Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32.339
Filter
Add more filters

Publication year range
1.
Cell ; 187(7): 1762-1768.e9, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38471501

ABSTRACT

Biological dinitrogen (N2) fixation is a key metabolic process exclusively performed by prokaryotes, some of which are symbiotic with eukaryotes. Species of the marine haptophyte algae Braarudosphaera bigelowii harbor the N2-fixing endosymbiotic cyanobacteria UCYN-A, which might be evolving organelle-like characteristics. We found that the size ratio between UCYN-A and their hosts is strikingly conserved across sublineages/species, which is consistent with the size relationships of organelles in this symbiosis and other species. Metabolic modeling showed that this size relationship maximizes the coordinated growth rate based on trade-offs between resource acquisition and exchange. Our findings show that the size relationships of N2-fixing endosymbionts and organelles in unicellular eukaryotes are constrained by predictable metabolic underpinnings and that UCYN-A is, in many regards, functioning like a hypothetical N2-fixing organelle (or nitroplast).


Subject(s)
Cyanobacteria , Haptophyta , Nitrogen Fixation , Cyanobacteria/metabolism , Haptophyta/cytology , Haptophyta/metabolism , Haptophyta/microbiology , Nitrogen/metabolism , Symbiosis
2.
Cell ; 186(24): 5254-5268.e26, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37944513

ABSTRACT

A fundamental feature of cellular growth is that total protein and RNA amounts increase with cell size to keep concentrations approximately constant. A key component of this is that global transcription rates increase in larger cells. Here, we identify RNA polymerase II (RNAPII) as the limiting factor scaling mRNA transcription with cell size in budding yeast, as transcription is highly sensitive to the dosage of RNAPII but not to other components of the transcriptional machinery. Our experiments support a dynamic equilibrium model where global RNAPII transcription at a given size is set by the mass action recruitment kinetics of unengaged nucleoplasmic RNAPII to the genome. However, this only drives a sub-linear increase in transcription with size, which is then partially compensated for by a decrease in mRNA decay rates as cells enlarge. Thus, limiting RNAPII and feedback on mRNA stability work in concert to scale mRNA amounts with cell size.


Subject(s)
Cell Size , RNA Polymerase II , Transcription, Genetic , Feedback , RNA Polymerase II/metabolism , RNA Stability , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
Cell ; 186(6): 1279-1294.e19, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36868220

ABSTRACT

Antarctic krill (Euphausia superba) is Earth's most abundant wild animal, and its enormous biomass is vital to the Southern Ocean ecosystem. Here, we report a 48.01-Gb chromosome-level Antarctic krill genome, whose large genome size appears to have resulted from inter-genic transposable element expansions. Our assembly reveals the molecular architecture of the Antarctic krill circadian clock and uncovers expanded gene families associated with molting and energy metabolism, providing insights into adaptations to the cold and highly seasonal Antarctic environment. Population-level genome re-sequencing from four geographical sites around the Antarctic continent reveals no clear population structure but highlights natural selection associated with environmental variables. An apparent drastic reduction in krill population size 10 mya and a subsequent rebound 100 thousand years ago coincides with climate change events. Our findings uncover the genomic basis of Antarctic krill adaptations to the Southern Ocean and provide valuable resources for future Antarctic research.


Subject(s)
Euphausiacea , Genome , Animals , Circadian Clocks/genetics , Ecosystem , Euphausiacea/genetics , Euphausiacea/physiology , Genomics , Sequence Analysis, DNA , DNA Transposable Elements , Biological Evolution , Adaptation, Physiological
4.
Cell ; 184(14): 3626-3642.e14, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34186018

ABSTRACT

All cells fold their genomes, including bacterial cells, where the chromosome is compacted into a domain-organized meshwork called the nucleoid. How compaction and domain organization arise is not fully understood. Here, we describe a method to estimate the average mesh size of the nucleoid in Escherichia coli. Using nucleoid mesh size and DNA concentration estimates, we find that the cytoplasm behaves as a poor solvent for the chromosome when the cell is considered as a simple semidilute polymer solution. Monte Carlo simulations suggest that a poor solvent leads to chromosome compaction and DNA density heterogeneity (i.e., domain formation) at physiological DNA concentration. Fluorescence microscopy reveals that the heterogeneous DNA density negatively correlates with ribosome density within the nucleoid, consistent with cryoelectron tomography data. Drug experiments, together with past observations, suggest the hypothesis that RNAs contribute to the poor solvent effects, connecting chromosome compaction and domain formation to transcription and intracellular organization.


