Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.589
Filter
1.
Am J Physiol Cell Physiol ; 326(6): C1573-C1589, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38557357

ABSTRACT

Sodium-glucose cotransporter-2 inhibitors (SGLT2i) reduce blood pressure (BP) in patients with hypertension, yet the precise molecular mechanisms remain elusive. SGLT2i inhibits proximal tubule (PT) NHE3-mediated sodium reabsorption in normotensive rodents, yet no hypotensive effect is observed under this scenario. This study examined the effect of empagliflozin (EMPA) on renal tubular sodium transport in normotensive and spontaneously hypertensive rats (SHRs). It also tested the hypothesis that EMPA-mediated PT NHE3 inhibition in normotensive rats is associated with upregulation of distal nephron apical sodium transporters. EMPA administration for 14 days reduced BP in 12-wk-old SHRs but not in age-matched Wistar rats. PT NHE3 activity was inhibited by EMPA treatment in both Wistar and SHRs. In Wistar rats, EMPA increased NCC activity, mRNA expression, protein abundance, and phosphorylation levels, but not in SHRs. SHRs showed higher NKCC2 activity and an abundance of cleaved ENaC α and γ subunits compared with Wistar rats, none of which were affected by EMPA. Another set of male Wistar rats was treated with EMPA, the NCC inhibitor hydrochlorothiazide (HCTZ), and EMPA combined with HCTZ or vehicle for 14 days. In these rats, BP reduction was observed only with combined EMPA and HCTZ treatment, not with either drug alone. These findings suggest that NCC upregulation counteracts EMPA-mediated inhibition of PT NHE3 in male normotensive rats, maintaining their baseline BP. Moreover, the reduction of NHE3 activity without further upregulation of major apical sodium transporters beyond the PT may contribute to the BP-lowering effect of SGLT2i in experimental models and patients with hypertension.NEW & NOTEWORTHY This study suggests that reduced NHE3-mediated sodium reabsorption in the renal proximal tubule may account, at least in part, for the BP-lowering effect of SGLT2 inhibitors in the setting of hypertension. It also demonstrates that chronic treatment with SGLT2 inhibitors upregulates NCC activity, phosphorylation, and expression in the distal tubule of normotensive but not hypertensive rats. SGLT2 inhibitor-mediated upregulation of NCC seems crucial to counteract proximal tubule natriuresis in subjects with normal BP.


Subject(s)
Benzhydryl Compounds , Glucosides , Hypertension , Rats, Inbred SHR , Rats, Wistar , Sodium-Glucose Transporter 2 Inhibitors , Sodium-Hydrogen Exchanger 3 , Up-Regulation , Animals , Male , Sodium-Hydrogen Exchanger 3/metabolism , Sodium-Hydrogen Exchanger 3/genetics , Sodium-Hydrogen Exchanger 3/antagonists & inhibitors , Hypertension/drug therapy , Hypertension/metabolism , Hypertension/physiopathology , Glucosides/pharmacology , Benzhydryl Compounds/pharmacology , Up-Regulation/drug effects , Rats , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Blood Pressure/drug effects , Solute Carrier Family 12, Member 3/metabolism , Solute Carrier Family 12, Member 3/genetics , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Kidney/metabolism , Kidney/drug effects
2.
Diabetologia ; 67(9): 1817-1827, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38836934

ABSTRACT

AIMS/HYPOTHESIS: Older adults are under-represented in trials, meaning the benefits and risks of glucose-lowering agents in this age group are unclear. The aim of this study was to assess the safety and effectiveness of sodium-glucose cotransporter 2 inhibitors (SGLT2i) in people with type 2 diabetes aged over 70 years using causal analysis. METHODS: Hospital-linked UK primary care data (Clinical Practice Research Datalink, 2013-2020) were used to compare adverse events and effectiveness in individuals initiating SGLT2i compared with dipeptidyl peptidase-4 inhibitors (DPP4i). Analysis was age-stratified: <70 years (SGLT2i n=66,810, DPP4i n=76,172), ≥70 years (SGLT2i n=10,419, DPP4i n=33,434). Outcomes were assessed using the instrumental variable causal inference method and prescriber preference as the instrument. RESULTS: Risk of diabetic ketoacidosis was increased with SGLT2i in those aged ≥70 (incidence rate ratio compared with DPP4i: 3.82 [95% CI 1.12, 13.03]), but not in those aged <70 (1.12 [0.41, 3.04]). However, incidence rates with SGLT2i in those ≥70 was low (29.6 [29.5, 29.7]) per 10,000 person-years. SGLT2i were associated with similarly increased risk of genital infection in both age groups (incidence rate ratio in those <70: 2.27 [2.03, 2.53]; ≥70: 2.16 [1.77, 2.63]). There was no evidence of an increased risk of volume depletion, poor micturition control, urinary frequency, falls or amputation with SGLT2i in either age group. In those ≥70, HbA1c reduction was similar between SGLT2i and DPP4i (-0.3 mmol/mol [-1.6, 1.1], -0.02% [0.1, 0.1]), but in those <70, SGLT2i were more effective (-4 mmol/mol [4.8, -3.1], -0.4% [-0.4, -0.3]). CONCLUSIONS/INTERPRETATION: Causal analysis suggests SGLT2i are effective in adults aged ≥70 years, but increase risk for genital infections and diabetic ketoacidosis. Our study extends RCT evidence to older adults with type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Diabetes Mellitus, Type 2/drug therapy , Aged , Female , Male , United Kingdom/epidemiology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Dipeptidyl-Peptidase IV Inhibitors/adverse effects , Aged, 80 and over , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/adverse effects , Diabetic Ketoacidosis/epidemiology , Diabetic Ketoacidosis/chemically induced , Treatment Outcome , Middle Aged
3.
Diabetologia ; 67(5): 822-836, 2024 May.
Article in English | MEDLINE | ID: mdl-38388753

