Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Chemistry ; 30(19): e202303739, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38287793

ABSTRACT

To expand the market capacity of p-diethylbenzene (PDEB), core-shell zeolite (TS-1@MCM-48) is designed as a catalyst for PDEB oxidation. TS-1@MCM-48 catalyst is synthesized by in-situ crystallization method and characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption, in-situ electron paramagnetic resonance (EPR) and 29Si nuclear magnetic resonance (29Si MAS-NMR). Oxidation of PDEB by H2O2 was investigated systematically in liquid phase. The conversion of PDEB over TS-1@MCM-48 was 28.1 % and the total selectivity was 72.6 %, where the selectivity of EAP (p-ethylacetophenone) and EPEA (4-ethyl-α-methylbenzyl alcohol) was 28.6 % and 44.0 %, respectively. Compared with TS-1 and MCM-48 zeolite, the conversion rate of reactants and the selectivity of products have been significantly improved. The catalytic performance of TS-1@MCM-48 is derived from its well-crystallized microporous core and mesoporous shell with regular channels, which make active sites of TS-1 zeolite in the catalyst be fully utilized and mass transfer resistance be largely reduced. Further through theoretical calculation, we propose that the oxidation of PDEB is the result of the combination and mutual transformation of free radical process and carbocation process. Core-shell structure ensures the conversion rate of raw materials and improves the selectivity of products.

2.
Angew Chem Int Ed Engl ; 63(13): e202314650, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38296796

ABSTRACT

Exploiting advanced amphiphilic solid catalysts is crucial to the development of Pickering emulsion catalysis. Herein, covalent organic framework (COF) nanoparticles constructed with highly hydrophobic monomers as linkers were found to show superior amphiphilicity and they were then developed as a new class of solid emulsifiers for Pickering emulsion catalysis. Employing amphiphilic COFs as solid emulsifiers, Pickering emulsions with controllable emulsion type and droplet sizes were obtained. COF materials have also been demonstrated to serve as porous surface coatings to replace traditional surface modifications for stabilizing Pickering emulsions. After implanting Pd nanoparticles into amphiphilic COFs, the obtained catalyst displayed a 3.9 times higher catalytic efficiency than traditional amphiphilic solid catalysts with surface modifications in the biphasic oxidation reaction of alcohols. Such an enhanced activity was resulted from the high surface area and regular porous structure of COFs. More importantly, because of their tunable pore diameters, Pickering emulsion catalysis with remarkable size selectivity was achieved. This work is the first example that COFs were applied in Pickering emulsion catalysis, providing a platform for exploring new frontiers of Pickering emulsion catalysis.

3.
Chemistry ; 29(16): e202203696, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36574213

ABSTRACT

Shape-selective stannosilicates have been post-synthesized for the hydration of epoxide to diols. A simple acid treatment has been employed to remove extensively the interlayer double four ring units, converting the three-dimensional (3D) UTL germanosilicate into a 2D layered IPC-1P intermediate. Isomorphous incorporation of tetrahedrally coordinated Sn active centers was realized via solid-liquid treatment of IPC-1P with diammonium hexachlorostannate aqueous solution, which was accompanied by the spontaneous condensation of neighboring silica-rich cfi layers upon calcination and structural construction of a 3D PCR structure. Sn-PCR stannosilicates with tunable Sn contents were thus prepared. With Sn-derived robust Lewis acidity confined in the intersecting 10- and 8-ring channels, the Sn-PCR (Si/Sn molar ratio of 77) catalyst served as a shape-selective nanoreactor for the hydration of ethylene oxide (EO) into ethylene glycol (EG), exhibiting a remarkable EO conversion (99.5 %) as well as a steady EG selectivity (>98.4 %) at greatly reduced H2 O/EO molar ratio and near-ambient reaction temperature.

4.
Small ; 17(19): e2100082, 2021 May.
Article in English | MEDLINE | ID: mdl-33792157

ABSTRACT

Fischer-Tropsch synthesis (FTS) is an effective route to produce olefins, gasoline, diesel, and oxygenates from syngas (CO + H2 ). However, it still remains a challenge for regulating the product distribution of FTS. Here, a series of Co/C sub-microreactors with precise designed nanoarchitectures are synthesized for selective syngas conversion. Through a combination of surface protection-assisted etching and following carbonization process, Co/C sub-microreactors with solid cube, double-shelled hollow box, and hollow box architectures, namely, Co/C-Cube, Co/C-DBox, Co/C-Box can be obtained. In FTS, comparing with solid Co/C-Cube, double-shelled hollow structured Co/C-DBox is inclined to grow long-chain hydrocarbon products, whereas hollow structured Co/C-Box avails the formation of short-chain hydrocarbon chemicals. Therefore, shape selective catalysis and controlled product distribution of FTS are realized by tuning the architectures of Co/C sub-microreactors. It is expected to fundamentally unravel the heterogeneous catalytic process via upfront designing and precisely regulating the architectures of micro/nanoreactors.

5.
Angew Chem Int Ed Engl ; 60(2): 976-982, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-32978880

ABSTRACT

Shape-selective catalysis plays a key role in chemical synthesis. Porous nanomaterials with uniform pore structures are ideal supports for metal nanoparticles (MNPs) to generate efficient shape-selective catalysis. However, many commercial irregular porous nanomaterials face the challenge to realize satisfactory shape selectivity due to the lack of molecular sieving structures. Herein, we report a concept of creating shape selectivity in MNPs/porous nanomaterials through intentionally poisoning certain MNPs using suitable modifiers. The remaining MNPs within the substrates can cooperate with the channels to generate selectivity. Such a strategy not only applies to regular porous nanomaterials (such as MOFs, zeolites) but also extended to irregular porous nanomaterials (such as active carbon, P25). Potentially, the matching among different MNPs, corresponding modifiers, and porous nanomaterials makes our strategy promising in selective catalytic systems.

6.
Angew Chem Int Ed Engl ; 59(42): 18374-18379, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-32588534

ABSTRACT

Nanoreactors with hollow structures have attracted great interest in catalysis research due to their void-confinement effects. However, the challenge in unambiguously unraveling these confinement effects is to decouple them from other factors affecting catalysis. Here, we synthesize a pair of hollow carbon sphere (HCS) nanoreactors with presynthesized PdCu nanoparticles encapsulated inside of HCS (PdCu@HCS) and supported outside of HCS (PdCu/HCS), respectively, while keeping other structural features the same. Based on the two comparative nanoreactors, void-confinement effects in liquid-phase hydrogenation are investigated in a two-chamber reactor. It is found that hydrogenations over PdCu@HCS are shape-selective catalysis, can be accelerated (accumulation of reactants), decelerated (mass transfer limitation), and even inhibited (molecular-sieving effect); conversion of the intermediate in the void space can be further promoted. Using this principle, a specific imine is selectively produced. This work provides a proof of concept for fundamental catalytic action of the hollow nanoreactors.

7.
RNA ; 22(6): 905-19, 2016 06.
Article in English | MEDLINE | ID: mdl-27095024

ABSTRACT

MPMV has great potential for development as a vector for gene therapy. In this respect, precisely defining the sequences and structural motifs that are important for dimerization and packaging of its genomic RNA (gRNA) are of utmost importance. A distinguishing feature of the MPMV gRNA packaging signal is two phylogenetically conserved long-range interactions (LRIs) between U5 and gag complementary sequences, LRI-I and LRI-II. To test their biological significance in the MPMV life cycle, we introduced mutations into these structural motifs and tested their effects on MPMV gRNA packaging and propagation. Furthermore, we probed the structure of key mutants using SHAPE (selective 2'hydroxyl acylation analyzed by primer extension). Disrupting base-pairing of the LRIs affected gRNA packaging and propagation, demonstrating their significance to the MPMV life cycle. A double mutant restoring a heterologous LRI-I was fully functional, whereas a similar LRI-II mutant failed to restore gRNA packaging and propagation. These results demonstrate that while LRI-I acts at the structural level, maintaining base-pairing is not sufficient for LRI-II function. In addition, in vitro RNA dimerization assays indicated that the loss of RNA packaging in LRI mutants could not be attributed to the defects in dimerization. Our findings suggest that U5-gag LRIs play an important architectural role in maintaining the structure of the 5' region of the MPMV gRNA, expanding the crucial role of LRIs to the nonlentiviral group of retroviruses.


