Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 222
Filter
1.
J Biol Chem ; 300(5): 107274, 2024 May.
Article in English | MEDLINE | ID: mdl-38588809

ABSTRACT

The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex forms a 4-helix coiled-coil bundle consisting of 16 layers of interacting side chains upon membrane fusion. The central layer (layer 0) is highly conserved and comprises three glutamines (Q) and one arginine (R), and thus SNAREs are classified into Qa-, Qb-, Qc-, and R-SNAREs. Homotypic vacuolar fusion in Saccharomyces cerevisiae requires the SNAREs Vam3 (Qa), Vti1 (Qb), Vam7 (Qc), and Nyv1 (R). However, the yeast strain lacking NYV1 (nyv1Δ) shows no vacuole fragmentation, whereas the vam3Δ and vam7Δ strains display fragmented vacuoles. Here, we provide genetic evidence that the R-SNAREs Ykt6 and Nyv1 are functionally redundant in vacuole homotypic fusion in vivo using a newly isolated ykt6 mutant. We observed the ykt6-104 mutant showed no defect in vacuole morphology, but the ykt6-104 nyv1Δ double mutant had highly fragmented vacuoles. Furthermore, we show the defect in homotypic vacuole fusion caused by the vam7-Q284R mutation was compensated by the nyv1-R192Q or ykt6-R165Q mutations, which maintained the 3Q:1R ratio in the layer 0 of the SNARE complex, indicating that Nyv1 is exchangeable with Ykt6 in the vacuole SNARE complex. Unexpectedly, we found Ykt6 assembled with exocytic Q-SNAREs when the intrinsic exocytic R-SNAREs Snc1 and its paralog Snc2 lose their ability to assemble into the exocytic SNARE complex. These results suggest that Ykt6 may serve as a backup when other R-SNAREs become dysfunctional and that this flexible assembly of SNARE complexes may help cells maintain the robustness of the vesicular transport network.


Subject(s)
R-SNARE Proteins , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Vacuoles , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Vacuoles/metabolism , Vacuoles/genetics , R-SNARE Proteins/metabolism , R-SNARE Proteins/genetics , Membrane Fusion , Exocytosis , SNARE Proteins/metabolism , SNARE Proteins/genetics , Mutation
2.
J Biol Chem ; : 107591, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39032647

ABSTRACT

Neuronal exocytosis requires the assembly of three SNARE proteins, syntaxin and SNAP25 on the plasma membrane and synaptobrevin on the vesicle membrane. However, the precise steps in this process and the points at which assembly and fusion are controlled by regulatory proteins are unclear. In the present work, we examine the kinetics and intermediate states during SNARE assembly in vitro using a combination of time resolved fluorescence and EPR spectroscopy. We show that syntaxin rapidly forms a dimer prior to forming the kinetically stable 2:1 syntaxin:SNAP25 complex, and that the 2:1 complex is not diminished by the presence of excess SNAP25. Moreover, the 2:1 complex is temperature dependent with a reduced concentration at 37°C. The two segments of SNAP25 behave differently. The N-terminal SN1 segment of SNAP25 exhibits a pronounced increase in backbone ordering from the N- to the C-terminus that is not seen in the C-terminal SNAP25 segment SN2. Both the SN1 and SN2 segments of SNAP25 will assemble with syntaxin; however, while the association of the SN1 segment with syntaxin produces a stable 2:2 (SN1:syntaxin) complex, the complex formed between SN2 and syntaxin is largely disordered. Synaptobrevin fails to bind syntaxin alone, but will associate with syntaxin in the presence of either the SN1 or SN2 segments; however, the synaptobrevin:syntaxin:SN2 complex remains disordered. Taken together, these data suggest that synaptobrevin and syntaxin do not assemble in the absence of SNAP25, and that the SN2 segment of SNAP25 is the last to enter the SNARE complex.

3.
Annu Rev Genet ; 51: 455-476, 2017 11 27.
Article in English | MEDLINE | ID: mdl-28934592

ABSTRACT

The evolution of a nervous system as a control system of the body's functions is a key innovation of animals. Its fundamental units are neurons, highly specialized cells dedicated to fast cell-cell communication. Neurons pass signals to other neurons, muscle cells, or gland cells at specialized junctions, the synapses, where transmitters are released from vesicles in a Ca2+-dependent fashion to activate receptors in the membrane of the target cell. Reconstructing the origins of neuronal communication out of a more simple process remains a central challenge in biology. Recent genomic comparisons have revealed that all animals, including the nerveless poriferans and placozoans, share a basic set of genes for neuronal communication. This suggests that the first animal, the Urmetazoan, was already endowed with neurosecretory cells that probably started to connect into neuronal networks soon afterward. Here, we discuss scenarios for this pivotal transition in animal evolution.