ABSTRACT

AIMS/HYPOTHESIS: A precision medicine approach in type 2 diabetes could enhance targeting specific glucose-lowering therapies to individual patients most likely to benefit. We aimed to use the recently developed Bayesian causal forest (BCF) method to develop and validate an individualised treatment selection algorithm for two major type 2 diabetes drug classes, sodium-glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP1-RA). METHODS: We designed a predictive algorithm using BCF to estimate individual-level conditional average treatment effects for 12-month glycaemic outcome (HbA1c) between SGLT2i and GLP1-RA, based on routine clinical features of 46,394 people with type 2 diabetes in primary care in England (Clinical Practice Research Datalink; 27,319 for model development, 19,075 for hold-out validation), with additional external validation in 2252 people with type 2 diabetes from Scotland (SCI-Diabetes [Tayside & Fife]). Differences in glycaemic outcome with GLP1-RA by sex seen in clinical data were replicated in clinical trial data (HARMONY programme: liraglutide [n=389] and albiglutide [n=1682]). As secondary outcomes, we evaluated the impacts of targeting therapy based on glycaemic response on weight change, tolerability and longer-term risk of new-onset microvascular complications, macrovascular complications and adverse kidney events. RESULTS: Model development identified marked heterogeneity in glycaemic response, with 4787 (17.5%) of the development cohort having a predicted HbA1c benefit >3 mmol/mol (>0.3%) with SGLT2i over GLP1-RA and 5551 (20.3%) having a predicted HbA1c benefit >3 mmol/mol with GLP1-RA over SGLT2i. Calibration was good in hold-back validation, and external validation in an independent Scottish dataset identified clear differences in glycaemic outcomes between those predicted to benefit from each therapy. Sex, with women markedly more responsive to GLP1-RA, was identified as a major treatment effect modifier in both the UK observational datasets and in clinical trial data: HARMONY-7 liraglutide (GLP1-RA): 4.4 mmol/mol (95% credible interval [95% CrI] 2.2, 6.3) (0.4% [95% CrI 0.2, 0.6]) greater response in women than men. Targeting the two therapies based on predicted glycaemic response was also associated with improvements in short-term tolerability and long-term risk of new-onset microvascular complications. CONCLUSIONS/INTERPRETATION: Precision medicine approaches can facilitate effective individualised treatment choice between SGLT2i and GLP1-RA therapies, and the use of routinely collected clinical features for treatment selection could support low-cost deployment in many countries.


Subject(s)
Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Male , Humans , Female , Diabetes Mellitus, Type 2/complications , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Hypoglycemic Agents/adverse effects , Glucagon-Like Peptide-1 Receptor Agonists , Liraglutide/therapeutic use , Bayes Theorem , Glucose , Phenotype , Glucagon-Like Peptide-1 Receptor
4.
Circulation ; 148(4): 354-372, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37486998

ABSTRACT

SGLT2 (sodium-glucose cotransporter 2) inhibitors interfere with the reabsorption of glucose and sodium in the early proximal renal tubule, but the magnitude and duration of any ensuing natriuretic or diuretic effect are the result of an interplay between the degree of upregulation of SGLT2 and sodium-hydrogen exchanger 3, the extent to which downstream compensatory tubular mechanisms are activated, and (potentially) the volume set point in individual patients. A comprehensive review and synthesis of available studies reveals several renal response patterns with substantial variation across studies and clinical settings. However, the common observation is an absence of a large acute or chronic diuresis or natriuresis with these agents, either when given alone or combined with other diuretics. This limited response results from the fact that renal compensation to these drugs is rapid and nearly complete within a few days or weeks, preventing progressive volume losses. Nevertheless, the finding that fractional excretion of glucose and lithium (the latter being a marker of proximal sodium reabsorption) persists during long-term treatment with SGLT2 inhibitors indicates that pharmacological tolerance to the effects of these drugs at the level of the proximal tubule does not meaningfully occur. This persistent proximal tubular effect of SGLT2 inhibitors can be hypothesized to produce a durable improvement in the internal set point for volume homeostasis, which may become clinically important during times of fluid expansion. However, it is difficult to know whether a treatment-related change in the volume set point actually occurs or contributes to the effect of these drugs to reduce the risk of major heart failure events. SGLT2 inhibitors exert cardioprotective effects by a direct effect on cardiomyocytes that is independent of the presence of or binding to SGLT2 or the actions of these drugs on the proximal renal tubule. Nevertheless, changes in the volume set point mediated by SGLT2 inhibitors might potentially act cooperatively with the direct favorable molecular and cellular effects of these drugs on cardiomyocytes to mediate their benefits on the development and clinical course of heart failure.


Subject(s)
Heart Failure , Sodium-Glucose Transporter 2 Inhibitors , Humans , Chlorides , Sodium-Glucose Transporter 2 , Sodium , Water , Homeostasis , Diuretics , Glucose
5.
Crit Rev Clin Lab Sci ; : 1-17, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847284