Subject(s)
Chromosomes, Bacterial/chemistry , Escherichia coli/metabolism , Nucleic Acid Conformation , Solvents/chemistry , Transcription, Genetic , Aminoglycosides/pharmacology , Computer Simulation , DNA, Bacterial/chemistry , Diffusion , Escherichia coli/drug effects , Green Fluorescent Proteins/metabolism , Particle Size , RNA, Bacterial/metabolism , Ribosomes/metabolism , Ribosomes/ultrastructure , Transcription, Genetic/drug effects
5.
Cell ; 184(5): 1362-1376.e18, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33545087

ABSTRACT

Lungfishes are the closest extant relatives of tetrapods and preserve ancestral traits linked with the water-to-land transition. However, their huge genome sizes have hindered understanding of this key transition in evolution. Here, we report a 40-Gb chromosome-level assembly of the African lungfish (Protopterus annectens) genome, which is the largest genome assembly ever reported and has a contig and chromosome N50 of 1.60 Mb and 2.81 Gb, respectively. The large size of the lungfish genome is due mainly to retrotransposons. Genes with ultra-long length show similar expression levels to other genes, indicating that lungfishes have evolved high transcription efficacy to keep gene expression balanced. Together with transcriptome and experimental data, we identified potential genes and regulatory elements related to such terrestrial adaptation traits as pulmonary surfactant, anxiolytic ability, pentadactyl limbs, and pharyngeal remodeling. Our results provide insights and key resources for understanding the evolutionary pathway leading from fishes to humans.


Subject(s)
Adaptation, Biological , Biological Evolution , Fishes/genetics , Whole Genome Sequencing , Animal Fins/anatomy & histology , Animal Fins/physiology , Animals , Extremities/anatomy & histology , Extremities/physiology , Fishes/anatomy & histology , Fishes/classification , Fishes/physiology , Phylogeny , Respiratory Physiological Phenomena , Respiratory System/anatomy & histology , Vertebrates/genetics
6.
Annu Rev Cell Dev Biol ; 38: 291-319, 2022 10 06.
Article in English | MEDLINE | ID: mdl-35562854

ABSTRACT

The most fundamental feature of cellular form is size, which sets the scale of all cell biological processes. Growth, form, and function are all necessarily linked in cell biology, but we often do not understand the underlying molecular mechanisms nor their specific functions. Here, we review progress toward determining the molecular mechanisms that regulate cell size in yeast, animals, and plants, as well as progress toward understanding the function of cell size regulation. It has become increasingly clear that the mechanism of cell size regulation is deeply intertwined with basic mechanisms of biosynthesis, and how biosynthesis can be scaled (or not) in proportion to cell size. Finally, we highlight recent findings causally linking aberrant cell size regulation to cellular senescence and their implications for cancer therapies.


Subject(s)
Eukaryota , Eukaryotic Cells , Animals , Cell Size , Cellular Senescence/genetics
7.
Cell ; 177(6): 1632-1648.e20, 2019 05 30.
Article in English | MEDLINE | ID: mdl-31150626

ABSTRACT

The scaling of organelles with cell size is thought to be exclusive to eukaryotes. Here, we demonstrate that similar scaling relationships hold for the bacterial nucleoid. Despite the absence of a nuclear membrane, nucleoid size strongly correlates with cell size, independent of changes in DNA amount and across various nutrient conditions. This correlation is observed in diverse bacteria, revealing a near-constant ratio between nucleoid and cell size for a given species. As in eukaryotes, the nucleocytoplasmic ratio in bacteria varies greatly among species. This spectrum of nucleocytoplasmic ratios is independent of genome size, and instead it appears linked to the average population cell size. Bacteria with different nucleocytoplasmic ratios have a cytoplasm with different biophysical properties, impacting ribosome mobility and localization. Together, our findings identify new organizational principles and biophysical features of bacterial cells, implicating the nucleocytoplasmic ratio and cell size as determinants of the intracellular organization of translation.


Subject(s)
Cellular Structures/metabolism , Cellular Structures/physiology , Protein Biosynthesis/physiology , Bacteria/genetics , Bacterial Proteins/metabolism , Cell Size , Cytoplasm/physiology , DNA, Bacterial/metabolism , DNA-Binding Proteins/metabolism , Organelles/metabolism , Prokaryotic Cells/metabolism , Prokaryotic Cells/physiology , Ribosomes/metabolism
8.
Annu Rev Cell Dev Biol ; 36: 219-236, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32603615

ABSTRACT

As cells grow, the size and number of their internal organelles increase in order to keep up with increased metabolic requirements. Abnormal size of organelles is a hallmark of cancer and an important aspect of diagnosis in cytopathology. Most organelles vary in either size or number, or both, as a function of cell size, but the mechanisms that create this variation remain unclear. In some cases, organelle size appears to scale with cell size through processes of relative growth, but in others the size may be set by either active measurement systems or genetic programs that instruct organelle biosynthetic activities to create organelles of a size appropriate to a given cell type.


Subject(s)
Subcellular Fractions/metabolism , Animals , Humans , Models, Biological , Organelles/metabolism
9.
Cell ; 173(3): 569-580.e15, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29677510

ABSTRACT

Understanding the physiology and genetics of human hypoxia tolerance has important medical implications, but this phenomenon has thus far only been investigated in high-altitude human populations. Another system, yet to be explored, is humans who engage in breath-hold diving. The indigenous Bajau people ("Sea Nomads") of Southeast Asia live a subsistence lifestyle based on breath-hold diving and are renowned for their extraordinary breath-holding abilities. However, it is unknown whether this has a genetic basis. Using a comparative genomic study, we show that natural selection on genetic variants in the PDE10A gene have increased spleen size in the Bajau, providing them with a larger reservoir of oxygenated red blood cells. We also find evidence of strong selection specific to the Bajau on BDKRB2, a gene affecting the human diving reflex. Thus, the Bajau, and possibly other diving populations, provide a new opportunity to study human adaptation to hypoxia tolerance. VIDEO ABSTRACT.


Subject(s)
Adaptation, Physiological , Breath Holding , Diving , Organ Size , Phosphoric Diester Hydrolases/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Alleles , Asian People , Erythrocytes/cytology , Ethnicity , Female , Genetic Variation , Genomics , Humans , Hypoxia , Indonesia/ethnology , Lung , Male , Middle Aged , Oxygen/physiology , Phenotype , Polymorphism, Single Nucleotide , Selection, Genetic , Spleen/physiology , White People , Young Adult
10.
Cell ; 172(4): 758-770.e14, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29425492

ABSTRACT

The means by which the physicochemical properties of different cellular components together determine bacterial cell shape remain poorly understood. Here, we investigate a programmed cell-shape change during Bacillus subtilis sporulation, when a rod-shaped vegetative cell is transformed to an ovoid spore. Asymmetric cell division generates a bigger mother cell and a smaller, hemispherical forespore. The septum traps the forespore chromosome, which is translocated to the forespore by SpoIIIE. Simultaneously, forespore size increases as it is reshaped into an ovoid. Using genetics, timelapse microscopy, cryo-electron tomography, and mathematical modeling, we demonstrate that forespore growth relies on membrane synthesis and SpoIIIE-mediated chromosome translocation, but not on peptidoglycan or protein synthesis. Our data suggest that the hydrated nucleoid swells and inflates the forespore, displacing ribosomes to the cell periphery, stretching septal peptidoglycan, and reshaping the forespore. Our results illustrate how simple biophysical interactions between core cellular components contribute to cellular morphology.


Subject(s)
Asymmetric Cell Division/physiology , Bacillus subtilis/physiology , Chromosomes, Bacterial/metabolism , Spores, Bacterial/metabolism , Translocation, Genetic , Bacillus subtilis/ultrastructure , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chromosomes, Bacterial/genetics , Peptidoglycan/biosynthesis , Peptidoglycan/genetics , Protein Biosynthesis/physiology , Spores, Bacterial/genetics , Spores, Bacterial/ultrastructure
11.
Immunity ; 56(10): 2425-2441.e14, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37689061

ABSTRACT

Nanoparticles for multivalent display and delivery of vaccine antigens have emerged as a promising avenue for enhancing B cell responses to protein subunit vaccines. Here, we evaluated B cell responses in rhesus macaques immunized with prefusion-stabilized respiratory syncytial virus (RSV) F glycoprotein trimer compared with nanoparticles displaying 10 or 20 copies of the same antigen. We show that multivalent display skews antibody specificities and drives epitope-focusing of responding B cells. Antibody cloning and repertoire sequencing revealed that focusing was driven by the expansion of clonally distinct B cells through recruitment of diverse precursors. We identified two antibody lineages that developed either ultrapotent neutralization or pneumovirus cross-neutralization from precursor B cells with low initial affinity for the RSV-F immunogen. This suggests that increased avidity by multivalent display facilitates the activation and recruitment of these cells. Diversification of the B cell response by multivalent nanoparticle immunogens has broad implications for vaccine design.

12.
Cell ; 169(4): 651-663.e14, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28475894

ABSTRACT

The liver plays a pivotal role in metabolism and xenobiotic detoxification, processes that must be particularly efficient when animals are active and feed. A major question is how the liver adapts to these diurnal changes in physiology. Here, we show that, in mice, liver mass, hepatocyte size, and protein levels follow a daily rhythm, whose amplitude depends on both feeding-fasting and light-dark cycles. Correlative evidence suggests that the daily oscillation in global protein accumulation depends on a similar fluctuation in ribosome number. Whereas rRNA genes are transcribed at similar rates throughout the day, some newly synthesized rRNAs are polyadenylated and degraded in the nucleus in a robustly diurnal fashion with a phase opposite to that of ribosomal protein synthesis. Based on studies with cultured fibroblasts, we propose that rRNAs not packaged into complete ribosomal subunits are polyadenylated by the poly(A) polymerase PAPD5 and degraded by the nuclear exosome.


Subject(s)
Liver/cytology , Liver/physiology , Ribosomes/metabolism , Animals , Cell Nucleus/metabolism , Cell Size , Circadian Rhythm , Exosomes/metabolism , Hepatocytes/cytology , Hepatocytes/physiology , Male , Mice , Mice, Inbred C57BL , Photoperiod , RNA Processing, Post-Transcriptional , RNA, Ribosomal/genetics , Ribosomal Proteins/genetics , Ribosomes/chemistry
13.
Cell ; 171(2): 470-480.e8, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28919077

ABSTRACT

Major advances in crop yields are needed in the coming decades. However, plant breeding is currently limited by incremental improvements in quantitative traits that often rely on laborious selection of rare naturally occurring mutations in gene-regulatory regions. Here, we demonstrate that CRISPR/Cas9 genome editing of promoters generates diverse cis-regulatory alleles that provide beneficial quantitative variation for breeding. We devised a simple genetic scheme, which exploits trans-generational heritability of Cas9 activity in heterozygous loss-of-function mutant backgrounds, to rapidly evaluate the phenotypic impact of numerous promoter variants for genes regulating three major productivity traits in tomato: fruit size, inflorescence branching, and plant architecture. Our approach allows immediate selection and fixation of novel alleles in transgene-free plants and fine manipulation of yield components. Beyond a platform to enhance variation for diverse agricultural traits, our findings provide a foundation for dissecting complex relationships between gene-regulatory changes and control of quantitative traits.


Subject(s)
Crops, Agricultural/genetics , Gene Editing , Genome, Plant , CRISPR-Cas Systems , Promoter Regions, Genetic , Quantitative Trait Loci
14.
Mol Cell ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39084218

ABSTRACT

Cell size and growth are intimately related across the evolutionary scale, but whether cell size is important to attain maximal growth or fitness is still an open question. We show that growth rate is a non-monotonic function of cell volume, with maximal values around the critical size of wild-type yeast cells. The transcriptome of yeast and mouse cells undergoes a relative inversion in response to cell size, which we associate theoretically and experimentally with the necessary genome-wide diversity in RNA polymerase II affinity for promoters. Although highly expressed genes impose strong negative effects on fitness when the DNA/mass ratio is reduced, transcriptomic alterations mimicking the relative inversion by cell size strongly restrain cell growth. In all, our data indicate that cells set the critical size to obtain a properly balanced transcriptome and, as a result, maximize growth and fitness during proliferation.

15.
Physiol Rev ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900644

ABSTRACT

Depending on cell type, environmental inputs, and disease, the cells in the human body can have widely different sizes. In recent years, it became clear that cell size is a major regulator of cell function. However, we are only beginning to understand how optimization of cell function determines a given cell's optimal size. Here, we review currently known size control strategies of eukaryotic cells, and the intricate link of cell size to intracellular biomolecular scaling, organelle homeostasis and cell cycle progression. We detail the cell size dependent regulation of early development and the impact of cell size on cell differentiation. Given the importance of cell size for normal cellular physiology, cell size control must account for changing environmental conditions. We describe how cells sense environmental stimuli, such as nutrient availability, and accordingly adapt their size by regulating cell growth and cell cycle progression. Moreover, we discuss the correlation of pathological states with misregulation of cell size, and how for a long time, this was considered a downstream consequence of cellular dysfunction. We review newer studies that reveal a reversed causality, with misregulated cell size leading to pathophysiological phenotypes such as senescence and aging. In summary, we highlight important roles of cell size in cellular function and dysfunction, which could have major implications for both diagnostics and treatment in the clinic.

16.
Mol Cell ; 83(22): 4032-4046.e6, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37977116

ABSTRACT

Cellular senescence refers to an irreversible state of cell-cycle arrest and plays important roles in aging and cancer biology. Because senescence is associated with increased cell size, we used reversible cell-cycle arrests combined with growth rate modulation to study how excessive growth affects proliferation. We find that enlarged cells upregulate p21, which limits cell-cycle progression. Cells that re-enter the cell cycle encounter replication stress that is well tolerated in physiologically sized cells but causes severe DNA damage in enlarged cells, ultimately resulting in mitotic failure and permanent cell-cycle withdrawal. We demonstrate that enlarged cells fail to recruit 53BP1 and other non-homologous end joining (NHEJ) machinery to DNA damage sites and fail to robustly initiate DNA damage-dependent p53 signaling, rendering them highly sensitive to genotoxic stress. We propose that an impaired DNA damage response primes enlarged cells for persistent replication-acquired damage, ultimately leading to cell division failure and permanent cell-cycle exit.


Subject(s)
Cellular Senescence , DNA Damage , Cell Cycle/genetics , Cell Division , Cellular Senescence/genetics , Homeostasis , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
17.
Mol Cell ; 83(10): 1725-1742.e12, 2023 05 18.
Article in English | MEDLINE | ID: mdl-37084731

ABSTRACT

Most human proteins lack chemical probes, and several large-scale and generalizable small-molecule binding assays have been introduced to address this problem. How compounds discovered in such "binding-first" assays affect protein function, nonetheless, often remains unclear. Here, we describe a "function-first" proteomic strategy that uses size exclusion chromatography (SEC) to assess the global impact of electrophilic compounds on protein complexes in human cells. Integrating the SEC data with cysteine-directed activity-based protein profiling identifies changes in protein-protein interactions that are caused by site-specific liganding events, including the stereoselective engagement of cysteines in PSME1 and SF3B1 that disrupt the PA28 proteasome regulatory complex and stabilize a dynamic state of the spliceosome, respectively. Our findings thus show how multidimensional proteomic analysis of focused libraries of electrophilic compounds can expedite the discovery of chemical probes with site-specific functional effects on protein complexes in human cells.


Subject(s)
Proteomics , Transcription Factors , Humans , Proteomics/methods , Cysteine/metabolism , Ligands
18.
Mol Cell ; 83(22): 4062-4077.e5, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37977118

ABSTRACT

Abnormal increases in cell size are associated with senescence and cell cycle exit. The mechanisms by which overgrowth primes cells to withdraw from the cell cycle remain unknown. We address this question using CDK4/6 inhibitors, which arrest cells in G0/G1 and are licensed to treat advanced HR+/HER2- breast cancer. We demonstrate that CDK4/6-inhibited cells overgrow during G0/G1, causing p38/p53/p21-dependent cell cycle withdrawal. Cell cycle withdrawal is triggered by biphasic p21 induction. The first p21 wave is caused by osmotic stress, leading to p38- and size-dependent accumulation of p21. CDK4/6 inhibitor washout results in some cells entering S-phase. Overgrown cells experience replication stress, resulting in a second p21 wave that promotes cell cycle withdrawal from G2 or the subsequent G1. We propose that the levels of p21 integrate signals from overgrowth-triggered stresses to determine cell fate. This model explains how hypertrophy can drive senescence and why CDK4/6 inhibitors have long-lasting effects in patients.


Subject(s)
Tumor Suppressor Protein p53 , Humans , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cell Cycle , Cell Division , Tumor Suppressor Protein p53/genetics , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/metabolism
19.
Mol Cell ; 83(22): 4078-4092.e6, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37977119

ABSTRACT

Tumor growth is driven by continued cellular growth and proliferation. Cyclin-dependent kinase 7's (CDK7) role in activating mitotic CDKs and global gene expression makes it therefore an attractive target for cancer therapies. However, what makes cancer cells particularly sensitive to CDK7 inhibition (CDK7i) remains unclear. Here, we address this question. We show that CDK7i, by samuraciclib, induces a permanent cell-cycle exit, known as senescence, without promoting DNA damage signaling or cell death. A chemogenetic genome-wide CRISPR knockout screen identified that active mTOR (mammalian target of rapamycin) signaling promotes samuraciclib-induced senescence. mTOR inhibition decreases samuraciclib sensitivity, and increased mTOR-dependent growth signaling correlates with sensitivity in cancer cell lines. Reverting a growth-promoting mutation in PIK3CA to wild type decreases sensitivity to CDK7i. Our work establishes that enhanced growth alone promotes CDK7i sensitivity, providing an explanation for why some cancers are more sensitive to CDK inhibition than normally growing cells.


Subject(s)
Cyclin-Dependent Kinases , Neoplasms , Humans , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinase-Activating Kinase , Signal Transduction , Cell Cycle , Enzyme Inhibitors , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Cell Line, Tumor
20.
Annu Rev Genet ; 56: 165-185, 2022 11 30.
Article in English | MEDLINE | ID: mdl-35977407

ABSTRACT

Though cell size varies between different cells and across species, the nuclear-to-cytoplasmic (N/C) ratio is largely maintained across species and within cell types. A cell maintains a relatively constant N/C ratio by coupling DNA content, nuclear size, and cell size. We explore how cells couple cell division and growth to DNA content. In some cases, cells use DNA as a molecular yardstick to control the availability of cell cycle regulators. In other cases, DNA sets a limit for biosynthetic capacity. Developmentally programmed variations in the N/C ratio for a given cell type suggest that a specific N/C ratio is required to respond to given physiological demands. Recent observations connecting decreased N/C ratios with cellular senescence indicate that maintaining the proper N/C ratio is essential for proper cellular functioning. Together, these findings suggest a causative, not simply correlative, role for the N/C ratio in regulating cell growth and cell cycle progression.


Subject(s)
Ploidies , Cell Division/genetics , Cell Cycle/genetics , Cytoplasm/genetics , Cell Size
SELECTION OF CITATIONS
SEARCH DETAIL