Subject(s)
Genes, gag , Mason-Pfizer monkey virus/genetics , RNA, Viral/genetics , Virus Assembly
8.
Angew Chem Int Ed Engl ; 55(32): 9178-82, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27346582

ABSTRACT

Pd nanoparticles were successfully encapsulated inside mesoporous silicalite-1 nanocrystals (Pd@mnc-S1) by a one-pot method. The as-synthesized Pd@mnc-S1 with excellent stability functioned as an active and reusable heterogeneous catalyst. The unique porosity and nanostructure of silicalite-1 crystals endowed the Pd@mnc-S1 material general shape-selectivity for various catalytic reactions, including selective hydrogenation, oxidation, and carbon-carbon coupling reactions.

9.
RNA Biol ; 12(3): 330-42, 2015.
Article in English | MEDLINE | ID: mdl-25826665

ABSTRACT

Alternative splicing at the MAPT gene exon 10 yields similar levels of the 3R and 4R tau protein isoforms. (1) The presence of mutations, particularly in exon 10 and intron 10-11, changes the quantity of tau isoforms. Domination each of the isoform yields tau protein aggregation and frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17). Here, we report for the first time the secondary structure of the 194/195 nucleotide region for the wild type (WT) and 10 mutants of the MAPT gene pre-mRNA determined using both chemical and microarray mapping. Thermodynamic analyses indicate that single nucleotide mutations in the splicing regulatory element (SRE) that form a hairpin affect its stability by up to 4 and 7 kcal/mol. Moreover, binding the regulatory hairpin of small molecule ligands (neomycin, kanamycin, tobramycin and mitoxantrone) enhance its stability depending on the nature of the ligands and the RNA mutations. Experiments using the cos-7 cell line indicate that the presence of ligands and modified antisense oligonucleotides affect the quantity of 3R and 4R isoforms. This finding correlates with the thermodynamic stability of the regulatory hairpin. An alternative splicing regulation mechanism for exon 10 is postulated based on our experimental data and on published data.


Subject(s)
Alternative Splicing , Enhancer Elements, Genetic , RNA Precursors/chemistry , Silencer Elements, Transcriptional , tau Proteins/genetics , Animals , Anti-Bacterial Agents/chemistry , Base Sequence , COS Cells , Chlorocebus aethiops , Exons , Humans , Introns , Ligands , Microarray Analysis , Models, Molecular , Molecular Sequence Data , Mutation , Nucleic Acid Conformation , Oligonucleotides, Antisense/chemical synthesis , Oligonucleotides, Antisense/chemistry , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Stability , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Thermodynamics , tau Proteins/metabolism
10.
Talanta ; 262: 124691, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37229814

ABSTRACT

Chromatographic stationary phases with molecular-shape selectivity are advantageous for the separation and analysis of geometric isomers. Herein, dehydroabietic acid is bonded on the surface of silica microspheres via 3-glycidoxypropyltrimethoxysilane to form a monolayer dehydroabietic-acid stationary phase (Si-DOMM) with a racket-shaped structure. Various characterization techniques indicate that Si-DOMM is successfully prepared, and the separation performance of a Si-DOMM column is evaluated. The stationary phase has a low silanol activity and metal contamination and a high hydrophobicity and shape selectivity. The resolutions of lycopene, lutein, and capsaicin on the Si-DOMM column confirm that the stationary phase exhibits high shape selectivity. The elution order of n-alkyl benzene on the Si-DOMM column indicates its high hydrophobic selectivity and suggests that the separation is an enthalpy-driven process. Repeatability experiments reveal highly stable preparation processes of the stationary phase and column and indicate that the relative standard deviations of retention time, peak height, and peak area are less than 0.26%, 3.54%, and 3.48%, respectively. Density functional theory calculations using n-alkylbenzenes, polycyclic aromatic hydrocarbons, amines, and phenols as model solutes provide an intuitive and quantitative description of the multiple retention mechanisms. The Si-DOMM stationary phase exhibits superior retention and high selectivity for these compounds via multiple interactions. The bonding phase of the monolayer dehydroabietic acid stationary phase with a racket-shaped structure has a unique affinity for benzene, strong shape selectivity, and good separation performance for geometrical isomers with different molecular shapes.

11.
Natl Sci Rev ; 10(9): nwad120, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37565191

ABSTRACT

The successful development and application in industry of methanol-to-olefins (MTO) process brought about an innovative and efficient route for olefin production via non-petrochemical resources and also attracted attention of C1 chemistry and zeolite catalysis. Molecular sieve catalysts with diversified microenvironments embedding unique channel/cavity structure and acid properties, exhibit demonstrable features and advantages in the shape-selective catalysis of MTO. Especially, shape-selective catalysis over 8-MR and cavity-type zeolites with acidic supercage environment and narrow pore opening manifested special host-guest interaction between the zeolite catalyst and guest reactants, intermediates and products. This caused great differences in product distribution, catalyst deactivation and molecular diffusion, revealing the cavity-controlled methanol conversion over 8-MR and cavity-type zeolite catalyst. Furthermore, the dynamic and complicated cross-talk behaviors of catalyst material (coke)-reaction-diffusion over these types of zeolites determines the catalytic performance of the methanol conversion. In this review, we shed light on the cavity-controlled principle in the MTO reaction including cavity-controlled active intermediates formation, cavity-controlled reaction routes with the involvement of these intermediates in the complex reaction network, cavity-controlled catalyst deactivation and cavity-controlled diffusion. All these were exhibited by the MTO reaction performances and product selectivity over 8-MR and cavity-type zeolite catalysts. Advanced strategies inspired by the cavity-controlled principle were developed, providing great promise for the optimization and precise control of MTO process.

12.
Natl Sci Rev ; 9(9): nwac151, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36168443

ABSTRACT

Establishing a comprehensive understanding of the dynamical multiscale diffusion and reaction process is crucial for zeolite shape-selective catalysis and is urgently demanded in academia and industry. So far, diffusion and reaction for methanol and dimethyl ether (DME) conversions have usually been studied separately and focused on a single scale. Herein, we decipher the dynamical molecular diffusion and reaction process for methanol and DME conversions within the zeolite material evolving with time, at multiple scales, from the scale of molecules to single catalyst crystal and catalyst ensemble. Microscopic intracrystalline diffusivity is successfully decoupled from the macroscopic experiments and verified by molecular dynamics simulation. Spatiotemporal analyses of the confined carbonaceous species allow us to track the migratory reaction fronts in a single catalyst crystal and the catalyst ensemble. The constrained diffusion of DME relative to methanol alleviates the high local chemical potential of the reactant by attenuating its local enrichment, enhancing the utilization efficiency of the inner active sites of the catalyst crystal. In this context, the dynamical cross-talk behaviors of material, diffusion and reaction occurring at multiple scales is uncovered. Zeolite catalysis not only reflects the reaction characteristics of heterogeneous catalysis, but also provides enhanced, moderate or suppressed local reaction kinetics through the special catalytic micro-environment, which leads to the heterogeneity of diffusion and reaction at multiple scales, thereby realizing efficient and shape-selective catalysis.

13.
ACS Nano ; 15(10): 15841-15849, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34596391

ABSTRACT

Bacterial infectious diseases seriously threaten public health and life. The specific interaction between an antibody and its multivalent antigen is an attractive way to defeat infectious disease. However, due to the high expense and strict storage and applied conditions for antibodies, it is highly desirable but remains an urgent challenge for disease diagnosis and treatment to construct artificial antibodies with strong stability and binding ability and excellent selectivity. Herein, we designed and synthesized antibody-like bio-orthogonal catalysts with the ability to recognize specific bacteria and accomplish in situ drug synthesis in captured bacteria by using improved bacterial imprinting technology. On one hand, the artificial antibody possesses a matching morphology for binding pathogens, and on the other hand, it acts as a bio-orthogonal catalyst for in situ synthesis of antibacterial drugs in live bacteria. Both in vitro and in vivo experiments have demonstrated that our designed antibody can distinguish and selectively bind to specific pathogens and eliminate them on site with the activated drugs. Therefore, our work provides a strategy for designing artificial antibodies with bio-orthogonal catalytic activity and may broaden the application of bio-orthogonal chemistry.


Subject(s)
Anti-Bacterial Agents , Antibodies , Anti-Bacterial Agents/therapeutic use , Bacteria , Catalysis
14.
Colloids Surf B Biointerfaces ; 206: 111948, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34224931

ABSTRACT

The current study reports the isolation of Colletotrichum plurivorum, an endophytic fungus from a Citrus pseudolimon plant and its utilization in the green synthesis of silver oxide nanocuboids (Ag2O NCs) at room temperature. The synthesized nanocrystals were thoroughly characterized by UV-vis, FTIR spectroscopy, field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), X-ray diffraction (XRD) analyses. Electron microscopic images confirmed the formation of cuboid shaped particles having size 200-250 nm in length and 80-150 nm in width, whereas, XRD and selected area electron diffraction (SAED) pattern confirms the formation of cubic Ag2O nanocrystals. Then these Ag2O NCs are applied in antibacterial activities against a pathogenic gram-negative bacteria Escherichia coli and gram-positive bacteria Bacillus subtilis and found very good activities against them. Currently these types of nanocuboids have drawn great interest in the field of catalysis, photocatalysis to biomedical applications.


Subject(s)
Citrus , Metal Nanoparticles , Anti-Bacterial Agents/pharmacology , Colletotrichum , Fungi , Microbial Sensitivity Tests , Oxides , Plant Extracts , Silver Compounds , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
15.
Methods Mol Biol ; 2372: 93-110, 2021.
Article in English | MEDLINE | ID: mdl-34417746

ABSTRACT

Long noncoding RNAs (lncRNAs) are now accepted as key players in diverse cellular functions, yet the structure-function relationships of these novel RNAs remain mostly unknown. Homogenous purification of lncRNAs is a necessary first-step for downstream structural studies. The large size of lncRNAs (often more than 1 kb) presents many unique challenges during the purification process. Here, we detail the purification of lncRNAs, including strategies to identify proper folding conditions of the target lncRNA. Next, we discuss two recently developed RNA structure probing techniques, SHAPE-MaP (SHAPE probing followed by mutational profiling) and DMS-MaP (DMS probing followed by mutational profiling). These techniques couple traditional RNA chemical probing methods with next-generation sequencing and allow high-throughput determination of RNA structures. Using the datasets resulting from these orthogonal probing experiments, we lay out the steps to determine and validate the secondary structure of the target lncRNA. Overall, this chapter details an adaptable protocol that can lead to a better understanding of the structure-function relationships of lncRNAs.


Subject(s)
RNA, Long Noncoding/genetics , High-Throughput Nucleotide Sequencing , Nucleic Acid Conformation , Sequence Analysis, RNA
16.
J Hazard Mater ; 392: 122314, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32092651

ABSTRACT

A self-made microporous molecular sieve CS-Z1 has been found to have excellent adsorption performance for small molecular nitrile and pyridine pollutants in acrylonitrile production wastewater. In order to explore its adsorption mechanism, the adsorption kinetics, isotherms and thermodynamics of CS-Z1 for eight nitrile and pyridine organic pollutants with different structures and properties were investigated. Meanwhile, the analysis of molecular dynamics simulation based on density functional theory was conducted to revel the adsorption-diffusion process of different organic pollutants on the surface and in the pores of CS-Z1. Both the experimental and simulated results verified the shape-selective adsorption mechanism of CS-Z1 for these organic pollutants. The adsorption processes of CS-Z1 for these pollutants were spontaneous physical adsorption, and the adsorption efficiency of CS-Z1 mainly depended on the molecular size of pollutant. Benefitting from the flexible crystalline structure of CS-Z1 and the breathing vibration of CS-Z1 orifices, it could adsorb some pollutants with slightly larger size than its pore diameter. Molecular dynamics simulation results visually display the shape-selective adsorption process of CS-Z1 for these pollutants through the respiratory effect of CS-Z1 molecular sieve orifices.

17.
Adv Mater ; 31(50): e1902181, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31496008

ABSTRACT

Methanol conversion to olefins, as an important reaction in C1 chemistry, provides an alternative platform for producing basic chemicals from nonpetroleum resources such as natural gas and coal. Methanol-to-olefin (MTO) catalysis is one of the critical constraints for the process development, determining the reactor design, and the profitability of the process. After the construction and commissioning of the world's first MTO plant by Dalian Institute of Chemical Physics, based on high-efficiency catalyst and fluidization technology in 2010, more attention has been attracted for a deep understanding of the reaction mechanism and catalysis principle, which has led to the continuous development of catalysts and processes. Herein, the recent progress in MTO catalyst development is summarized, focusing on the advances in the optimization of SAPO-34 catalysts, together with the development efforts on catalysts with preferential ethylene or propylene selectivity.

18.
ACS Appl Mater Interfaces ; 10(31): 26213-26221, 2018 Aug 08.
Article in English | MEDLINE | ID: mdl-30004209

ABSTRACT

Porous carbon materials have attracted considerable attention for their various applications such as catalyst supports for fuel cells. However, few studies focus on the effect of carbon pore structure on different alcohols electrooxidation. In this work, platinum@nitrogen-doped carbon nanospheres with tailored mesopores (Pt@NMCs) are fabricated and exhibit outstanding electrocatalytic activity and durability for alcohol oxidation because of the structural advantages such as adjustable mesopores, N-doped carbon, and embedded catalysts. More importantly, the pore size of NMCs (or called the size of the windows connecting the neighboring spherical cavities), which can be tuned simply by adjusting the diameter of colloidal silica nanospheres, has a great effect on the electrocatalytic activity and selectivity of Pt catalysts toward oxidation of alcohols (methanol, ethanol, and n-propanol). Accordingly, we can adopt optimal Pt@NMCs with appropriate pore size based on different requirements and applications.

19.
J Colloid Interface Sci ; 498: 248-262, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28342308

ABSTRACT

Three morphologies of silver nanoparticles (Ag NPs) such as nanocubes, aggregated anisotropic Ag NPs, and nanospheres were prepared using polystyrene sulfonate (PSS) and citrate as stabilizing agents utilizing a simple wet-chemical and microwave heating route respectively. Ag nanocubes were prepared within one min through microwave heating whereas anisotropic Ag NPs and spherical Ag NPs via 5 and 30min of normal stirring at room temperature (RT) respectively. The shape effect of three different morphologies of Ag NPs were examined in catalysis reaction and in surface enhanced Raman scattering (SERS) studies. For catalysis experiments, reduction of various nitroaromatics was done taking excess NaBH4 in presence of those morphologically different Ag NPs as catalyst and the corresponding catalytic activity is ordered as: Ag nanospheres>aggregated anisotropic Ag NPs>Ag nanocubes. The highest catalytic rate of ∼1.34×10-1min-1 was observed with citrate capped Ag nanospheres. SERS study was done taking methylene blue (MB) as the Raman probe where a highest enhancement factor (EF) of ∼1.05×107 was observed with Ag nanospheres and the order of EF values is as follows: Ag nanospheres>Ag nanocubes>aggregated anisotropic Ag NPs. The highest catalytic and SERS activity of citrate stabilized spherical Ag NPs are attributed due to the fast electron transfer in catalysis and creation of more number of surface active 'hot spots' in SERS studies. In future, the overall process we highlighted here might found potential application for the preparation of other varieties of nanomaterials applicable to catalysis reaction and in SERS-based trace analysis of various biologically important molecules and fine chemicals.

20.
Water Res ; 85: 216-25, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26331895

ABSTRACT

Acrylonitrile production wastewater has been widely recognized as one type of refractory organic wastewater because of its complicated composition and low bioavailability. It usually contains plenty of micromolecular nitrile and pyridine, resulting in high chemical oxygen demand (CODCr), total organic carbon (TOC) and total nitrogen (TN) concentrations. In this study, a novel microporous zeolite, CS-Z1, was developed as an adsorbent for rapidly shape-selective adsorption of the micromolecular pollutants from the acrylonitrile production wastewater, and a visible light-driven Ti-ß-Bi2O3 photocatalysis was introduced to sequentially treat the residual macromolecular pollutants for complete purification. The adsorption processes by CS-Z1 were mostly achieved within the first 5 min, and the equilibrium was reached quickly after 30 min, where the CODCr, TOC and TN removal efficiencies of the wastewater were as high as 93.5%, 92.2% and 96.8%, respectively, much higher than those by other adsorbents. Furthermore, the adsorption efficiencies of CS-Z1 were barely affected by the variation of pH value and temperature, which was mainly attributed to the shape-selective adsorption mechanism of the CS-Z1 zeolite. The Ti-ß-Bi2O3 photocatalysis could remove more than 95% of the residual macromolecular pollutants in the wastewater, where a synergistic mechanism of reduction-oxidation/polymerization was proposed. In a 108 h of CS-Z1 adsorption and Ti-ß-Bi2O3 photocatalysis sequential process, the CODCr, TOC and TN concentrations was reduced to below 20, 7 and 5 mg L(-1), respectively, demonstrating the excellent practical potential of the sequential treatment system for acrylonitrile production wastewater.


Subject(s)
Acrylonitrile/chemistry , Industrial Waste/analysis , Waste Disposal, Fluid/methods , Wastewater/analysis , Water Pollutants, Chemical/chemistry , Zeolites/chemistry , Adsorption , Photolysis
SELECTION OF CITATIONS
SEARCH DETAIL