ABSTRACT

Pulmonary arterial hypertension (PAH), one subtype of pulmonary hypertension (PH), is a life-threatening condition characterized by pulmonary arterial remodeling, elevated pulmonary vascular resistance, and blood pressure in the pulmonary arteries, leading to right heart failure and increased mortality. The disease is marked by endothelial dysfunction, vasoconstriction, and vascular remodeling. The role of Sodium-Glucose Co-Transporter-2 (SGLT2) inhibitors, a class of medications originally developed for diabetes management, is increasingly being explored in the context of cardiovascular diseases, including PAH, due to their potential to modulate these pathophysiological processes. In this review, we systematically examine the burgeoning evidence from both basic and clinical studies that describe the effects of SGLT2 inhibitors on cardiovascular health, with a special emphasis on PAH. By delving into the complex interactions between these drugs and the potential pathobiology that underpins PH, this study seeks to uncover the mechanistic underpinnings that could justify the use of SGLT2 inhibitors as a novel therapeutic approach for PAH. We collate findings that illustrate how SGLT2 inhibitors may influence the normal function of pulmonary arteries, possibly alleviating the pathological hallmarks of PAH such as inflammation, oxidative stress, aberrant cellular proliferation, and so on. Our review thereby outlines a potential paradigm shift in PAH management, suggesting that these inhibitors could play a crucial role in modulating the disease's progression by targeting the potential dysfunctions that drive it. This comprehensive synthesis of existing research underscores the imperative need for further clinical trials to validate the efficacy of SGLT2 inhibitors in PAH and to integrate them into the therapeutic agents used against this challenging disease.

6.
Curr Issues Mol Biol ; 46(7): 7505-7515, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39057086

ABSTRACT

Sodium-glucose cotransporter 2 (SGLT2) inhibitors regulate plasma glucose levels in patients with type 2 diabetes mellitus (T2DM) by inhibiting renal glucose reabsorption. This study investigated the impact of empagliflozin (EMPA), an SGLT2 inhibitor, on hypothalamic energy regulation. To directly investigate the role of SGLT2 inhibitors in the hypothalamus, we administered EMPA through intracerebroventricular (i.c.v.) injections into the murine ventricles. After dental cementing the i.c.v. cannula onto the skull, the mice were given 5 days to recover before receiving vehicle or EMPA (50 nM/2 µL) injections. In a high-fat diet (HFD)-induced obesity model, we determined the gene expression levels of agouti-related peptide (AgRP) and pro-opiomelanocortin (POMC) in the hypothalamus. Additionally, we assessed FoxO1 expression, which regulates AgRP and POMC gene transcription in hypothalamic cell lines. We found that EMPA directly influenced the expression of endogenous mRNA of POMC and AgRP, which are critical for energy homeostasis, and modulated their transcription in high-fat diet-induced obese mice. Additionally, EMPA affected the expression of FoxO1, a key transcriptional regulator of glucose homeostasis, thereby regulating the transcriptional activity of POMC and AgRP. These results indicate that EMPA significantly influences hypothalamic energy homeostasis, highlighting its potential as a regulator in obesity and T2DM management.

7.
Curr Issues Mol Biol ; 46(7): 6300-6314, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39057018

ABSTRACT

With around one billion of the world's population affected, the era of the metabolic-associated fatty liver disease (MAFLD) pandemic has entered the global stage. MAFLD is a chronic progressive liver disease with accompanying metabolic disorders such as type 2 diabetes mellitus and obesity which can progress asymptomatically to liver cirrhosis and subsequently to hepatocellular carcinoma (HCC), and for which to date there are almost no approved pharmacologic options. Because MAFLD has a very complex etiology and it also affects extrahepatic organs, a multidisciplinary approach is required when it comes to finding an effective and safe active substance for MAFLD treatment. The optimal drug for MAFLD should diminish steatosis, fibrosis and inflammation in the liver, and the winner for MAFLD drug authorisation seems to be the one that significantly improves liver histology. Saroglitazar (Lipaglyn®) was approved for metabolic-dysfunction-associated steatohepatitis (MASH) in India in 2020; however, the drug is still being investigated in other countries. Although the pharmaceutical industry is still lagging behind in developing an approved pharmacologic therapy for MAFLD, research has recently intensified and many molecules which are in the final stages of clinical trials are expected to be approved in the coming few years. Already this year, the first drug (Rezdiffra™) in the United States was approved via accelerated procedure for treatment of MAFLD, i.e., of MASH in adults. This review underscores the most recent information related to the development of drugs for MAFLD treatment, focusing on the molecules that have come furthest towards approval.

8.
Curr Issues Mol Biol ; 46(9): 9607-9623, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39329923

ABSTRACT

Atrial cardiomyopathy and remodeling play pivotal roles in the development of atrial fibrillation (AF) and heart failure (HF), involving complex changes in atrial structure and function. These changes facilitate the progression of AF and HF by creating a dynamic interplay between mechanical stress and electrical disturbances in the heart. Sodium-glucose cotransporter 2 inhibitors (SGLT2is), initially developed for the management of type 2 diabetes, have demonstrated promising cardiovascular benefits, being currently one of the cornerstone treatments in HF management. Despite recent data from randomized clinical trials indicating that SGLT2is may significantly influence atrial remodeling, their overall effectiveness in this context is still under debate. Given the emerging evidence, this review examines the molecular mechanisms through which SGLT2is exert their effects on atrial remodeling, aiming to clarify their potential benefits and limitations. By exploring these mechanisms, this review aims to provide insights into how SGLT2is can be integrated into strategies for preventing the progression of atrial remodeling and HF, as well as the development of AF.

