Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Biochem Biophys Res Commun ; 624: 89-94, 2022 10 08.
Article in English | MEDLINE | ID: mdl-35940132

ABSTRACT

The human VPS10 domain-containing receptor SorCS3 belongs to the Vps10p-domain receptor family and is an important receptor for regulating normal cellular functions via protein sorting. Here, we determined the cryo-EM structure of the full-length SorCS3 receptor and further found that there were at least three distinct conformations (monomer, M-shaped dimer and N-shaped dimer) of SorCS3 in the apo state. The differences between the two dimer conformations were caused by PKD1-2 assembly. In contrast to its homologous proteins, the conserved residues GLN198, ARG678, TYR430, GLU1020 and ASP1024 may be key points for its dimerization and for protein/polypeptide binding. These results showed the structural details of apo-SorCS3, which provides a foundation for elucidating the mechanism of protein sorting.


Subject(s)
Carrier Proteins , Nerve Tissue Proteins , Carrier Proteins/metabolism , Cryoelectron Microscopy , Humans , Nerve Tissue Proteins/metabolism , Protein Binding , Protein Transport , Receptors, Cell Surface/metabolism
2.
Heliyon ; 10(1): e23677, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38234914

ABSTRACT

Background: Autism is a severe neurodevelopmental disorder characterized by social interaction deficits, impairments in communication, and restricted and repetitive stereotyped behavior and activities. Family and twin studies suggested an essential role of genetic factors in the etiology of autism spectrum disorder (ASD). Also, other studies found SORCS3 and GSDME (DFNA5) might be involved in brain development and susceptible to ASD. Methods: In this study, 17 genome-wide significant SNPs reported in previous ASD genome-wide association studies (GWAS) and 7 SNPs in strong linkage disequilibrium with known ASD GWAS hits were selected to investigate the association between these SNPs and autism in the Han Chinese population. Then, 10 tagSNPs in SORCS3 and 11 tagSNPs in GSDME were selected to analyze the association between these SNPs and autism. The selected 24 SNPs and tagSNPs were genotyped using the Agena MassARRAY SNP genotyping assay in 757 Han Chinese autism trios. Results: Rs1484144 in NAA11 was significantly associated with autism; significance remained after the Bonferroni correction (P < 0.0022). Also, rs79879286, rs12154597, and rs12540919 near GSDME, as well as rs9787523 and rs3750261 in SORCS3, were nominally associated with autism. Conclusion: Our study suggests that rs1484144 in NAA11 is a significant SNP for autism in the Han Chinese population, while SORCS3 and GSDME might be the susceptibility genes for autism in this population.

3.
Genes (Basel) ; 14(2)2023 02 14.
Article in English | MEDLINE | ID: mdl-36833409

ABSTRACT

Sortilin-related vacuolar protein sorting 10 (VPS10) domain containing receptor 3 (SORCS3) is a neuron-specific transmembrane protein involved in the trafficking of proteins between intracellular vesicles and the plasma membrane. Genetic variation at SORCS3 is associated with multiple neuropsychiatric disorders and behavioural phenotypes. Here, we undertake a systematic search of published genome-wide association studies to identify and catalogue associations between SORCS3 and brain-related disorders and traits. We also generate a SORCS3 gene-set based on protein-protein interactions and investigate the contribution of this gene-set to the heritability of these phenotypes and its overlap with synaptic biology. Analysis of association signals at SORSC3 showed individual SNPs to be associated with multiple neuropsychiatric and neurodevelopmental brain-related disorders and traits that have an impact on the experience of feeling, emotion or mood or cognitive function, while multiple LD-independent SNPs were associated with the same phenotypes. Across these SNPs, alleles associated with the more favourable outcomes for each phenotype (e.g., decreased risk of neuropsychiatric illness) were associated with increased expression of the SORCS3 gene. The SORCS3 gene-set was enriched for heritability contributing to schizophrenia (SCZ), bipolar disorder (BPD), intelligence (IQ) and education attainment (EA). Eleven genes from the SORCS3 gene-set were associated with more than one of these phenotypes at the genome-wide level, with RBFOX1 associated with SCZ, IQ and EA. Functional annotation revealed that the SORCS3 gene-set is enriched for multiple ontologies related to the structure and function of synapses. Overall, we find many independent association signals at SORCS3 with brain-related disorders and traits, with the effect possibly mediated by reduced gene expression, resulting in a negative impact on synaptic function.


Subject(s)
Brain Diseases , Genome-Wide Association Study , Nerve Tissue Proteins , Receptors, Cell Surface , Humans , Brain/metabolism , Brain Diseases/metabolism , Nerve Tissue Proteins/genetics , Phenotype , Polymorphism, Single Nucleotide , Receptors, Cell Surface/genetics
4.
Mol Neurodegener ; 17(1): 74, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36397124

ABSTRACT

The family of VPS10p-Domain (D) receptors comprises five members named SorLA, Sortilin, SorCS1, SorCS2 and SorCS3. While their physiological roles remain incompletely resolved, they have been recognized for their signaling engagements and trafficking abilities, navigating a number of molecules between endosome, Golgi compartments, and the cell surface. Strikingly, recent studies connected all the VPS10p-D receptors to Alzheimer's disease (AD) development. In addition, they have been also associated with diseases comorbid with AD such as diabetes mellitus and major depressive disorder. This systematic review elaborates on genetic, functional, and mechanistic insights into how dysfunction in VPS10p-D receptors may contribute to AD etiology, AD onset diversity, and AD comorbidities. Starting with their functions in controlling cellular trafficking of amyloid precursor protein and the metabolism of the amyloid beta peptide, we present and exemplify how these receptors, despite being structurally similar, regulate various and distinct cellular events involved in AD. This includes a plethora of signaling crosstalks that impact on neuronal survival, neuronal wiring, neuronal polarity, and synaptic plasticity. Signaling activities of the VPS10p-D receptors are especially linked, but not limited to, the regulation of neuronal fitness and apoptosis via their physical interaction with pro- and mature neurotrophins and their receptors. By compiling the functional versatility of VPS10p-D receptors and their interactions with AD-related pathways, we aim to further propel the AD research towards VPS10p-D receptor family, knowledge that may lead to new diagnostic markers and therapeutic strategies for AD patients.


Subject(s)
Alzheimer Disease , Depressive Disorder, Major , Humans , Amyloid beta-Peptides , Protein Transport/physiology , Nerve Growth Factors
5.
Zool Res ; 43(1): 14-25, 2022 Jan 18.
Article in English | MEDLINE | ID: mdl-34766477

ABSTRACT

Cattle temperament is an interesting trait due to its correlation with production efficiency, labor safety, and animal welfare. To date, however, its genetic basis is not clearly understood. Here, we performed a genome-wide association study for a series of temperament traits in cattle, assessed with via open field and novel object tests, using autosomal single nucleotide polymorphisms (SNPs) derived from the whole-genome sequence. We identified 37 and 29 genome-wide significant loci in the open field and novel object tests, respectively. Gene set analysis revealed the most significant pathway was the neuroactive ligand-receptor interaction pathway, which may be essential for emotional control in cattle. Analysis of the expression levels of 18 tissue-specific genes based on transcriptomic data showed enrichment in the brain, with some candidate genes involved in psychiatric and neurodegenerative diseases in humans. Based on principal component analysis, the first principal component explained the largest variance in the open field and novel object test data, and the most significant loci were assigned to SORCS3 and SESTD1, respectively. Our findings should help facilitate cattle breeding for sound temperament by pyramiding favorable alleles to further improve cattle production.


Subject(s)
Cattle/genetics , Cattle/psychology , Genome-Wide Association Study/veterinary , Quantitative Trait Loci , Temperament , Animals , Female , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics
6.
Cells ; 8(9)2019 08 23.
Article in English | MEDLINE | ID: mdl-31450785

ABSTRACT

A higher incidence of diabetes was observed among family members of individuals affected by Huntington's Disease with no follow-up studies investigating the genetic nature of the observation. Using a genome-wide association study (GWAS), RNA sequencing (RNA-Seq) analysis and western blotting of Rattus norvegicus and human, we were able to identify that the gene family of sortilin receptors was affected in Huntington's Disease patients. We observed that less than 5% of SNPs were of statistical significance and that sortilins and HLA/MHC gene expression or SNPs were associated with mutant huntingtin (mHTT). These results suggest that ST14A cells derived from R. norvegicus are a reliable model of HD, since sortilins were identified through analysis of the transcriptome in these cells. These findings help highlight the genes involved in mechanisms targeted by diabetes drugs, such as glucose transporters as well as proteins controlling insulin release related to mHTT. To the best of our knowledge, this is the first GWAS using RNA-Seq data from both ST14A rat HD cell model and human Huntington's Disease.


Subject(s)
Adaptor Proteins, Vesicular Transport/genetics , Alzheimer Disease/genetics , Diabetes Mellitus/genetics , HLA Antigens/genetics , Huntingtin Protein/genetics , Huntington Disease/genetics , Polymorphism, Single Nucleotide , Animals , Cell Line , Gene Expression Profiling/methods , Gene Expression Regulation , Genetic Markers , Genome-Wide Association Study , Humans , Models, Biological , Mutation , Rats , Sequence Analysis, RNA , Up-Regulation
7.
Front Genet ; 8: 89, 2017.
Article in English | MEDLINE | ID: mdl-28702049

ABSTRACT

Endurance horses are able to run at more than 20 km/h for 160 km (in bouts of 30-40 km). This level of performance is based on intense aerobic metabolism, effective body heat dissipation and the ability to endure painful exercise. The known heritabilities of endurance performance and exercise-related physiological traits in Arabian horses suggest that adaptation to extreme endurance exercise is influenced by genetic factors. The objective of the present genome-wide association study (GWAS) was to identify single nucleotide polymorphisms (SNPs) related to endurance racing performance in 597 Arabian horses. The performance traits studied were the total race distance, average race speed and finishing status (qualified, eliminated or retired). We used three mixed models that included a fixed allele or genotype effect and a random, polygenic effect. Quantile-quantile plots were acceptable, and the regression coefficients for actual vs. expected log10p-values ranged from 0.865 to 1.055. The GWAS revealed five significant quantitative trait loci (QTL) corresponding to 6 SNPs on chromosomes 6, 1, 7, 16, and 29 (two SNPs) with corrected p-values from 1.7 × 10-6 to 1.8 × 10-5. Annotation of these 5 QTL revealed two genes: sortilin-related VPS10-domain-containing receptor 3 (SORCS3) on chromosome 1 is involved in protein trafficking, and solute carrier family 39 member 12 (SLC39A12) on chromosome 29 is active in zinc transport and cell homeostasis. These two coding genes could be involved in neuronal tissues (CNS). The other QTL on chromosomes 6, 7, and 16 may be involved in the regulation of the gene expression through non-coding RNAs, CpG islands and transcription factor binding sites. On chromosome 6, a new candidate equine long non-coding RNA (KCNQ1OT1 ortholog: opposite antisense transcript 1 of potassium voltage-gated channel subfamily Q member 1 gene) was predicted in silico and validated by RT-qPCR in primary cultures of equine myoblasts and fibroblasts. This lncRNA could be one element of the cardiac rhythm regulation. Our GWAS revealed that equine performance during endurance races is a complex polygenic trait, and is partially governed by at least 5 QTL: two coding genes involved in neuronal tissues and three other loci with many regulatory functions such as slowing down heart rate.

SELECTION OF CITATIONS
SEARCH DETAIL