Subject(s)
Biological Evolution , Cell Communication/physiology , Nervous System/metabolism , Neurons/metabolism , Synaptic Transmission/physiology , Animals , Calcium/metabolism , Calcium Signaling/physiology , Cnidaria/anatomy & histology , Cnidaria/physiology , Endosomes/physiology , Endosomes/ultrastructure , Lysosomes/physiology , Lysosomes/ultrastructure , Nervous System/cytology , Neurons/cytology , Placozoa/anatomy & histology , Placozoa/physiology , Porifera/anatomy & histology , Porifera/physiology , SNARE Proteins/genetics , SNARE Proteins/metabolism , Synaptic Vesicles/physiology , Synaptic Vesicles/ultrastructure , Vertebrates/anatomy & histology , Vertebrates/physiology , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
4.
Cell Mol Life Sci ; 81(1): 249, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836877

ABSTRACT

Protein ubiquitination is one of the most important posttranslational modifications (PTMs) in eukaryotes and is involved in the regulation of almost all cellular signaling pathways. The intracellular bacterial pathogen Legionella pneumophila translocates at least 26 effectors to hijack host ubiquitination signaling via distinct mechanisms. Among these effectors, SidC/SdcA are novel E3 ubiquitin ligases with the adoption of a Cys-His-Asp catalytic triad. SidC/SdcA are critical for the recruitment of endoplasmic reticulum (ER)-derived vesicles to the Legionella-containing vacuole (LCV). However, the ubiquitination targets of SidC/SdcA are largely unknown, which restricts our understanding of the mechanisms used by these effectors to hijack the vesicle trafficking pathway. Here, we demonstrated that multiple Rab small GTPases and target soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) proteins are bona fide ubiquitination substrates of SidC/SdcA. SidC/SdcA-mediated ubiquitination of syntaxin 3 and syntaxin 4 promotes their unconventional pairing with the vesicle-SNARE protein Sec22b, thereby contributing to the membrane fusion of ER-derived vesicles with the phagosome. In addition, our data reveal that ubiquitination of Rab7 by SidC/SdcA is critical for its association with the LCV membrane. Rab7 ubiquitination could impair its binding with the downstream effector Rab-interacting lysosomal protein (RILP), which partially explains why LCVs avoid fusion with lysosomes despite the acquisition of Rab7. Taken together, our study reveals the biological mechanisms employed by SidC/SdcA to promote the maturation of the LCVs.


Subject(s)
Legionella pneumophila , Phagosomes , SNARE Proteins , Ubiquitination , rab GTP-Binding Proteins , Legionella pneumophila/metabolism , Humans , Phagosomes/metabolism , Phagosomes/microbiology , SNARE Proteins/metabolism , rab GTP-Binding Proteins/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Animals , Qa-SNARE Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Vacuoles/metabolism , Vacuoles/microbiology , HEK293 Cells , Mice , rab7 GTP-Binding Proteins/metabolism , Monomeric GTP-Binding Proteins/metabolism , Endoplasmic Reticulum/metabolism
5.
Biochem J ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38193346

ABSTRACT

Cysteine string protein α (CSPα), also known as DNAJC5, is a member of the DnaJ/Hsp40 family of co-chaperones. The name derives from a cysteine-rich domain, palmitoylation of which enables localization to intracellular membranes, notably neuronal synaptic vesicles. Mutations in the DNAJC5 gene that encodes CSPα cause autosomal dominant, adult-onset neuronal ceroid lipofuscinosis (ANCL), a rare neurodegenerative disease. As null mutations in CSP-encoding genes in flies, worms and mice similarly result in neurodegeneration, CSP is evidently an evolutionarily conserved neuroprotective protein. However, the client proteins that CSP chaperones to prevent neurodegeneration remain unclear. Traditional methods for identifying protein-protein interactions such as yeast 2-hybrid and affinity purification approaches are poorly suited to CSP, due to its requirement for membrane anchoring and its tendency to aggregate after cell lysis. Therefore, we employed proximity labelling, which enables identification of interacting proteins in situ in living cells via biotinylation. Neuroendocrine PC12 cell lines stably expressing wild type or L115R ANCL mutant CSP constructs fused to miniTurbo were generated; then the biotinylated proteomes were analysed by liquid chromatographymass spectrometry (LCMS) and validated by western blotting. This confirmed several known CSP-interacting proteins, such as Hsc70 and SNAP-25, but also revealed novel binding proteins, including STXBP1/Munc18-1. Interestingly, some protein interactions (such as Hsc70) were unaffected by the L115R mutation, whereas others (including SNAP-25 and STXBP1/Munc18-1) were inhibited. These results define the CSP interactome in a neuronal model cell line and reveal interactions that are affected by ANCL mutation and hence may contribute to the neurodegeneration seen in patients.