9.
Basic Res Cardiol ; 119(1): 93-112, 2024 02.
Article in English | MEDLINE | ID: mdl-38170280

ABSTRACT

In recent years, SGLT2 inhibitors have become an integral part of heart failure therapy, and several mechanisms contributing to cardiorenal protection have been identified. In this study, we place special emphasis on the atria and investigate acute electrophysiological effects of dapagliflozin to assess the antiarrhythmic potential of SGLT2 inhibitors. Direct electrophysiological effects of dapagliflozin were investigated in patch clamp experiments on isolated atrial cardiomyocytes. Acute treatment with elevated-dose dapagliflozin caused a significant reduction of the action potential inducibility, the amplitude and maximum upstroke velocity. The inhibitory effects were reproduced in human induced pluripotent stem cell-derived cardiomyocytes, and were more pronounced in atrial compared to ventricular cells. Hypothesizing that dapagliflozin directly affects the depolarization phase of atrial action potentials, we examined fast inward sodium currents in human atrial cardiomyocytes and found a significant decrease of peak sodium current densities by dapagliflozin, accompanied by a moderate inhibition of the transient outward potassium current. Translating these findings into a porcine large animal model, acute elevated-dose dapagliflozin treatment caused an atrial-dominant reduction of myocardial conduction velocity in vivo. This could be utilized for both, acute cardioversion of paroxysmal atrial fibrillation episodes and rhythm control of persistent atrial fibrillation. In this study, we show that dapagliflozin alters the excitability of atrial cardiomyocytes by direct inhibition of peak sodium currents. In vivo, dapagliflozin exerts antiarrhythmic effects, revealing a potential new additional role of SGLT2 inhibitors in the treatment of atrial arrhythmias.


Subject(s)
Atrial Fibrillation , Benzhydryl Compounds , Glucosides , Induced Pluripotent Stem Cells , Sodium-Glucose Transporter 2 Inhibitors , Humans , Animals , Swine , Myocytes, Cardiac , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Anti-Arrhythmia Agents/pharmacology , Anti-Arrhythmia Agents/therapeutic use , Action Potentials , Sodium
10.
Basic Res Cardiol ; 119(5): 751-772, 2024 10.
Article in English | MEDLINE | ID: mdl-39046464

ABSTRACT

Sodium glucose cotransporter 2 inhibitors (SGLT2i) constitute the only medication class that consistently prevents or attenuates human heart failure (HF) independent of ejection fraction. We have suggested earlier that the protective mechanisms of the SGLT2i Empagliflozin (EMPA) are mediated through reductions in the sodium hydrogen exchanger 1 (NHE1)-nitric oxide (NO) pathway, independent of SGLT2. Here, we examined the role of SGLT2, NHE1 and NO in a murine TAC/DOCA model of HF. SGLT2 knockout mice only showed attenuated systolic dysfunction without having an effect on other signs of HF. EMPA protected against systolic and diastolic dysfunction, hypertrophy, fibrosis, increased Nppa/Nppb mRNA expression and lung/liver edema. In addition, EMPA prevented increases in oxidative stress, sodium calcium exchanger expression and calcium/calmodulin-dependent protein kinase II activation to an equal degree in WT and SGLT2 KO animals. In particular, while NHE1 activity was increased in isolated cardiomyocytes from untreated HF, EMPA treatment prevented this. Since SGLT2 is not required for the protective effects of EMPA, the pathway between NHE1 and NO was further explored in SGLT2 KO animals. In vivo treatment with the specific NHE1-inhibitor Cariporide mimicked the protection by EMPA, without additional protection by EMPA. On the other hand, in vivo inhibition of NOS with L-NAME deteriorated HF and prevented protection by EMPA. In conclusion, the data support that the beneficial effects of EMPA are mediated through the NHE1-NO pathway in TAC/DOCA-induced heart failure and not through SGLT2 inhibition.


Subject(s)
Benzhydryl Compounds , Glucosides , Heart Failure , Mice, Knockout , Nitric Oxide , Signal Transduction , Sodium-Glucose Transporter 2 Inhibitors , Sodium-Glucose Transporter 2 , Sodium-Hydrogen Exchanger 1 , Animals , Heart Failure/metabolism , Heart Failure/prevention & control , Heart Failure/drug therapy , Heart Failure/pathology , Sodium-Hydrogen Exchanger 1/metabolism , Sodium-Hydrogen Exchanger 1/genetics , Glucosides/pharmacology , Benzhydryl Compounds/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Nitric Oxide/metabolism , Sodium-Glucose Transporter 2/metabolism , Sodium-Glucose Transporter 2/genetics , Signal Transduction/drug effects , Male , Mice , Mice, Inbred C57BL , Disease Models, Animal , Sodium-Hydrogen Exchangers/metabolism , Sodium-Hydrogen Exchangers/genetics , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology
11.
Am J Kidney Dis ; 83(5): 648-658, 2024 05.
Article in English | MEDLINE | ID: mdl-38372686

ABSTRACT

Magnesium (Mg2+), also known as "the forgotten ion," is the second most abundant intracellular cation and is essential in a broad range of intracellular physiological and biochemical reactions. Its deficiency, hypomagnesemia (Mg2+<1.8mg/dL), is a prevalent condition and routinely poses challenges in its management in clinical practice. Sodium/glucose cotransporter 2 (SGLT2) inhibitors have emerged as a new class of drugs with treating hypomagnesemia as their unique extraglycemic benefit. The beneficial effect of SGLT2 inhibitors on magnesium balance in patients with diabetes with or without hypomagnesemia has been noted as a class effect in recent meta-analysis data from randomized clinical trials. Some reports have demonstrated their role in treating refractory hypomagnesemia in patients with or without diabetes. Moreover, studies on animal models have attempted to illustrate the effect of SGLT2 inhibitors on Mg2+homeostasis. In this review, we discuss the current evidence and possible pathophysiological mechanisms, and we provide directions for further research. We conclude by suggesting the effect of SGLT2 inhibitors on Mg2+homeostasis is a class effect, with certain patients gaining significant benefits. Further studies are needed to examine whether SGLT2 inhibitors can become a desperately needed novel class of medicines in treating hypomagnesemia.


Subject(s)
Homeostasis , Magnesium Deficiency , Magnesium , Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Magnesium/metabolism , Homeostasis/drug effects , Homeostasis/physiology , Magnesium Deficiency/drug therapy , Animals , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications
12.
Am J Kidney Dis ; 83(3): 277-287, 2024 03.
Article in English | MEDLINE | ID: mdl-38142396

ABSTRACT

The Kidney Disease: Improving Global Outcomes (KDIGO) guideline for diabetes management in chronic kidney disease (CKD) was updated in 2022, just 2 years after the previous update. The need for this rapid update is reflective of the recent and unprecedented positive results of numerous clinical trials aimed at reducing kidney and cardiovascular morbidity and mortality in people with diabetes. The Kidney Disease Outcomes Quality Initiative (KDOQI) work group for diabetes in CKD, convened by the National Kidney Foundation, provides herein a commentary on these changes, particularly the implications for health care in the United States. Changes to the KDIGO guideline mirror the evolution of sodium/glucose cotransporter 2 (SGLT2) inhibitors and glucagon-like peptide 1 receptor agonists from purely antihyperglycemic agents to cardiorenal-metabolic therapeutics, and the lower estimated glomerular filtration rate of≥20mL/min/1.73m2 for SGLT2 inhibitor initiation. New data have also brought the addition of the first-in-class, Federal Drug Administration-approved nonsteroidal mineralocorticoid receptor antagonist finerenone as an agent to reduce cardiorenal end points. While there has been significant progress in innovation, there remain serious challenges to implementation, particularly in the United States where inequities in insurance coverage and high costs limit their use, particularly in vulnerable populations, ultimately widening health care disparities.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetes Mellitus , Renal Insufficiency, Chronic , Humans , United States , Renal Insufficiency, Chronic/drug therapy , Hypoglycemic Agents/therapeutic use , Disease Progression , Kidney , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy
13.
Heart Fail Rev ; 29(2): 549-558, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38300379

ABSTRACT

Sodium-glucose cotransporter-2 inhibitors have been shown to have significant metabolic, renal, and atherosclerotic cardiovascular disease benefits. Recent randomized controlled trials have extended these benefits to patients with heart failure. In fact, the robust findings from these studies in patients with any type of heart failure have led to the incorporation of this drug class in currently updated evidence-based guidelines for this condition. However, given the novelty in utilizing these agents in heart failure, there is uncertainty regarding place in therapy and sequencing in treatment. As such, this review aims to summarize existing literature to guide practitioners regarding the use of these agents in the management of heart failure.


Subject(s)
Diabetes Mellitus, Type 2 , Heart Failure , Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Heart Failure/drug therapy , Heart Failure/metabolism , Diuretics/therapeutic use , Sodium/therapeutic use , Glucose
14.
Heart Fail Rev ; 29(6): 1175-1185, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39134780

ABSTRACT

Congenital heart disease (CHD) is the most common global congenital defect affecting over 2.4 million individuals in the United States. Ongoing medical and surgical advancements have improved the survival of children with CHD leading to a shift where, as of 2010, adults constitute two-thirds of the CHD patient population. The increasing number and aging of adult congenital heart disease (ACHD) patients present a clinical challenge due to heightened complexity, morbidity, and mortality. Studies indicate that 1 in 13 ACHD patients will develop heart failure (HF) in their lifetime. ACHD-HF patients experience more frequent emergency department visits, higher hospitalization rates, longer hospital stays, and higher mortality compared to non-ACHD patients with heart failure (non-ACHD-HF). Despite HF being the leading cause of death in ACHD patients, there is a notable gap in evidence regarding treatment. While guideline-directed medical therapy (GDMT) has been extensively studied in non-ACHD-HF, research specific to ACHD-HF individuals is limited. This article aims to comprehensively review available literature addressing the pharmacological treatment of ACHD-HF.


Subject(s)
Heart Defects, Congenital , Heart Failure , Humans , Heart Failure/drug therapy , Heart Defects, Congenital/complications , Adult
15.
Cardiovasc Diabetol ; 23(1): 184, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811998

ABSTRACT

BACKGROUND: Use of sodium-glucose-cotransporter-2 (SGLT2) inhibitors often causes an initial decline in glomerular filtration rate (GFR). This study addresses the question whether the initial decline of renal function with SGLT2 inhibitor treatment is related to vascular changes in the systemic circulation. METHODS: We measured GFR (mGFR) and estimated GFR (eGFR) in 65 patients with type 2 diabetes (T2D) at baseline and after 12 weeks of treatment randomized either to a combination of empagliflozin and linagliptin (SGLT2 inhibitor based treatment group) (n = 34) or metformin and insulin (non-SGLT2 inhibitor based treatment group) (n = 31). mGFR was measured using the gold standard clearance technique by constant infusion of inulin. In addition to blood pressure (BP), we measured pulse wave velocity (PWV) under standardized conditions reflecting vascular compliance of large arteries, as PWV is considered to be one of the most reliable vascular parameter of cardiovascular (CV) prognosis. RESULTS: Both mGFR and eGFR decreased significantly after initiating treatment, but no correlation was found between change in mGFR and change in eGFR in either treatment group (SGLT2 inhibitor based treatment group: r=-0.148, p = 0.404; non-SGLT2 inhibitor based treatment group: r = 0.138, p = 0.460). Noticeably, change in mGFR correlated with change in PWV (r = 0.476, p = 0.005) in the SGLT2 inhibitor based treatment group only and remained significant after adjustment for the change in systolic BP and the change in heart rate (r = 0.422, p = 0.018). No such correlation was observed between the change in eGFR and the change in PWV in either treatment group. CONCLUSIONS: Our main finding is that after initiating a SGLT2 inhibitor based therapy an exaggerated decline in mGFR was related with improved vascular compliance of large arteries reflecting the pharmacologic effects of SGLT2 inhibitor in the renal and systemic vascular bed. Second, in a single patient with T2D, eGFR may not be an appropriate parameter to assess the true change of renal function after receiving SGLT2 inhibitor based therapy. TRIAL REGISTRATION: clinicaltrials.gov (NCT02752113).


Subject(s)
Benzhydryl Compounds , Diabetes Mellitus, Type 2 , Glomerular Filtration Rate , Glucosides , Kidney , Linagliptin , Pulse Wave Analysis , Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Glomerular Filtration Rate/drug effects , Male , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/physiopathology , Diabetes Mellitus, Type 2/diagnosis , Middle Aged , Female , Benzhydryl Compounds/therapeutic use , Benzhydryl Compounds/adverse effects , Aged , Treatment Outcome , Kidney/drug effects , Kidney/physiopathology , Glucosides/therapeutic use , Glucosides/adverse effects , Time Factors , Linagliptin/therapeutic use , Linagliptin/adverse effects , Metformin/therapeutic use , Insulin , Diabetic Nephropathies/physiopathology , Diabetic Nephropathies/diagnosis , Diabetic Nephropathies/drug therapy , Vascular Stiffness/drug effects , Drug Therapy, Combination , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/adverse effects , Biomarkers/blood , Clinical Relevance , Sodium-Glucose Transporter 2
16.
Cardiovasc Diabetol ; 23(1): 324, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39217337

ABSTRACT

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is common in type 2 diabetes mellitus (T2D), leading to high morbidity and mortality. Managing HFpEF in diabetic patients is challenging with limited treatments. Sodium-glucose co-transporter 2 (SGLT2) inhibitors and glucagon-like peptide-1 receptor agonists (GLP1-RA) have shown potential cardiovascular benefits. This meta-analysis compares the effects of GLP1-RA and SGLT2 inhibitors on HFpEF in T2D patients. METHODS: We conducted a meta-analysis of randomized controlled trials (RCTs) and observational studies evaluating GLP1-RA and SGLT2 inhibitors' impact on HFpEF in T2D patients. Databases searched included PubMed, MEDLINE, and Cochrane Library up to July 2024. Primary outcomes were changes in left ventricular ejection fraction (LVEF), myocardial fibrosis (extracellular volume fraction, ECV), and functional capacity (6-minute walk test, 6MWT). Secondary outcomes included HbA1c, body weight, and systolic blood pressure (SBP).  RESULTS: Twelve studies with 3,428 patients (GLP1-RA: 1,654; SGLT2 inhibitors: 1,774) were included. Both GLP1-RA and SGLT2 inhibitors significantly improved LVEF compared to placebo (GLP1-RA: mean difference [MD] 2.8%, 95% confidence interval [CI] 1.5 to 4.1, p < 0.001; SGLT2 inhibitors: MD 3.2%, 95% CI 2.0 to 4.4, p < 0.001). SGLT2 inhibitors significantly reduced myocardial fibrosis (MD -3.5%, 95% CI -4.2 to -2.8, p < 0.001) more than GLP1-RA (MD -2.3%, 95% CI -3.0 to -1.6, p < 0.001). Functional capacity improved significantly with both treatments (GLP1-RA: MD 45 m, 95% CI 30 to 60, p < 0.001; SGLT2 inhibitors: MD 50 m, 95% CI 35 to 65, p < 0.001). Secondary outcomes showed reductions in HbA1c (GLP1-RA: MD -1.1%, 95% CI -1.4 to -0.8, p < 0.001; SGLT2 inhibitors: MD -1.0%, 95% CI -1.3 to -0.7, p < 0.001) and body weight (GLP1-RA: MD -2.5 kg, 95% CI -3.1 to -1.9, p < 0.001; SGLT2 inhibitors: MD -2.0 kg, 95% CI -2.6 to -1.4, p < 0.001). Both treatments significantly lowered SBP (GLP1-RA: MD -5.2 mmHg, 95% CI -6.5 to -3.9, p < 0.001; SGLT2 inhibitors: MD -4.8 mmHg, 95% CI -6.0 to -3.6, p < 0.001). CONCLUSIONS: GLP1-RA and SGLT2 inhibitors significantly benefit HFpEF management in T2D patients. SGLT2 inhibitors reduce myocardial fibrosis more effectively, while both improve LVEF, functional capacity, and metabolic parameters. These therapies should be integral to HFpEF management in diabetic patients. Further research is needed on long-term outcomes and potential combined therapy effects.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Like Peptide-1 Receptor , Heart Failure , Incretins , Randomized Controlled Trials as Topic , Sodium-Glucose Transporter 2 Inhibitors , Stroke Volume , Ventricular Function, Left , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Stroke Volume/drug effects , Heart Failure/physiopathology , Heart Failure/drug therapy , Heart Failure/diagnosis , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/physiopathology , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/complications , Glucagon-Like Peptide-1 Receptor/agonists , Ventricular Function, Left/drug effects , Treatment Outcome , Incretins/therapeutic use , Incretins/adverse effects , Male , Aged , Middle Aged , Female , Recovery of Function , Observational Studies as Topic , Hypoglycemic Agents/therapeutic use , Blood Glucose/drug effects , Blood Glucose/metabolism , Exercise Tolerance/drug effects , Risk Factors , Glucagon-Like Peptide-1 Receptor Agonists
17.
Cardiovasc Diabetol ; 23(1): 2, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172861

ABSTRACT

PURPOSE: Numerous clinical studies have explored sodium-glucose cotransporter 2 inhibitor (SGLT2i) in patients with chronic heart failure (CHF), with or without type 2 diabetes mellitus (T2DM), and SGLT2i were proved to significantly reduce CHF hospitalization, cardiovascular death, cardiovascular mortality, all-cause mortality and myocardial infarction in patients with or without T2DM. However, only a limited few have investigated the effects of SGLT-2i on HF disease-specific health status and cardiac function. This meta-analysis aims to assess the effects of SGLT2i on disease-specific health status and cardiac function in CHF patients. METHODS: A comprehensive search was conducted of trials by searching in PubMed, EMBASE, CENTRAL, Scopus, and Web of Science, and two Chinese databases (CNKI and Wanfang), Clinical Trials ( http://www. CLINICALTRIALS: gov ) were also searched. RESULTS: A total of 18 randomized controlled trials (RCTs) involving 23,953 participants were included in the meta-analysis. The effects of SGLT2 inhibitors were compared with control or placebo groups in CHF with or without T2DM. The SGLT2 inhibitors group exhibited a significant reduction in pro b-type natriuretic peptide (NT-proBNP) levels by 136.03 pg/ml (95% confidence interval [CI]: -253.36, - 18.70; P = 0.02). Additionally, a greater proportion of patients in the SGLT2 inhibitors group showed a ≥ 20% decrease in NT-proBNP (RR = 1.45, 95% CI [0.92, 2.29], p = 0.072). However, no statistically significant difference was observed for the effects on B-type natriuretic peptide (BNP). The use of SGLT-2 inhibitors led to a noteworthy improvement in LVEF by 2.79% (95% CI [0.18, 5.39];P = 0.036). In terms of health status, as assessed by the Kansas City Cardiomyopathy Questionnaire (KCCQ) and 6-minute walk distance, SGLT2 inhibitors led to a significant improvement in KCCQ clinical summary (KCCQ-CS) score (WMD = 1.7, 95% CI [1.67, 1.73], P < 0.00001), KCCQ overall summary (KCCQ-OS) score (WMD = 1.73, 95% CI [0.94, 2.52], P < 0.00001), and KCCQ total symptom (KCCQ-TS) score (WMD = 2.88, 95% CI [1.7, 4.06], P < 0.00001). Furthermore, the occurrence of KCCQ-CS and KCCQ-OS score increases ≥ 5 points had relative risks (RR) of 1.25 (95% CI [1.11, 1.42], P < 0.00001) and 1.15 (95% CI [1.09, 1.22], P < 0.00001), respectively. Overall, SGLT2 inhibitors increased the 6-minute walk distance by 23.98 m (95% CI [8.34, 39.62]; P = 0.003) compared to control/placebo from baseline. CONCLUSIONS: The SGLT2 inhibitors treatment offers an effective strategy for improving NT-proBNP levels, Kansas City Cardiomyopathy Questionnaire scores and 6-minute walk distance in CHF with or without T2DM. These findings indicate that SGLT2i improve cardiac function and health status in CHF with or without T2DM, and provide valuable guidance for clinicians making treatment decisions for patients with CHF.


Subject(s)
Cardiomyopathies , Diabetes Mellitus, Type 2 , Heart Failure , Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Natriuretic Peptide, Brain , Heart Failure/diagnosis , Heart Failure/drug therapy , Health Status , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/drug therapy , Chronic Disease , Cardiomyopathies/drug therapy , Randomized Controlled Trials as Topic
18.
Cardiovasc Diabetol ; 23(1): 199, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867314

ABSTRACT

BACKGROUND: Metformin and sodium-glucose-cotransporter-2 inhibitors (SGLT2i) are cornerstone therapies for managing hyperglycemia in diabetes. However, their detailed impacts on metabolic processes, particularly within the citric acid (TCA) cycle and its anaplerotic pathways, remain unclear. This study investigates the tissue-specific metabolic effects of metformin, both as a monotherapy and in combination with SGLT2i, on the TCA cycle and associated anaplerotic reactions in both mice and humans. METHODS: Metformin-specific metabolic changes were initially identified by comparing metformin-treated diabetic mice (MET) with vehicle-treated db/db mice (VG). These findings were then assessed in two human cohorts (KORA and QBB) and a longitudinal KORA study of metformin-naïve patients with Type 2 Diabetes (T2D). We also compared MET with db/db mice on combination therapy (SGLT2i + MET). Metabolic profiling analyzed 716 metabolites from plasma, liver, and kidney tissues post-treatment, using linear regression and Bonferroni correction for statistical analysis, complemented by pathway analyses to explore the pathophysiological implications. RESULTS: Metformin monotherapy significantly upregulated TCA cycle intermediates such as malate, fumarate, and α-ketoglutarate (α-KG) in plasma, and anaplerotic substrates including hepatic glutamate and renal 2-hydroxyglutarate (2-HG) in diabetic mice. Downregulated hepatic taurine was also observed. The addition of SGLT2i, however, reversed these effects, such as downregulating circulating malate and α-KG, and hepatic glutamate and renal 2-HG, but upregulated hepatic taurine. In human T2D patients on metformin therapy, significant systemic alterations in metabolites were observed, including increased malate but decreased citrulline. The bidirectional modulation of TCA cycle intermediates in mice influenced key anaplerotic pathways linked to glutaminolysis, tumorigenesis, immune regulation, and antioxidative responses. CONCLUSION: This study elucidates the specific metabolic consequences of metformin and SGLT2i on the TCA cycle, reflecting potential impacts on the immune system. Metformin shows promise for its anti-inflammatory properties, while the addition of SGLT2i may provide liver protection in conditions like metabolic dysfunction-associated steatotic liver disease (MASLD). These observations underscore the importance of personalized treatment strategies.


Subject(s)
Citric Acid Cycle , Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Kidney , Liver , Metformin , Sodium-Glucose Transporter 2 Inhibitors , Metformin/pharmacology , Animals , Citric Acid Cycle/drug effects , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Humans , Hypoglycemic Agents/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/blood , Male , Liver/metabolism , Liver/drug effects , Kidney/metabolism , Kidney/drug effects , Female , Drug Therapy, Combination , Mice, Inbred C57BL , Metabolomics , Biomarkers/blood , Middle Aged , Blood Glucose/metabolism , Blood Glucose/drug effects , Longitudinal Studies , Mice , Aged , Treatment Outcome
19.
Cardiovasc Diabetol ; 23(1): 10, 2024 01 06.
Article in English | MEDLINE | ID: mdl-38184582

ABSTRACT

BACKGROUND: Few studies explored the effect of the combination of glucose sodium-cotransporter-2 inhibitors (SGLT-2i) and glucagon-like peptide-1 receptor agonists (GLP-1RA) on the incidence of cardiovascular events in patients with type 2 diabetes (T2D) and acute myocardial infarction (AMI). METHODS: We recruited patients with T2D and AMI undergoing percutaneous coronary intervention, treated with either SGLT-2i or GLP-1RA for at least 3 months before hospitalization. Subjects with HbA1c < 7% at admission were considered in good glycemic control and maintained the same glucose-lowering regimen, while those with poor glycemic control (HbA1c ≥ 7%), at admission or during follow-up, were prescribed either a SGLT-2i or a GLP-1RA to obtain a SGLT-2i/GLP-1RA combination therapy. The primary outcome was the incidence of major adverse cardiovascular events (MACE) defined as cardiovascular death, re-acute coronary syndrome, and heart failure related to AMI during a 2-year follow-up. After 3 months, the myocardial salvage index (MSI) was assessed by single-photon emission computed tomography. FINDINGS: Of the 537 subjects screened, 443 completed the follow-up. Of these, 99 were treated with SGLT-2i, 130 with GLP-1RA, and 214 with their combination. The incidence of MACE was lower in the combination therapy group compared with both SGLT-2i and GLP-1RA treated patients, as assessed by multivariable Cox regression analysis adjusted for cardiovascular risk factors (HR = 0.154, 95% CI 0.038-0.622, P = 0.009 vs GLP-1RA and HR = 0.170, 95% CI 0.046-0.633, P = 0.008 vs SGLT-2i). The MSI and the proportion of patients with MSI > 50% was higher in the SGLT-2i/GLP-1RA group compared with both SGLT-2i and GLP-1RA groups. INTERPRETATION: The combination of SGLT-2i and GLP-1RA is associated with a reduced incidence of cardiovascular events in patients with T2D and AMI compared with either drug used alone, with a significant effect also on peri-infarcted myocardial rescue in patients without a second event. Trial registraition ClinicalTrials.gov ID: NCT06017544.


Subject(s)
Diabetes Mellitus, Type 2 , Myocardial Infarction , Sodium-Glucose Transporter 2 Inhibitors , Humans , Glucagon-Like Peptide-1 Receptor Agonists , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/drug therapy , Glycated Hemoglobin , Myocardial Infarction/diagnosis , Myocardial Infarction/epidemiology , Glucose
20.
Cardiovasc Diabetol ; 23(1): 354, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39342254

ABSTRACT

Prevalence of heart failure (HF) and diabetes are markedly increasing globally. In a population of HF patients, approximately 40% have diabetes which is associated with a more severe HF, poorer cardiovascular outcomes and higher hospitalization rates for HF than HF patients without diabetes. Similar trends were shown in HF patients with prediabetes. In addition, the association between HF and renal function decline was demonstrated in patients with or without diabetes. However, the exact prevalence of dysglycemia in HF patients requires further investigation aiming to clarify the most accurate test to detect dysglycemia in this population. The relationship between HF and diabetes is complex and probably bidirectional. In one way, patients with diabetes have a more than two-fold risk of developing incident HF with reduced or preserved ejection fraction than those without diabetes. In the other way, patients with HF, when compared with those without HF, show an increased risk for the onset of diabetes due to several mechanisms including insulin resistance (IR), which makes HF emerging as a precursor for diabetes development. This article provides epidemiological evidence of undetected dysglycemia (prediabetes or diabetes) in HF patients and reviews the pathophysiological mechanisms which favor the development of IR and the risks associated with these disorders in HF patients. This review also offers a discussion of various strategies for the prevention of diabetes in HF patients, based first on fasting plasma glucose and HbA1c measurement and if normal on an oral glucose tolerance test as diagnostic tools for prediabetes and unknown diabetes that should be performed more extensively in those patients. It discusses the implementation of diabetes prevention measures and well-structured management programs for HF patients who are generally overweight or obese, as well as current pharmacotherapeutic options for prediabetes, including sodium-glucose cotransporter 2 inhibitors which are among the pillars of HF treatment and which recently showed a benefit in the reduction of incident diabetes in HF patients. Thus, there is an urgent need of routine screening for dysglycemia in all HF patients, which should contribute to reduce the incidence of diabetes and to treat earlier diabetes when already present.


Subject(s)
Blood Glucose , Diabetes Mellitus , Heart Failure , Humans , Heart Failure/diagnosis , Heart Failure/epidemiology , Heart Failure/blood , Heart Failure/prevention & control , Heart Failure/physiopathology , Blood Glucose/metabolism , Diabetes Mellitus/diagnosis , Diabetes Mellitus/epidemiology , Diabetes Mellitus/blood , Prediabetic State/diagnosis , Prediabetic State/blood , Prediabetic State/epidemiology , Risk Factors , Insulin Resistance , Prevalence , Biomarkers/blood , Risk Assessment , Predictive Value of Tests , Hypoglycemic Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL