RGS2-expressing cells display hampered growth under hormone-reduced conditions, in line with the poor prognosis associated with high RGS2 expression. CONCLUSIONS: High levels of RGS2 are associated with aggressive forms of castration-resistant PC. The results demonstrate that a high level of RGS2 is associated with poor prognosis in association with castration-resistant PC growth. RGS2 alone, or in association with PSA, has the potential to identify patients that require additional treatment at an early stage during ADT.


Subject(s)
Prostatic Neoplasms, Castration-Resistant/metabolism , RGS Proteins/biosynthesis , Aged , Aged, 80 and over , Androgen Antagonists/therapeutic use , Animals , Cell Line, Tumor , Cohort Studies , Heterografts , Humans , Immunohistochemistry , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Prognosis , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , RGS Proteins/genetics , RGS Proteins/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Survival Rate , Up-Regulation
4.
J Mol Cell Cardiol ; 127: 31-43, 2019 02.
Article in English | MEDLINE | ID: mdl-30521840

ABSTRACT

The sympathetic nervous system is the main stimulator of cardiac function. While acute activation of the ß-adrenoceptors exerts positive inotropic and lusitropic effects by increasing cAMP and Ca2+, chronically enhanced sympathetic tone with changed ß-adrenergic signaling leads to alterations of gene expression and remodeling. The CREB-regulated transcription coactivator 1 (CRTC1) is activated by cAMP and Ca2+. In the present study, the regulation of CRTC1 in cardiomyocytes and its effect on cardiac function and growth was investigated. In cardiomyocytes, isoprenaline induced dephosphorylation, and thus activation of CRTC1, which was prevented by propranolol. Crtc1-deficient mice exhibited left ventricular dysfunction, hypertrophy and enlarged cardiomyocytes. However, isoprenaline-induced contractility of isolated trabeculae or phosphorylation of cardiac troponin I, cardiac myosin-binding protein C, phospholamban, and ryanodine receptor were not altered, suggesting that cardiac dysfunction was due to the global lack of Crtc1. The mRNA and protein levels of the Gαq GTPase activating protein regulator of G-protein signaling 2 (RGS2) were lower in hearts of Crtc1-deficient mice. Chromatin immunoprecipitation and reporter gene assays showed stimulation of the Rgs2 promoter by CRTC1. In Crtc1-deficient cardiomyocytes, phosphorylation of the Gαq-downstream kinase ERK was enhanced. CRTC1 content was higher in cardiac tissue from patients with aortic stenosis or hypertrophic cardiomyopathy and from two murine models mimicking these diseases. These data suggest that increased CRTC1 in maladaptive hypertrophy presents a compensatory mechanism to delay disease progression in part by enhancing Rgs2 gene transcription. Furthermore, the present study demonstrates an important role of CRTC1 in the regulation of cardiac function and growth.


Subject(s)
Cardiomegaly/metabolism , Transcription Factors/metabolism , Animals , Cardiomegaly/diagnostic imaging , Cardiomegaly/physiopathology , Cyclic AMP-Dependent Protein Kinases/metabolism , HEK293 Cells , Humans , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Phosphorylation , Promoter Regions, Genetic , RGS Proteins/genetics , RGS Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Wistar , Receptors, Adrenergic, beta/metabolism , Signal Transduction , Transcription Factors/deficiency
5.
BMC Genet ; 17(1): 121, 2016 08 24.
Article in English | MEDLINE | ID: mdl-27558088

ABSTRACT

BACKGROUND: Preeclampsia is a common and heterogeneous vascular syndrome of pregnancy. Its genetic risk profile is yet unknown and may vary between individuals and populations. The rs4606 3' UTR polymorphism of the Regulator of G-protein signaling 2 gene (RGS2) in the mother has been implicated in preeclampsia as well as in the development of chronic hypertension after preeclampsia. The RGS2 protein acts as an inhibitor of physiological vasoconstrictive pathways, and a low RGS2 level is associated with hypertension and obesity, two conditions that predispose to preeclampsia. We genotyped the rs4606 polymorphism in 1339 preeclamptic patients and in 697 controls from the Finnish Genetics of Preeclampsia Consortium (FINNPEC) cohort to study the association of the variant with preeclampsia. RESULTS: No association between rs4606 and preeclampsia was detected in the analysis including all women. However, the polymorphism was associated with preeclampsia in a subgroup of overweight women (body mass index ≥ 25 kg/m(2), and < 30 kg/m(2)) (dominant model; odds ratio, 1.64; 95 % confidence interval, 1.10-2.42). CONCLUSIONS: Our results suggest that RGS2 might be involved in the pathogenesis of preeclampsia particularly in overweight women and contribute to their increased risk for hypertension and other types of cardiovascular disease later in life.


Subject(s)
Overweight/complications , Overweight/genetics , Polymorphism, Single Nucleotide , Pre-Eclampsia/etiology , RGS Proteins/genetics , 3' Untranslated Regions , Adult , Alleles , Biomarkers , Body Mass Index , Case-Control Studies , Female , Gene Expression Regulation , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Humans , Models, Biological , Odds Ratio , Pre-Eclampsia/diagnosis , Pre-Eclampsia/metabolism , Pregnancy , RGS Proteins/metabolism , Risk Factors
6.
Am J Med Genet B Neuropsychiatr Genet ; 168B(3): 211-22, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25740197

ABSTRACT

Accumulating evidence from mouse models points to the G protein-coupled receptor RGS2 (regulator of G-protein signaling 2) as a promising candidate gene for anxiety in humans. Recently, RGS2 polymorphisms were found to be associated with various anxiety disorders, e.g., rs4606 with panic disorder (PD), but other findings have been negative or inconsistent concerning the respective risk allele. To further examine the role of RGS2 polymorphisms in the pathogenesis of PD, we genotyped rs4606 and five additional RGS2 tag single nucleotide polymorphisms (SNPs; rs16834831, rs10801153, rs16829458, rs1342809, rs1890397) in two independent PD samples, comprising 531 matched case/control pairs. The functional SNP rs4606 was nominally associated with PD when both samples were combined. The upstream SNP rs10801153 displayed a Bonferroni-resistant significant association with PD in the second and the combined sample (P = 0.006 and P = 0.017). We furthermore investigated the effect of rs10801153 on dimensional anxiety traits, a behavioral avoidance test (BAT), and an index for emotional processing in the respective subsets of the total sample. In line with categorical results, homozygous risk (G) allele carriers displayed higher scores on the Agoraphobic Cognitions Questionnaire (ACQ; P = 0.015) and showed significantly more defensive behavior during fear provoking situations (P = 0.001). Furthermore, significant effects on brain activation in response to angry (P = 0.013), happy (P = 0.042) and neutral faces (P = 0.032) were detected. Taken together, these findings provide further evidence for the potential role of RGS2 as a candidate gene for PD.


Subject(s)
Anxiety Disorders/etiology , Biomarkers/analysis , Genetic Predisposition to Disease , Panic Disorder/genetics , Polymorphism, Single Nucleotide/genetics , RGS Proteins/genetics , Adult , Anxiety Disorders/psychology , Brain Mapping , Case-Control Studies , Emotions/physiology , Female , Follow-Up Studies , Genotype , Haplotypes , Humans , Image Processing, Computer-Assisted , Male , Panic Disorder/complications , Panic Disorder/psychology , Personality , Phenotype , Pilot Projects , Prognosis , Psychological Tests
7.
Front Physiol ; 15: 1401768, 2024.
Article in English | MEDLINE | ID: mdl-38974519

ABSTRACT

The hypothalamic paraventricular nucleus (PVN) regulates sympathetic activity and blood pressure. The regulator of G protein signaling 2 (RGS2) is a negative G protein regulator, which selectively regulates G⍺q signaling, a potential cause of hypertension. This study aimed to examine angiotensin II (ANG II)-G protein-RGS2 signaling on the central mechanisms of blood pressure control, sympathetic activation, and kidney function. The Sprague Dawley rats were infused with ANG II (200 ng/kg/min) via osmotic mini pump to induce hypertension. Adenovirus (AV) vectors encoding RGS2 was transfected into the PVN in vivo. By radio telemetry measurements, we found AV-RGS2 transfection to the PVN significantly attenuated the increase of mean arterial pressure in ANG II infusion rats from days 2-7 of the 2-week experiment (Day 7: ANG II + AV-RGS2 141.3 ± 10.0 mmHg vs. ANG II 166.9 ± 9.3 mmHg, p < 0.05). AV-RGS2 transfection significantly reduced the serum norepinephrine level and acute volume reflex and increased daily urine volume and sodium excretion in ANG II-infused hypertensive rats. AV-RGS2 transfection significantly reduced G⍺q and PKC protein expressions within the PVN in ANG II infusion rats. In cultured mouse hypothalamic cells, real-time PCR study showed ANG II treatment increased mRNA expression of G⍺q, G⍺s, and RGS2, and AV-RGS2 treatment decreased ANG II-induced mRNA expression of G⍺q and G⍺s. Using confocal imagery, we found that AV-RGS2 attenuated the increase of calcium influx in ANG II-treated cells. Our results suggest that central overexpression of RGS2 in the PVN attenuated the increase of blood pressure and sympathetic outflow, and improves kidney excretory function in hypertensive rats. This may be via the alteration of ANG II-G-protein-RGS2 signaling in the central nervous system.

8.
J Inflamm Res ; 16: 5989-6001, 2023.
Article in English | MEDLINE | ID: mdl-38088941

ABSTRACT

Background: Sepsis is initiated by the dysfunctional response of the host immune system to infection. Septic shock and acute lung injury (ALI) are the main etiology of death caused by sepsis. Glucocorticoids, which are commonly used in clinic to antagonize the inflammatory response of sepsis, may cause serious side effects. Isoforskolin (ISOF) from the plant Coleus forskohlii stimulates adenylyl cyclase, increases the cAMP level and inhibits inflammatory response. The aim of this study was to investigate the synergistic effect of ISOF with dexamethasone (DEX) to prevent and ameliorate septic inflammation. Methods: Lipopolysaccharide (LPS) of 30 and 5 mg/kg (iv.) was used to induce sepsis and ALI mice model respectively in vivo. BEAS-2B cells stimulated by LPS were applied as cell model in vitro. The cumulative survival of mice with LPS-induced sepsis and the histopathological changes of lungs in mice with acute lung injury were observed, and the secretion of pro-inflammatory cytokines was analyzed by ELISA. The expression of RGS2 in BEAS-2B cells was detected by immunoblotting assay and PCR. Results: In the sepsis mice model, ISOF (10 mg/kg) combined with DEX (10 mg/kg.) (ip.) pretreatment significantly increased mice survival rate from 33.3% to 58.3%, which was significantly higher than that of ISOF or DEX treated alone. In the ALI mice model, ISOF, DEX pretreatment alone and combined application attenuated pulmonary pathological changes in ALI mice. Furthermore, ISOF, DEX alone or combined administration decreased MPO, MDA, IL-6, and IL-8 levels, while significantly synergistic effects were observed in the combined treatment group compared with ISOF or DEX alone. In BEAS-2B cells, combined pretreatment with ISOF and DEX significantly decreased the expression of IL-8 and increased the expression of RGS2. Conclusion: The results indicated that ISOF in combination with DEX synergistically improves survival rate and attenuates ALI in mice model through anti-inflammatory and antioxidant effects.

9.
Mol Metab ; 66: 101622, 2022 12.
Article in English | MEDLINE | ID: mdl-36307046

ABSTRACT

OBJECTIVE: RGS2 is a GTPase activating protein that modulates GPCR-Gα signaling and mice lacking RGS2 globally exhibit metabolic alterations. While RGS2 is known to be broadly expressed throughout the body including the brain, the relative contribution of brain RGS2 to metabolic homeostasis remains unknown. The purpose of this study was to characterize RGS2 expression in the paraventricular nucleus of hypothalamus (PVN) and test its role in metabolic homeostasis. METHODS: We used a combination of RNAscope in situ hybridization (ISH), immunohistochemistry, and bioinformatic analyses to characterize the pattern of Rgs2 expression in the PVN. We then created mice lacking Rgs2 either prenatally or postnatally in the PVN and evaluated their metabolic consequences. RESULTS: RNAscope ISH analysis revealed a broad but regionally enriched Rgs2 mRNA expression throughout the mouse brain, with the highest expression being observed in the PVN along with several other brain regions, such as the arcuate nucleus of hypothalamus and the dorsal raphe nucleus. Within the PVN, we found that Rgs2 is specifically enriched in CRH+ endocrine neurons and is further increased by calorie restriction. Functionally, although Sim1-Cre-mediated prenatal deletion of Rgs2 in PVN neurons had no major effects on metabolic homeostasis, AAV-mediated adult deletion of Rgs2 in the PVN led to significantly increased food intake, body weight (both fat and fat-free masses), body length, and blood glucose levels in both male and female mice. Strikingly, we found that prolonged postnatal loss of Rgs2 leads to neuronal cell death in the PVN, while rapid body weight gain in the early phase of viral-mediated PVN Rgs2 deletion is independent of PVN neuronal loss. CONCLUSIONS: Our results provide the first evidence to show that PVN Rgs2 expression is not only sensitive to metabolic challenge but also critically required for PVN endocrine neurons to function and maintain metabolic homeostasis.


Subject(s)
Energy Metabolism , Paraventricular Hypothalamic Nucleus , Mice , Animals , Male , Female , Paraventricular Hypothalamic Nucleus/metabolism , Energy Metabolism/physiology , Obesity/metabolism , Homeostasis , Body Weight
10.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 39(3): 320-327, 2021 Jun 01.
Article in English, Zh | MEDLINE | ID: mdl-34041882

ABSTRACT

OBJECTIVES: This study aims to investigate the effect of the regulator of G-protein signaling 2 (RGS2) on the proliferation and invasion of oral squamous cell carcinoma (OSCC) cells and its potential molecular mechanism. Metho⁃ds The expression status and clinical significance of RGS2 in head and neck squamous cell carcinomas and matched adjacent normal tissues were evaluated using TCGA database. Three OSCC cell lines (i.e., SCC-9, Cal27, and Fadu) were overexpressed with RGS2, and the effect of RGS2 on cell proliferation and invasion was determined using the Transwell, clone formation, and cell counting kit (CCK)-8 assays. Moreover, the yeast two-hybrid scree-ning and co-immunoprecipitation (Co-IP) assays were conducted to detect the correlation of RGS2, four and a half LIM domains protein 1 (FHL1), and damage DNA-binding protein 1 (DDB1). RESULTS: The expression level of RGS2 in OSCC was significantly lower than that in matched adjacent normal tissues (P=0.023). The high RGS2 expression level was negatively correlated with lymphovascular invasion (P<0.001). After transfection with lentiv-RGS2, the expression of RGS2 was increased, and the invasion and proliferation abilities of OSCC cell lines were evidently inhibited. FHL1 could competitively bind with RGS2, which decreased the integration of DDB1 and RGS2, inhibited the ubiquitination process of RGS2, and maintained the stability of the RGS2 protein. CONCLUSIONS: RGS2 plays an important role in the inhibition of OSCC proliferation and invasion. The structure stability of RGS2 is competitively regulated by FHL1 and DDB1.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Cell Line, Tumor , Cell Movement , Cell Proliferation , GTP-Binding Proteins , Humans , Intracellular Signaling Peptides and Proteins , LIM Domain Proteins , Muscle Proteins , RGS Proteins , Squamous Cell Carcinoma of Head and Neck
11.
Metabolites ; 11(2)2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33562475

ABSTRACT

Experimental evidence in mice models has demonstrated that a high regulator of G-protein signaling 2 (RSG2) protein levels precede an insulin resistance state. In the same context, a diet rich in saturated fatty acids induces an increase in RGS2 protein expression, which has been associated with decreased basal metabolism in mice; however, the above has not yet been analyzed in humans. For this reason, in the present study, we examined the association between RGS2 expression and insulin resistance state. The incubation with palmitic acid (PA), which inhibits insulin-mediated Akt Ser473 phosphorylation, resulted in the increased RGS2 expression in human umbilical vein endothelial-CS (HUVEC-CS) cells. The RGS2 overexpression without PA was enough to inhibit insulin-mediated Akt Ser473 phosphorylation in HUVEC-CS cells. Remarkably, the platelet RGS2 expression levels were higher in type 2 diabetes mellitus (T2DM) patients than in healthy donors. Moreover, an unbiased principal component analysis (PCA) revealed that RGS2 expression level positively correlated with glycated hemoglobin (HbA1c) and negatively with age and high-density lipoprotein cholesterol (HDL) in T2DM patients. Furthermore, PCA showed that healthy subjects segregated from T2DM patients by having lower levels of HbA1c and RGS2. These results demonstrate that RGS2 overexpression leads to decreased insulin signaling in a human endothelial cell line and is associated with poorly controlled diabetes.

12.
J Tissue Eng Regen Med ; 14(4): 588-599, 2020 04.
Article in English | MEDLINE | ID: mdl-32068957

ABSTRACT

Bone marrow-derived mesenchymal stromal cells (MSCs) have been wildly applied to cell-based strategies for tissue engineering and regenerative medicine; however, they have to undergo the senescence process and thus appeared to be less therapeutic effective. HMGA2, a protein belonged to high mobility group A (HMGA) family, exhibits an inverse expression level related to embryonic development and acts as a developmental regulator in stem cell self-renewal progression. Therefore, we performed senescence-associated ß-galactosidase (SA-ß-gal) staining, transwell assay, to examine the changes of MSCs in different stages and then over-expressed HMGA2 in MSCs by lentivirus transfection. We found the percentage of SA-ß-gal staining positive cells in MSCs from 24-month-old Sprague-Dawley (SD) rats (O-MSCs) was significantly higher compared with MSCs from 2-week-old SD rats (Y-MSCs), and the expression levels of P21 and P53, two senescence-related molecules, were also significantly up-regulated in O-MSCs than in Y-MSCs. In contrast, the HMGA2 expression level in O-MSCs was dramatically down-regulated in contrast to Y-MSCs. In additional, the migration ability in O-MSCs was significantly attenuated than in Y-MSCs. After successfully over-expressed HMGA2 in O-MSCs, the percentage of SA-ß-gal staining positive cells and the expression levels of P21 and P53 were reduced, and the migration ability was improved compared with O-MSCs without treatment. Further, mRNA sequencing analysis revealed that overexpression of HMGA2 changed the expression of genes related to cell proliferation and senescence, such as Lyz2, Pf4, Rgs2, and Mstn. Knockdown of Rgs2 in HMGA2 overexpression O-MSCs could antagonize the protective effect of HMGA2 in the senescence process of O-MSCs.


Subject(s)
Bone Marrow Cells/metabolism , Cellular Senescence , HMGA2 Protein/metabolism , Mesenchymal Stem Cells/metabolism , Animals , Bone Marrow Cells/cytology , HMGA2 Protein/genetics , Mesenchymal Stem Cells/cytology , Rats , Rats, Sprague-Dawley
13.
Mol Metab ; 30: 173-183, 2019 12.
Article in English | MEDLINE | ID: mdl-31767169

ABSTRACT

OBJECTIVE: Recruitment of brown adipose tissue (BAT) is a potential new strategy for increasing energy expenditure (EE) to treat obesity. G protein-coupled receptors (GPCRs) represent promising targets to activate BAT, as they are the major regulators of BAT biological function. To identify new regulators of GPCR signaling in BAT, we studied the role of Regulator of G protein Signaling 2 (RGS2) in brown adipocytes and BAT. METHODS: We combined pharmacological and genetic tools to investigate the role of RGS2 in BAT in vitro and in vivo. Adipocyte progenitors were isolated from wild-type (WT) and RGS2 knockout (RGS2-/-) BAT and differentiated to brown adipocytes. This approach was complemented with knockdown of RGS2 using lentiviral shRNAs (shRGS2). Adipogenesis was analyzed by Oil Red O staining and by determining the expression of adipogenic and thermogenic markers. Pharmacological modulators and fluorescence staining of F-acting stress fibers were employed to identify the underlying signaling pathways. In vivo, the activity of BAT was assessed by ex vivo lipolysis and by measuring whole-body EE by indirect calorimetry in metabolic cages. RESULTS: RGS2 is highly expressed in BAT, and treatment with cGMP-an important enhancer of brown adipocyte differentiation-further increased RGS2 expression. Loss of RGS2 strongly suppressed adipogenesis and the expression of thermogenic genes in brown adipocytes. Mechanistically, we found increased Gq/Rho/Rho kinase (ROCK) signaling in the absence of RGS2. Surprisingly, in vivo analysis revealed elevated BAT activity in RGS2-deficient mice that was caused by enhanced Gs/cAMP signaling. CONCLUSION: Overall, RGS2 regulates two major signaling pathways in BAT: Gq and Gs. On the one hand, RGS2 promotes brown adipogenesis by counteracting the inhibitory action of Gq/Rho/ROCK signaling. On the other hand, RGS2 decreases the activity of BAT through the inhibition of Gs signaling and cAMP production. Thus, RGS2 might represent a stress modulator that protects BAT from overstimulation.


Subject(s)
Adipogenesis/genetics , Adipose Tissue, Brown/metabolism , RGS Proteins/metabolism , Adipocytes, Brown/metabolism , Animals , Cell Differentiation/physiology , Energy Metabolism , Lipolysis , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/metabolism , RGS Proteins/genetics , RGS Proteins/physiology , Signal Transduction , Thermogenesis/genetics
14.
Cell Signal ; 59: 163-170, 2019 07.
Article in English | MEDLINE | ID: mdl-30826455

ABSTRACT

Regulator of G protein signaling 2 (RGS2) is upregulated by multiple forms of stress and can augment translational attenuation associated with the phosphorylation of the initiation factor eIF2, a hallmark of several stress-induced coping mechanisms. Under stress-induced translational inhibition, key factors, such as ATF4, are selectively expressed via alternative translation mechanisms. These factors are known to regulate molecular switches that control cell fate by regulating pro-survival and pro-apoptotic signals. The molecular mechanisms that balance these opposing responses to stresses are unclear. The present results suggest that RGS2 may be an important regulatory component in the cellular stress response through its translational control abilities. Previously, we have shown that RGS2 can interact with the translation initiation factor, eIF2B, and inhibit de novo protein synthesis. Here, we demonstrate that the expression of either full length RGS2 or its eIF2B-interacting domain (RGS2eb) significantly increases levels of ATF4 and CHOP, both of which are linked to stress-induced apoptosis. Furthermore, we show that these effects are translationally regulated and independent of eIF2 phosphorylation. The present results thus point to a novel function of RGS2 in the stress response directly related to its ability to reduce global protein synthesis.


Subject(s)
Activating Transcription Factor 4/biosynthesis , Peptide Chain Initiation, Translational , RGS Proteins/physiology , Stress, Physiological/physiology , Transcription Factor CHOP/biosynthesis , Activating Transcription Factor 4/genetics , Animals , Apoptosis , Eukaryotic Initiation Factor-2B/chemistry , Mice , NIH 3T3 Cells , Protein Domains , RGS Proteins/genetics , Transcription Factor CHOP/genetics
15.
Oncol Lett ; 15(1): 213-220, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29391880

ABSTRACT

Changes in the expression of regulator of G protein signaling 2 (RGS2) are involved in the genesis and development of a number of malignancies. However, the association between changes in the expression of RGS2 and breast invasive carcinoma of no special type (BIC-NST) remains unknown. The present study found that, in comparison to normal breast tissue, BIC-NST exhibited low expression of RGS2 mRNA and protein, as detected using data mining and immunohistochemical analysis. The low expression of RGS2 was associated with the positive status of hormone receptor expression in BIC-NST. Kaplan-Meier analysis revealed that patients with low RGS2 expression had a significantly poorer overall survival rate. Furthermore, multivariate Cox regression analysis demonstrated that the RGS2 low expression was an independent high-risk factor. Gene set enrichment analysis using data from The Cancer Genome Atlas supported these results. In summary, the results of the current study indicate that RGS2 acts as a suppressor gene in the progression of BIC-NST. To the best of our knowledge, the present study is the first concerning the association between RGS2 and hormone receptors in BIC-NST, as well as that between RGS2 expression and the prognosis of patients with BIC-NST. However, the effect of RGS2 in breast cancer requires further investigation.

16.
J Hum Reprod Sci ; 11(1): 52-58, 2018.
Article in English | MEDLINE | ID: mdl-29681717

ABSTRACT

AIMS: The aim is to study the relation and distribution in gene expression level of the luteinizing hormone receptor (LHR) gene and regulator of G-protein signaling 2 (RGS2) gene expression with oocyte maturation. SETTING AND DESIGN: This cross-sectional study was undertaken in an instruction-based tertiary care infertility unit, department of obstetrics and gynecology. MATERIALS AND METHODS: After controlled ovarian hyperstimulation, cumulus granulosa cells (CCs) from 59 oocytes among 18 women being treated by in vitro fertilization/intracytoplasmic sperm injection cycle technique from November 2015 to January 2016 were collected on the day of oocyte retrieval. Total RNA was extracted and converted to cDNA in individual oocytes. LHR and RGS2 gene levels were measured and analyzed using digital droplet polymerase chain reaction. STATISTICAL ANALYSIS: Gene expression level was analyzed using software STATA, version 14.0 (College Station, TX: StataCorp LP, USA). RESULTS: CCs were obtained from 59 cumulus-oocyte complexes (COC), 46 COC from metaphase II (CCMII), 13 COC from metaphase I, and GV oocyte (CCMI + GV). The RGS2 gene expression level, when compared with the housekeeping gene in CCMII and CCMI + GV, was 0.15 (0.05-0.52) and 0.08 (0.02-0.27), respectively. The LHR gene expression when compared with the housekeeping gene in CCMII and CCMI + GV did not differ and was quite in the same value that was 0.02 (0.00-0.11) and 0.02 (0.00-0.06), respectively. CONCLUSION: This study showed that LHR gene expression did not differ in between oocyte groups. Even though the median of RGS2 gene expression was more in the mature oocyte group, the result was inconclusive due to scattering and overlapping of gene expression data between oocyte groups.

17.
FEBS J ; 282(1): 174-82, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25323766

ABSTRACT

Ubiquitin-like with PHD and ring-finger domain 1 (UHRF1) binds to methylated promoters of tumor-suppressor genes and suppresses gene expression by forming complexes with DNA methyltransferases. Recent studies have shown that repression of regulator of G-protein signaling (RGS) 2 increases cancer cell growth. However, little is known about whether UHRF1 promotes bladder cancer progression by epigenetic silencing of RGS2. Here, we show that UHRF1 expression is increased in bladder cancer cell lines and in most bladder cancer tissues as compared with normal controls. UHRF1 overexpression increases bladder cancer cell proliferation, whereas inhibition of UHRF1 suppresses cell proliferation. In bladder cancer cells, UHRF1 inhibits RGS2 expression by increasing the methylation of CpG nucleotides of the RGS2 promoter. DNA methylation analysis showed tumor-specific TGS2 promoter methylation in 73% (38/52) of bladder tumors. High UHRF1 expression of correlated with aberrant TGS2 promoter methylation in bladder tumors, which results in the loss of TGS2 expression, as confirmed by demethylation analysis in cell lines. Functionally, re-expression of RGS2 partly abrogates UHRF1-induced bladder cell proliferation. Furthermore, Kaplan-Meier analysis showed that low TGS2 expression is significantly correlated with reduced overall survival in patients with bladder cancer. These results demonstrate that epigenetic repression of RGS2 by UHRF1 contributes to bladder cancer progression.


Subject(s)
CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Epigenesis, Genetic , RGS Proteins/genetics , RGS Proteins/metabolism , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Aged , Case-Control Studies , Cell Line, Tumor , Cell Proliferation , CpG Islands , DNA Methylation , Disease Progression , Female , Gene Expression , Humans , Male , Middle Aged , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism , Ubiquitin-Protein Ligases , Urinary Bladder Neoplasms/pathology
18.
Neurosci Biobehav Rev ; 37(10 Pt 1): 2375-97, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23886513

ABSTRACT

Increasing evidence supports the involvement of both heritable and environmental risk factors in major depression (MD) and suicidal behavior (SB). Studies investigating gene-environment interaction (G × E) may be useful for elucidating the role of biological mechanisms in the risk for mental disorders. In the present paper, we review the literature regarding the interaction between genes modulating brain functions and stressful life events in the etiology of MD and SB and discuss their potential added benefit compared to genetic studies only. Within the context of G × E investigation, thus far, only a few reliable results have been obtained, although some genes have consistently shown interactive effects with environmental risk in MD and, to a lesser extent, in SB. Further investigation is required to disentangle the direct and mediated effects that are common or specific to MD and SB. Since traditional G × E studies overall suffer from important methodological limitations, further effort is required to develop novel methodological strategies with an interdisciplinary approach.


Subject(s)
Depressive Disorder, Major/genetics , Gene-Environment Interaction , Suicide/psychology , Genetic Predisposition to Disease/genetics , Humans , Life Change Events
SELECTION OF CITATIONS
SEARCH DETAIL