6.
Traffic ; 23(8): 414-425, 2022 08.
Article in English | MEDLINE | ID: mdl-35701729

ABSTRACT

Many intracellular pathogens, such as bacteria and large viruses, enter eukaryotic cells via phagocytosis, then replicate and proliferate inside the host. To avoid degradation in the phagosomes, they have developed strategies to modify vesicle trafficking. Although several strategies of bacteria have been characterized, it is not clear whether viruses also interfere with the vesicle trafficking of the host. Recently, we came across SNARE proteins encoded in the genomes of several bacteria of the order Legionellales. These pathogenic bacteria may use SNAREs to interfere with vesicle trafficking, since SNARE proteins are the core machinery for vesicle fusion during transport. They assemble into membrane-bridging SNARE complexes that bring membranes together. We now have also discovered SNARE proteins in the genomes of diverse giant viruses. Our biochemical experiments showed that these proteins are able to form SNARE complexes. We also found other key trafficking factors that work together with SNAREs such as NSF, SM, and Rab proteins encoded in the genomes of giant viruses, suggesting that viruses can make use of a large genetic repertoire of trafficking factors. Most giant viruses possess different collections, suggesting that these factors entered the viral genome multiple times. In the future, the molecular role of these factors during viral infection need to be studied.


Subject(s)
Eukaryota , Eukaryotic Cells , Eukaryota/metabolism , Eukaryotic Cells/metabolism , Membrane Fusion , Phagosomes/metabolism , SNARE Proteins/metabolism
7.
J Biol Chem ; 299(3): 102974, 2023 03.
Article in English | MEDLINE | ID: mdl-36738791

ABSTRACT

In vivo and in vitro assays, particularly reconstitution using artificial membranes, have established the role of synaptic soluble N-Ethylmaleimide-sensitive attachment protein receptors (SNAREs) VAMP2, Syntaxin-1A, and SNAP-25 in membrane fusion. However, using artificial membranes requires challenging protein purifications that could be avoided in a cell-based assay. Here, we developed a synthetic biological approach based on the generation of membrane cisternae by the integral membrane protein Caveolin in Escherichia coli and coexpression of SNAREs. Syntaxin-1A/SNAP-25/VAMP-2 complexes were formed and regulated by SNARE partner protein Munc-18a in the presence of Caveolin. Additionally, Syntaxin-1A/SNAP-25/VAMP-2 synthesis provoked increased length of E. coli only in the presence of Caveolin. We found that cell elongation required SNAP-25 and was inhibited by tetanus neurotoxin. This elongation was not a result of cell division arrest. Furthermore, electron and super-resolution microscopies showed that synaptic SNAREs and Caveolin coexpression led to the partial loss of the cisternae, suggesting their fusion with the plasma membrane. In summary, we propose that this assay reconstitutes membrane fusion in a simple organism with an easy-to-observe phenotype and is amenable to structure-function studies of SNAREs.


Subject(s)
Artificial Cells , Membrane Fusion , SNARE Proteins , Caveolins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Nerve Tissue Proteins/metabolism , Qa-SNARE Proteins/metabolism , SNARE Proteins/genetics , Syntaxin 1/genetics , Vesicle-Associated Membrane Protein 2/metabolism , Vesicular Transport Proteins/metabolism
8.
J Biol Chem ; 299(11): 105295, 2023 11.
Article in English | MEDLINE | ID: mdl-37774976

ABSTRACT

Loss of functional RAB18 causes the autosomal recessive condition Warburg Micro syndrome. To better understand this disease, we used proximity biotinylation to generate an inventory of potential RAB18 effectors. A restricted set of 28 RAB18 interactions were dependent on the binary RAB3GAP1-RAB3GAP2 RAB18-guanine nucleotide exchange factor complex. Twelve of these 28 interactions are supported by prior reports, and we have directly validated novel interactions with SEC22A, TMCO4, and INPP5B. Consistent with a role for RAB18 in regulating membrane contact sites, interactors included groups of microtubule/membrane-remodeling proteins, membrane-tethering and docking proteins, and lipid-modifying/transporting proteins. Two of the putative interactors, EBP and OSBPL2/ORP2, have sterol substrates. EBP is a Δ8-Δ7 sterol isomerase, and ORP2 is a lipid transport protein. This prompted us to investigate a role for RAB18 in cholesterol biosynthesis. We found that the cholesterol precursor and EBP-product lathosterol accumulates in both RAB18-null HeLa cells and RAB3GAP1-null fibroblasts derived from an affected individual. Furthermore, de novo cholesterol biosynthesis is impaired in cells in which RAB18 is absent or dysregulated or in which ORP2 expression is disrupted. Our data demonstrate that guanine nucleotide exchange factor-dependent Rab interactions are highly amenable to interrogation by proximity biotinylation and may suggest that Micro syndrome is a cholesterol biosynthesis disorder.


Subject(s)
Biotinylation , Sterols , rab GTP-Binding Proteins , Humans , Cholesterol/biosynthesis , Cholesterol/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , HeLa Cells , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , rab3 GTP-Binding Proteins/metabolism , Sterols/biosynthesis , Sterols/metabolism , Cells, Cultured , Gene Knockdown Techniques , Protein Transport/genetics
9.
J Cell Sci ; 135(16)2022 08 15.
Article in English | MEDLINE | ID: mdl-35972760

ABSTRACT

Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are membrane-associated trafficking proteins that confer identity to lipid membranes and facilitate membrane fusion. These functions are achieved through the complexing of Q-SNAREs with a specific cognate target R-SNARE, leading to the fusion of their associated membranes. These SNARE complexes then dissociate so that the Q-SNAREs and R-SNAREs can repeat this cycle. Whilst the basic function of SNAREs has been long appreciated, it is becoming increasingly clear that the cell can control the localisation and function of SNARE proteins through posttranslational modifications (PTMs), such as phosphorylation and ubiquitylation. Whilst numerous proteomic methods have shown that SNARE proteins are subject to these modifications, little is known about how these modifications regulate SNARE function. However, it is clear that these PTMs provide cells with an incredible functional plasticity; SNARE PTMs enable cells to respond to an ever-changing extracellular environment through the rerouting of membrane traffic. In this Review, we summarise key findings regarding SNARE regulation by PTMs and discuss how these modifications reprogramme membrane trafficking pathways.


Subject(s)
Membrane Fusion , SNARE Proteins , Membrane Fusion/physiology , Protein Processing, Post-Translational , Proteomics , Q-SNARE Proteins/metabolism , SNARE Proteins/metabolism
10.
Biochem Soc Trans ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39082978

ABSTRACT

Various cell types release neurotransmitters, hormones and many other compounds that are stored in secretory vesicles by exocytosis via the formation of a fusion pore traversing the vesicular membrane and the plasma membrane. This process of membrane fusion is mediated by the Soluble N-ethylmaleimide-Sensitive Factor Attachment Proteins REceptor (SNARE) protein complex, which in neurons and neuroendocrine cells is composed of the vesicular SNARE protein Synaptobrevin and the plasma membrane proteins Syntaxin and SNAP25 (Synaptosomal-Associated Protein of 25 kDa). Before a vesicle can undergo fusion and release of its contents, it must dock at the plasma membrane and undergo a process named 'priming', which makes it ready for release. The primed vesicles form the readily releasable pool, from which they can be rapidly released in response to stimulation. The stimulus is an increase in Ca2+ concentration near the fusion site, which is sensed primarily by the vesicular Ca2+ sensor Synaptotagmin. Vesicle priming involves at least the SNARE proteins as well as Synaptotagmin and the accessory proteins Munc18, Munc13, and Complexin but additional proteins may also participate in this process. This review discusses the current views of the interactions and the structural changes that occur among the proteins of the vesicle priming machinery.

11.
Traffic ; 22(8): 284-302, 2021 08.
Article in English | MEDLINE | ID: mdl-34184807

ABSTRACT

Legionella pneumophila is a facultative intracellular bacterial pathogen, causing the severe form of pneumonia known as Legionnaires' disease. Legionella actively alters host organelle trafficking through the activities of "effector" proteins secreted via a type-IVB secretion system, in order to construct the bacteria-laden Legionella-containing vacuole (LCV) and prevent lysosomal degradation. The LCV is created with membrane derived from host endoplasmic reticulum (ER), secretory vesicles and phagosomes, although the precise molecular mechanisms that drive its synthesis remain poorly understood. In an effort to characterize the in vivo activity of the LegC7/YlfA SNARE-like effector protein from Legionella in the context of eukaryotic membrane trafficking in yeast, we find that LegC7 interacts with the Emp46p/Emp47p ER-to-Golgi glycoprotein cargo adapter complex, alters ER morphology and induces aberrant ER:endosome interactions, as measured by visualization of ER cargo degradation, reconstitution of split-GFP proteins and enhanced oxidation of the ER lumen. LegC7-dependent toxicity, disruption of ER morphology and ER:endosome fusion events were dependent upon endosomal VPS class C tethering complexes and the endosomal t-SNARE, Pep12p. This work establishes a model in which LegC7 functions to recruit host ER material to the bacterial phagosome during infection by driving ER:endosome contacts, potentially through interaction with host membrane tethering complexes and/or cargo adapters.


Subject(s)
Legionella pneumophila , Bacterial Proteins/genetics , Endoplasmic Reticulum , Endosomes , Saccharomyces cerevisiae , Vacuoles
12.
Pflugers Arch ; 475(6): 667-690, 2023 06.
Article in English | MEDLINE | ID: mdl-36884064

ABSTRACT

This historical review focuses on the evolution of the knowledge accumulated during the last two centuries on the biology of the adrenal medulla gland and its chromaffin cells (CCs). The review emerged in the context of a series of meetings that started on the Spanish island of Ibiza in 1982 with the name of the International Symposium on Chromaffin Cell Biology (ISCCB). Hence, the review is divided into two periods namely, before 1982 and from this year to 2022, when the 21st ISCCB meeting was just held in Hamburg, Germany. The first historical period extends back to 1852 when Albert Kölliker first described the fine structure and function of the adrenal medulla. Subsequently, the adrenal staining with chromate salts identified the CCs; this was followed by the establishment of the embryological origin of the adrenal medulla, and the identification of adrenaline-storing vesicles. By the end of the nineteenth century, the basic morphology, histochemistry, and embryology of the adrenal gland were known. The twentieth century began with breakthrough findings namely, the experiment of Elliott suggesting that adrenaline was the sympathetic neurotransmitter, the isolation of pure adrenaline, and the deciphering of its molecular structure and chemical synthesis in the laboratory. In the 1950s, Blaschko isolated the catecholamine-storing vesicles from adrenal medullary extracts. This switched the interest in CCs as models of sympathetic neurons with an explosion of studies concerning their functions, i.e., uptake of catecholamines by chromaffin vesicles through a specific coupled transport system; the identification of several vesicle components in addition to catecholamines including chromogranins, ATP, opioids, and other neuropeptides; the calcium-dependence of the release of catecholamines; the underlying mechanism of exocytosis of this release, as indicated by the co-release of proteins; the cross-talk between the adrenal cortex and the medulla; and the emission of neurite-like processes by CCs in culture, among other numerous findings. The 1980s began with the introduction of new high-resolution techniques such as patch-clamp, calcium probes, marine toxins-targeting ion channels and receptors, confocal microscopy, or amperometry. In this frame of technological advances at the Ibiza ISCCB meeting in 1982, 11 senior researchers in the field predicted a notable increase in our knowledge in the field of CCs and the adrenal medulla; this cumulative knowledge that occurred in the last 40 years of history of the CC is succinctly described in the second part of this historical review. It deals with cell excitability, ion channel currents, the exocytotic fusion pore, the handling of calcium ions by CCs, the kinetics of exocytosis and endocytosis, the exocytotic machinery, and the life cycle of secretory vesicles. These concepts together with studies on the dynamics of membrane fusion with super-resolution imaging techniques at the single-protein level were extensively reviewed by top scientists in the field at the 21st ISCCB meeting in Hamburg in the summer of 2022; this frontier topic is also briefly reviewed here. Many of the concepts arising from those studies contributed to our present understanding of synaptic transmission. This has been studied in physiological or pathophysiological conditions, in CCs from animal disease models. In conclusion, the lessons we have learned from CC biology as a peripheral model for brain and brain disease pertain more than ever to cutting-edge research in neurobiology. In the 22nd ISCCB meeting in Israel in 2024 that Uri Asheri is organizing, we will have the opportunity of seeing the progress of the questions posed in Ibiza, and on other questions that undoubtedly will arise.


Subject(s)
Adrenal Medulla , Chromaffin Cells , Animals , Calcium/metabolism , Chromaffin Cells/metabolism , Adrenal Medulla/metabolism , Catecholamines/metabolism , Epinephrine , Exocytosis/physiology
13.
Biochem J ; 479(3): 273-288, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35119456

ABSTRACT

Membrane traffic in eukaryotic cells is mediated by transport vesicles that bud from a precursor compartment and are transported to their destination compartment where they dock and fuse. To reach their intracellular destination, transport vesicles contain targeting signals such as Rab GTPases and polyphosphoinositides that are recognized by tethering factors in the cytoplasm and that connect the vesicles with their respective destination compartment. The final step, membrane fusion, is mediated by SNARE proteins. SNAREs are connected to targeting signals and tethering factors by multiple interactions. However, it is still debated whether SNAREs only function downstream of targeting and tethering or whether they also participate in regulating targeting specificity. Here, we review the evidence and discuss recent data supporting a role of SNARE proteins as targeting signals in vesicle traffic.


Subject(s)
Eukaryotic Cells/metabolism , SNARE Proteins/metabolism , Signal Transduction/physiology , Transport Vesicles/metabolism , Cell Membrane/metabolism , Humans , Membrane Fusion/physiology , Protein Transport/physiology , rab GTP-Binding Proteins/metabolism
14.
Mol Cell Neurosci ; 121: 103754, 2022 07.
Article in English | MEDLINE | ID: mdl-35842170

ABSTRACT

The involvement of secretory pathways and Golgi dysfunction in neuronal cells during Alzheimer's disease progression is poorly understood. Our previous overexpression and knockdown studies revealed that the intracellular protein level of Syntaxin-5, an endoplasmic reticulum-Golgi soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE), modulates beta-amyloid precursor protein processing in neuronal cells. We recently showed that changes in endogenous Syntaxin-5 protein expression occur under stress induction. Syntaxin-5 was upregulated by endoplasmic reticulum stress but was degraded by Caspase-3 during apoptosis in neuronal cells. In addition, we showed that sustained endoplasmic reticulum stress promotes Caspase-3-dependent apoptosis during the later phase of the endoplasmic reticulum stress response in NG108-15 cells. In this study, to elucidate the consequences of secretory pathway dysfunction in beta-amyloid precursor protein processing that lead to neuronal cell death, we examined the effect of various stresses on endoplasmic reticulum-Golgi SNARE expression and beta-amyloid precursor protein processing. By using compounds to disrupt Golgi function, we show that Golgi stress promotes upregulation of the endoplasmic reticulum-Golgi SNARE Syntaxin-5, and prolonged stress causes Caspase-3-dependent apoptosis. Golgi stress induced intracellular beta-amyloid precursor protein accumulation and a concomitant decrease in total amyloid-beta production. We also examined the protective effect of the chemical chaperone 4-phenylbutylate on changes in amyloid-beta production and the activation of Caspase-3 induced by endoplasmic reticulum and Golgi stress. The compound alleviated the increase in the amyloid-beta 1-42/amyloid-beta 1-40 ratio induced by endoplasmic reticulum and Golgi stress. Furthermore, 4-phenylbutylate could rescue Caspase-3-dependent apoptosis induced by prolonged organelle stress. These results suggest that organelle stress originating from the endoplasmic reticulum and Golgi has a substantial impact on the amyloidogenic processing of beta-amyloid precursor protein and Caspase-3-dependent apoptosis, leading to neuronal cell death.


Subject(s)
Amyloid beta-Protein Precursor , SNARE Proteins , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Apoptosis , Caspase 3/metabolism , Golgi Apparatus/metabolism , Qa-SNARE Proteins/genetics , Qa-SNARE Proteins/metabolism , Qa-SNARE Proteins/pharmacology , SNARE Proteins/metabolism , SNARE Proteins/pharmacology , Up-Regulation
15.
J Biol Chem ; 296: 100268, 2021.
Article in English | MEDLINE | ID: mdl-33837726

ABSTRACT

Degranulation, a fundamental effector response from mast cells (MCs) and platelets, is an example of regulated exocytosis. This process is mediated by SNARE proteins and their regulators. We have previously shown that several of these proteins are essential for exocytosis in MCs and platelets. Here, we assessed the role of the SNARE protein SNAP23 using conditional knockout mice, in which SNAP23 was selectively deleted from either the megakaryocyte/platelet or connective tissue MC lineages. We found that removal of SNAP23 in platelets results in severe defects in degranulation of all three platelet secretory granule types, i.e., alpha, dense, and lysosomal granules. The mutation also induces thrombocytopenia, abnormal platelet morphology and activation, and reduction in the number of alpha granules. Therefore, the degranulation defect might not be secondary to an intrinsic failure of the machinery mediating regulated exocytosis in platelets. When we removed SNAP23 expression in MCs, there was a complete developmental failure in vitro and in vivo. The developmental defects in platelets and MCs and the abnormal translocation of membrane proteins to the surface of platelets indicate that SNAP23 is also involved in constitutive exocytosis in these cells. The MC conditional deletant animals lacked connective tissue MCs, but their mucosal MCs were normal and expanded in response to an antigenic stimulus. We used this mouse to show that connective tissue MCs are required and mucosal MCs are not sufficient for an anaphylactic response.


Subject(s)
Anaphylaxis/immunology , Blood Platelets/immunology , Connective Tissue/immunology , Mast Cells/immunology , Qb-SNARE Proteins/immunology , Qc-SNARE Proteins/immunology , Anaphylaxis/genetics , Anaphylaxis/pathology , Animals , Blood Platelets/pathology , Connective Tissue/pathology , Exocytosis/genetics , Exocytosis/immunology , Mast Cells/pathology , Mice , Mice, Knockout , Qb-SNARE Proteins/genetics , Qc-SNARE Proteins/genetics , Secretory Vesicles/genetics , Secretory Vesicles/immunology
16.
FASEB J ; 35(2): e21185, 2021 02.
Article in English | MEDLINE | ID: mdl-33191543

ABSTRACT

Autophagy, a cellular stress response to starvation and bacterial infection, is executed by double-membrane-bound organelles called autophagosomes. Autophagosomes transfer cytosolic material to acidified lysosomes for degradation following soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE)-dependent fusion processes. Many of the autophagy-related disorders stem from defective end-step proteolysis inside lysosomes. The role of epithelial cystic fibrosis (CF) transmembrane conductance regulator (CFTR) chloride channel has been argued to be critical for efficient lysosomal clearance; however, its context to autophagic clearance and the underlying mechanism is poorly defined. Here, we report that syntaxin17 (Stx17), an autophagic SNARE protein interacts with CFTR under nutritional stress and bacterial infection and incorporates it into mature autophagosomes to mediate an efficient lysosomal clearance. Lack of CFTR function and Stx17 and loss of CFTR-Stx17 interaction impairs bacterial clearance. We discover a specialized role of the Stx17-CFTR protein complex that is critical to prevent defective autophagy as has been the reported scenario in CF airway epithelial cells, infectious diseases, and lysosomal clearance disorders.


Subject(s)
Autophagosomes/metabolism , Autophagy/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Qa-SNARE Proteins/metabolism , Signal Transduction/genetics , Stress, Physiological , Cell Line, Tumor , Gene Knockdown Techniques , HEK293 Cells , Humans , Lysosomes/metabolism , Nutrients/deficiency , Protein Binding , Pseudomonas Infections/metabolism , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/metabolism , Qa-SNARE Proteins/genetics , Transfection
17.
Appl Microbiol Biotechnol ; 106(18): 6347-6361, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35951080

ABSTRACT

Consolidated bioprocessing (CBP) remains an attractive option for the production of commodity products from pretreated lignocellulose if a process-suitable organism can be engineered. The yeast Saccharomyces cerevisiae requires engineered cellulolytic activity to enable its use in CBP production of second-generation (2G) bioethanol. A promising strategy for heterologous cellulase production in yeast entails displaying enzymes on the cell surface by means of glycosylphosphatidylinositol (GPI) anchors. While strains producing a core set of cell-adhered cellulases that enabled crystalline cellulose hydrolysis have been created, secreted levels of enzyme were insufficient for complete cellulose hydrolysis. In fact, all reported recombinant yeast CBP candidates must overcome the drawback of generally low secretion titers. Rational strain engineering can be applied to enhance the secretion phenotype. This study aimed to improve the amount of cell-adhered cellulase activities of recombinant S. cerevisiae strains expressing a core set of four cellulases, through overexpression of genes that were previously shown to enhance cellulase secretion. Results showed significant increases in cellulolytic activity for all cell-adhered cellulase enzyme types. Cell-adhered cellobiohydrolase activity was improved by up to 101%, ß-glucosidase activity by up to 99%, and endoglucanase activity by up to 231%. Improved hydrolysis of crystalline cellulose of up to 186% and improved ethanol yields from this substrate of 40-50% in different strain backgrounds were also observed. In addition, improvement in resistance to fermentation stressors was noted in some strains. These strains represent a step towards more efficient organisms for use in 2G biofuel production. KEY POINTS: • Cell-surface-adhered cellulase activity was improved in strains engineered for CBP. • Levels of improvement of activity were strain and enzyme dependent. • Crystalline cellulose conversion to ethanol could be improved up to 50%.


Subject(s)
Cellulase , Cellulases , Cellulase/genetics , Cellulase/metabolism , Cellulases/metabolism , Cellulose/metabolism , Ethanol/metabolism , Fermentation , Saccharomyces cerevisiae/metabolism
18.
Proc Natl Acad Sci U S A ; 116(18): 8699-8708, 2019 04 30.
Article in English | MEDLINE | ID: mdl-30975750

ABSTRACT

Intrinsically disordered proteins (IDPs) and their conformational transitions play an important role in neurotransmitter release at the neuronal synapse. Here, the SNARE proteins are essential by forming the SNARE complex that drives vesicular membrane fusion. While it is widely accepted that the SNARE proteins are intrinsically disordered in their monomeric prefusion form, important mechanistic aspects of this prefusion conformation and its lipid interactions, before forming the SNARE complex, are not fully understood at the molecular level and remain controversial. Here, by a combination of NMR and fluorescence spectroscopy methods, we find that vesicular synaptobrevin-2 (syb-2) in its monomeric prefusion conformation shows high flexibility, characteristic for an IDP, but also a high dynamic range and increasing rigidity from the N to C terminus. The gradual increase in rigidity correlates with an increase in lipid binding affinity from the N to C terminus. It could also explain the increased rate for C-terminal SNARE zippering, known to be faster than N-terminal SNARE zippering. Also, the syb-2 SNARE motif and, in particular, the linker domain show transient and weak membrane binding, characterized by a high off-rate and low (millimolar) affinity. The transient membrane binding of syb-2 may compensate for the repulsive forces between the two membranes and/or the SNARE motifs and the membranes, helping to destabilize the hydrophilic-hydrophobic boundary in the bilayer. Therefore, we propose that optimum flexibility and membrane binding of syb-2 regulate SNARE assembly and minimize repulsive forces during membrane fusion.


Subject(s)
Lipids/chemistry , SNARE Proteins/metabolism , Vesicle-Associated Membrane Protein 2/metabolism , Animals , Magnetic Resonance Spectroscopy , Neurons/metabolism , Protein Binding , R-SNARE Proteins/chemistry , R-SNARE Proteins/metabolism , SNARE Proteins/chemistry , Vesicle-Associated Membrane Protein 2/chemistry
19.
Int J Mol Sci ; 23(8)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35457172

ABSTRACT

Tetanus and Botulinum type B neurotoxins are bacterial metalloproteases that specifically cleave the vesicle-associated membrane protein VAMP at an identical peptide bond, resulting in inhibition of neuroexocytosis. The minute amounts of these neurotoxins commonly used in experimental animals are not detectable, nor is detection of their VAMP substrate sensitive enough. The immune detection of the cleaved substrate is much more sensitive, as we have previously shown for botulinum neurotoxin type A. Here, we describe the production in rabbit of a polyclonal antibody raised versus a peptide encompassing the 13 residues C-terminal with respect to the neurotoxin cleavage site. The antibody was affinity purified and found to recognize, with high specificity and selectivity, the novel N-terminus of VAMP that becomes exposed after cleavage by tetanus toxin and botulinum toxin type B. This antibody recognizes the neoepitope not only in native and denatured VAMP but also in cultured neurons and in neurons in vivo in neurotoxin-treated mice or rats, suggesting the great potential of this novel tool to elucidate tetanus and botulinum B toxin activity in vivo.


Subject(s)
Botulinum Toxins, Type A , Tetanus , Animals , Antibodies/metabolism , Mice , Neurotoxins/metabolism , Peptides/metabolism , Proteolysis , R-SNARE Proteins/chemistry , R-SNARE Proteins/metabolism , Rabbits , Rats , Tetanus Toxin/chemistry , Tetanus Toxin/metabolism
20.
Hum Mutat ; 42(9): 1101-1106, 2021 09.
Article in English | MEDLINE | ID: mdl-34167170

ABSTRACT

T1-weighted, cross-sectional MR images showing shoulder girdle, abdominal, paraspinal, gluteal and thigh muscles almost completely replaced by fat, whereas lower leg muscles are almost unaffected i a patient who is compound heterozygous for pathogenic variants in GOSR2.


Subject(s)
Muscular Diseases , Qb-SNARE Proteins , Cross-Sectional Studies , Humans , Muscle, Skeletal , Muscular Diseases/genetics , Phenotype , Qb-SNARE Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL