Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Development ; 151(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619323

ABSTRACT

Regulation of chromatin states is essential for proper temporal and spatial gene expression. Chromatin states are modulated by remodeling complexes composed of components that have enzymatic activities. CHD4 is the catalytic core of the nucleosome remodeling and deacetylase (NuRD) complex, which represses gene transcription. However, it remains to be determined how CHD4, a ubiquitous enzyme that remodels chromatin structure, functions in cardiomyocytes to maintain heart development. In particular, whether other proteins besides the NuRD components interact with CHD4 in the heart is controversial. Using quantitative proteomics, we identified that CHD4 interacts with SMYD1, a striated muscle-restricted histone methyltransferase that is essential for cardiomyocyte differentiation and cardiac morphogenesis. Comprehensive transcriptomic and chromatin accessibility studies of Smyd1 and Chd4 null embryonic mouse hearts revealed that SMYD1 and CHD4 repress a group of common genes and pathways involved in glycolysis, response to hypoxia, and angiogenesis. Our study reveals a mechanism by which CHD4 functions during heart development, and a previously uncharacterized mechanism regarding how SMYD1 represses cardiac transcription in the developing heart.


Subject(s)
DNA Helicases , DNA-Binding Proteins , Gene Expression Regulation, Developmental , Heart , Mi-2 Nucleosome Remodeling and Deacetylase Complex , Myocytes, Cardiac , Transcription Factors , Animals , Humans , Mice , Cell Differentiation/genetics , Chromatin/metabolism , Glycolysis/genetics , Heart/embryology , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Mice, Knockout , Muscle Proteins/metabolism , Muscle Proteins/genetics , Myocytes, Cardiac/metabolism , Proteomics , Transcription, Genetic
2.
Exp Cell Res ; 434(2): 113863, 2024 01 15.
Article in English | MEDLINE | ID: mdl-38097153

ABSTRACT

Rhabdomyosarcoma (RMS), a tumor that consists of poorly differentiated skeletal muscle cells, is the most common soft-tissue sarcoma in children. Despite considerable progress within the last decades, therapeutic options are still limited, warranting the need for novel approaches. Recent data suggest deregulation of the Smyd1 protein, a sumoylation target as well as H3K4me2/3 methyltransferase and transcriptional regulator in myogenesis, and its binding partner skNAC, in RMS cells. Here, we show that despite the fact that most RMS cells express at least low levels of Smyd1 and skNAC, failure to upregulate expression of these genes in reaction to differentiation-promoting signals can always be observed. While overexpression of the Smyd1 gene enhances many aspects of RMS cell differentiation and inhibits proliferation rate and metastatic potential of these cells, functional integrity of the putative Smyd1 sumoylation motif and its SET domain, the latter being crucial for HMT activity, appear to be prerequisites for most of these effects. Based on these findings, we explored the potential for novel RMS therapeutic strategies, employing small-molecule compounds to enhance Smyd1 activity. In particular, we tested manipulation of (a) Smyd1 sumoylation, (b) stability of H3K4me2/3 marks, and (c) calpain activity, with calpains being important targets of Smyd1 in myogenesis. We found that specifically the last strategy might represent a promising approach, given that suitable small-molecule compounds will be available for clinical use in the future.


Subject(s)
Rhabdomyosarcoma , Transcription Factors , Child , Humans , Transcription Factors/metabolism , DNA-Binding Proteins/metabolism , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/therapy , Rhabdomyosarcoma/pathology , Muscle Fibers, Skeletal/metabolism , Cell Differentiation/genetics , Cell Line, Tumor
3.
Basic Res Cardiol ; 118(1): 20, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37212935

ABSTRACT

SMYD1, a striated muscle-specific lysine methyltransferase, was originally shown to play a key role in embryonic cardiac development but more recently we demonstrated that loss of Smyd1 in the murine adult heart leads to cardiac hypertrophy and failure. However, the effects of SMYD1 overexpression in the heart and its molecular function in the cardiomyocyte in response to ischemic stress are unknown. In this study, we show that inducible, cardiomyocyte-specific overexpression of SMYD1a in mice protects the heart from ischemic injury as seen by a > 50% reduction in infarct size and decreased myocyte cell death. We also demonstrate that attenuated pathological remodeling is a result of enhanced mitochondrial respiration efficiency, which is driven by increased mitochondrial cristae formation and stabilization of respiratory chain supercomplexes within the cristae. These morphological changes occur concomitant with increased OPA1 expression, a known driver of cristae morphology and supercomplex formation. Together, these analyses identify OPA1 as a novel downstream target of SMYD1a whereby cardiomyocytes upregulate energy efficiency to dynamically adapt to the energy demands of the cell. In addition, these findings highlight a new epigenetic mechanism by which SMYD1a regulates mitochondrial energetics and functions to protect the heart from ischemic injury.


Subject(s)
Muscle, Skeletal , Myocytes, Cardiac , Animals , Mice , Cardiomegaly/metabolism , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Myocytes, Cardiac/metabolism
4.
FASEB J ; 35(7): e21686, 2021 07.
Article in English | MEDLINE | ID: mdl-34101239

ABSTRACT

Unbalanced copper (Cu2+ ) homeostasis is associated with the developmental defects of vertebrate myogenesis, but the underlying molecular mechanisms remain elusive. In this study, it was found that Cu2+ stressed zebrafish embryos and larvae showed reduced locomotor speed as well as loose and decreased myofibrils in skeletal muscle, coupled with the downregulated expression of muscle fiber markers mylpfa and smyhc1l and the irregular arrangement of myofibril and sarcomere. Meanwhile, the Cu2+ stressed zebrafish embryos and larvae also showed significant reduction in the expression of H3K4 methyltransferase smyd1b transcripts and H3K4me3 protein as well as in the binding enrichment of H3K4me3 on gene mylpfa promoter in skeletal muscle cells, suggesting that smyd1b-H3K4me3 axis mediates the Cu2+ -induced myofibrils specification defects. Additionally, whole genome DNA methylation sequencing unveiled that the gene smyd5 exhibited significant promoter hyper-methylation and increased expression in Cu2+ stressed embryos, and the ectopic expression of smyd5 in zebrafish embryos also induced the myofibrils specification defects as those observed in Cu2+ stressed embryos. Moreover, Cu2+ was shown to suppress myofibrils specification and smyd1b promoter transcriptional activity directly independent of the integral function of copper transporter cox17 and atp7b. All these data may shed light on the linkage of unbalanced copper homeostasis with specific gene promoter methylation and epigenetic histone protein modification as well as the resultant signaling transduction and the myofibrillogenesis defects.


Subject(s)
Copper/toxicity , DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation, Developmental , Muscle Development , Muscle, Skeletal/pathology , Animals , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Signal Transduction , Zebrafish
5.
Biochem J ; 478(1): 217-234, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33241844

ABSTRACT

Smyd1 is an epigenetic modulator of gene expression that has been well-characterized in muscle cells. It was recently reported that Smyd1 levels are modulated by inflammatory processes. Since inflammation affects the vascular endothelium, this study aimed to characterize Smyd1 expression in endothelial cells. We detected Smyd1 in human endothelial cells (HUVEC and EA.hy926 cells), where the protein was largely localized in PML nuclear bodies (PML-NBs). By transfection of EA.hy926 cells with expression vectors encoding Smyd1, PML, SUMO1, active or mutant forms of the SUMO protease SuPr1 and/or the SUMO-conjugation enzyme UBC9, as well as Smyd1- or PML-specific siRNAs, in the presence or absence of the translation blocker cycloheximide or the proteasome-inhibitor MG132, and supported by computational modeling, we show that Smyd1 is SUMOylated in a PML-dependent manner and thereby addressed for degradation in proteasomes. Furthermore, transfection with Smyd1-encoding vectors led to PML up-regulation at the mRNA level, while PML transfection lowered Smyd1 protein stability. Incubation of EA.hy926 cells with the pro-inflammatory cytokine TNF-α resulted in a constant increase in Smyd1 mRNA and protein over 24 h, while incubation with IFN-γ induced a transient increase in Smyd1 expression, which peaked at 6 h and decreased to control values within 24 h. The IFN-γ-induced increase in Smyd1 was accompanied by more Smyd1 SUMOylation and more/larger PML-NBs. In conclusion, our data indicate that in endothelial cells, Smyd1 levels are regulated through a negative feedback mechanism based on SUMOylation and PML availability. This molecular control loop is stimulated by various cytokines.


Subject(s)
Cytokines/pharmacology , DNA-Binding Proteins/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Muscle Proteins/metabolism , Promyelocytic Leukemia Protein/metabolism , Sumoylation/drug effects , Transcription Factors/metabolism , Cell Nucleus/metabolism , Cycloheximide/pharmacology , DNA-Binding Proteins/genetics , Gene Expression , Human Umbilical Vein Endothelial Cells , Humans , Interferon-gamma/pharmacology , Leupeptins/pharmacology , Muscle Proteins/genetics , Promyelocytic Leukemia Protein/genetics , Proteasome Inhibitors/pharmacology , Protein Processing, Post-Translational/drug effects , Protein Processing, Post-Translational/genetics , RNA, Small Interfering , SUMO-1 Protein/genetics , SUMO-1 Protein/metabolism , Sumoylation/genetics , Transcription Factors/genetics , Transfection , Tumor Necrosis Factor-alpha/pharmacology , Up-Regulation
6.
Biosci Biotechnol Biochem ; 85(12): 2383-2391, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34601561

ABSTRACT

Sepsis-induced cardiomyopathy (SIC) is a major complication of sepsis. SET and MYND domain containing 1 (SMYD1) has central importance in heart development, and its role in SIC has not been identified. Herein, we found that the expression of SMYD1 was downregulated in myocardial tissues of SIC patients (from GEO database: GSE79962) and lipopolysaccharide (LPS)-induced SIC rats, and LPS-induced H9c2 cardiomyocytes. We used LPS-stimulated H9c2 cells that mimic sepsis in vitro to explore the function of SMYD1 in SIC. MTT assay, LDH and CK-MB release assay, flow cytometry, and ELISA assay showed that SMYD1 overexpression enhanced cell viability, alleviated cell injury, impeded apoptosis, and reduced the level of proinflammatory factors and NF-κB activation under the condition of LPS stimulation. Moreover, SMYD1 exerted protective effect on H9c2 cells stimulated with LPS through relieving endoplasmic reticulum (ER) stress. In conclusion, overexpression of SMYD1 alleviates cardiac injury through relieving ER stress during sepsis.


Subject(s)
Endoplasmic Reticulum Stress
7.
Proc Natl Acad Sci U S A ; 115(33): E7871-E7880, 2018 08 14.
Article in English | MEDLINE | ID: mdl-30061404

ABSTRACT

Smyd1, a muscle-specific histone methyltransferase, has established roles in skeletal and cardiac muscle development, but its role in the adult heart remains poorly understood. Our prior work demonstrated that cardiac-specific deletion of Smyd1 in adult mice (Smyd1-KO) leads to hypertrophy and heart failure. Here we show that down-regulation of mitochondrial energetics is an early event in these Smyd1-KO mice preceding the onset of structural abnormalities. This early impairment of mitochondrial energetics in Smyd1-KO mice is associated with a significant reduction in gene and protein expression of PGC-1α, PPARα, and RXRα, the master regulators of cardiac energetics. The effect of Smyd1 on PGC-1α was recapitulated in primary cultured rat ventricular myocytes, in which acute siRNA-mediated silencing of Smyd1 resulted in a greater than twofold decrease in PGC-1α expression without affecting that of PPARα or RXRα. In addition, enrichment of histone H3 lysine 4 trimethylation (a mark of gene activation) at the PGC-1α locus was markedly reduced in Smyd1-KO mice, and Smyd1-induced transcriptional activation of PGC-1α was confirmed by luciferase reporter assays. Functional confirmation of Smyd1's involvement showed an increase in mitochondrial respiration capacity induced by overexpression of Smyd1, which was abolished by siRNA-mediated PGC-1α knockdown. Conversely, overexpression of PGC-1α rescued transcript expression and mitochondrial respiration caused by silencing Smyd1 in cardiomyocytes. These findings provide functional evidence for a role of Smyd1, or any member of the Smyd family, in regulating cardiac energetics in the adult heart, which is mediated, at least in part, via modulating PGC-1α.


Subject(s)
DNA-Binding Proteins/metabolism , Energy Metabolism/physiology , Histone-Lysine N-Methyltransferase/metabolism , Mitochondria, Heart/metabolism , Muscle Proteins/metabolism , Myocardium/enzymology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/biosynthesis , Transcription Factors/metabolism , Animals , DNA-Binding Proteins/genetics , Gene Expression Regulation , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/genetics , Mice , Mice, Knockout , Mitochondria, Heart/genetics , Muscle Proteins/genetics , PPAR alpha/biosynthesis , PPAR alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Retinoid X Receptor alpha/biosynthesis , Retinoid X Receptor alpha/genetics , Transcription Factors/genetics
8.
Clin Chem Lab Med ; 57(4): 532-539, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30205637

ABSTRACT

Background Hypertrophic cardiomyopathy (HCM) is a serious disorder and one of the leading causes of mortality worldwide. HCM is characterized as left ventricular hypertrophy in the absence of any other loading conditions. In previous studies, mutations in at least 50 genes have been identified in HCM patients. Methods In this research, the genetic lesion of an HCM patient was identified by whole exome sequencing. Real-time polymerase chain reaction (PCR), immunofluorescence and Western blot were used to analyze the effects of the identified mutation. Results According to whole exome sequencing, we identified a de novo mutation (c.814T>C/p.F272L) of SET and MYND domain containing histone methyltransferase 1 (SMYD1) in a Chinese patient with HCM exhibiting syncope. We then generated HIS-SMYD1-pcDNA3.1+ (WT and c.814T>C/p.F272L) plasmids for transfection into AC16 cells to functionalize the mutation. The immunofluorescence experiments indicated that this mutation may block the SMYD1 protein from entering the nucleus. Both Western blot and real-time PCR revealed that, compared with cells transfected with WT plasmids, the expression of HCM-associated genes such as ß-myosin heavy chains, SMYD1 chaperones (HSP90) and downstream targets including TGF-ß were all disrupted in cells transfected with the mutant plasmid. Previous studies have demonstrated that SMYD1 plays a crucial role in sarcomere organization and heart development. Conclusions This novel mutation (c.814T>C/p.F272L) may be the first identified disease-causing mutation of SMYD1 in HCM patients worldwide. Our research expands the spectrum of HCM-causing genes and contributes to genetic counseling for HCM patients.


Subject(s)
Cardiomyopathy, Hypertrophic/genetics , DNA-Binding Proteins/genetics , Muscle Proteins/genetics , Transcription Factors/genetics , Cardiomyopathy, Hypertrophic/blood , DNA-Binding Proteins/blood , Humans , Male , Muscle Proteins/blood , Mutation , Transcription Factors/blood , Tumor Cells, Cultured , Exome Sequencing
9.
Pediatr Cardiol ; 40(8): 1745-1747, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31278431

ABSTRACT

SET and MYND domain-containing protein 1 (SMYD1) has been shown to be responsible for the development of fast twitch and cardiac muscle. Mutations in SMYD1 have been shown to be uniformly fatal in laboratory studies, and not previously described in living humans. We describe here the care of an infant suffering from cardiac failure due to an SMYD1 mutation requiring biventricular assist devices as a bridge to successful heart transplantation. The patient is now doing well 2 years post-transplant and represents a known survivor of a suspected uniformly fatal genetic mutation.


Subject(s)
Cardiomyopathy, Dilated/genetics , DNA-Binding Proteins , Heart Failure/genetics , Muscle Proteins , Transcription Factors , Cardiomyopathy, Dilated/congenital , Cardiomyopathy, Dilated/surgery , Female , Heart Failure/congenital , Heart Failure/surgery , Heart Transplantation , Heart-Assist Devices , Humans , Infant , Male , Mutation , Myocardium , Treatment Outcome
10.
Biochem Biophys Res Commun ; 496(2): 339-345, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29331378

ABSTRACT

Sarcomeric protein turnover needs to be tightly balanced to assure proper assembly and renewal of sarcomeric units within muscle tissues. The mechanisms regulating these fundamental processes are only poorly understood, but of great clinical importance since many cardiac and skeletal muscle diseases are associated with defective sarcomeric organization. The SET- and MYND domain containing protein 1b (Smyd1b) is known to play a crucial role in myofibrillogenesis by functionally interacting with the myosin chaperones Unc45b and Hsp90α1. In zebrafish, Smyd1b, Unc45b and Hsp90α1 are part of the misfolded myosin response (MMR), a regulatory transcriptional response that is activated by disturbed myosin homeostasis. Genome duplication in zebrafish led to a second smyd1 gene, termed smyd1a. Morpholino- and CRISPR/Cas9-mediated knockdown of smyd1a led to significant perturbations in sarcomere structure resulting in decreased cardiac as well as skeletal muscle function. Similar to Smyd1b, we found Smyd1a to localize to the sarcomeric M-band in skeletal and cardiac muscles. Overexpression of smyd1a efficiently compensated for the loss of Smyd1b in flatline (fla) mutant zebrafish embryos, rescued the myopathic phenotype and suppressed the MMR in Smyd1b-deficient embryos, suggesting overlapping functions of both Smyd1 paralogs. Interestingly, Smyd1a is not transcriptionally activated in Smyd1b-deficient fla mutants, demonstrating lack of genetic compensation despite the functional redundancy of both zebrafish Smyd1 paralogs.


Subject(s)
Gene Expression Regulation, Developmental , Histone-Lysine N-Methyltransferase/genetics , Muscle, Skeletal/metabolism , Myocytes, Cardiac/metabolism , Myosins/genetics , Sarcomeres/metabolism , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , Animals, Genetically Modified , CRISPR-Cas Systems , Embryo, Nonmammalian , Gene Duplication , Gene Editing , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/deficiency , Humans , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Morpholinos/genetics , Morpholinos/metabolism , Muscle Proteins , Muscle, Skeletal/pathology , Myocytes, Cardiac/pathology , Myosins/metabolism , Protein Folding , Protein Isoforms/deficiency , Protein Isoforms/genetics , Sarcomeres/pathology , Zebrafish/growth & development , Zebrafish/metabolism , Zebrafish Proteins/antagonists & inhibitors , Zebrafish Proteins/deficiency , Zebrafish Proteins/metabolism
11.
Eur J Haematol ; 101(4): 496-501, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29956848

ABSTRACT

BACKGROUND: AnWj is a high-incidence blood group antigen associated with three clinical disorders: lymphoid malignancies, immunologic disorders, and autoimmune hemolytic anemia. The aim of this study was to determine the genetic basis of an inherited AnWj-negative phenotype. METHODS: We identified a consanguineous family with two AnWj-negative siblings and 4 additional AnWj-negative individuals without known familial relationship to the index family. We performed exome sequencing in search for rare homozygous variants shared by the two AnWj-negative siblings of the index family and searched for these variants in the four non-related AnWj-negative individuals. RESULTS: Exome sequencing revealed seven candidate genes that showed complete segregation in the index family and for which the two AnWj-negative siblings were homozygous. However, the four additional non-related AnWj-negative subjects were homozygous for only one of these variants, rs114851602 (R320Q) in the SMYD1 gene. Considering the frequency of the minor allele, the chance of randomly finding 4 consecutive such individuals is 2.56 × 10-18 . CONCLUSION: We present genetic and statistical evidence that the R320Q substitution in SMYD1 underlies an inherited form of the AnWj-negative blood group phenotype. The mechanism by which the mutation leads to this phenotype remains to be determined.


Subject(s)
Blood Group Antigens/genetics , Blood Group Antigens/metabolism , DNA-Binding Proteins/genetics , Muscle Proteins/genetics , Phenotype , Transcription Factors/genetics , Adult , Blood Group Antigens/chemistry , DNA-Binding Proteins/chemistry , Erythrocytes/immunology , Erythrocytes/metabolism , Evolution, Molecular , Female , Gene Frequency , Genetic Variation , Genotype , Humans , Male , Models, Molecular , Muscle Proteins/chemistry , Pedigree , Polymorphism, Single Nucleotide , Protein Conformation , Transcription Factors/chemistry , Exome Sequencing
12.
Dev Biol ; 410(1): 86-97, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26688546

ABSTRACT

The SMYD (SET and MYND domain) family of lysine methyltransferases harbor a unique structure in which the methyltransferase (SET) domain is intervened by a zinc finger protein-protein interaction MYND domain. SMYD proteins methylate both histone and non-histone substrates and participate in diverse biological processes including transcriptional regulation, DNA repair, proliferation and apoptosis. Smyd1 is unique among the five family members in that it is specifically expressed in striated muscles. Smyd1 is critical for development of the right ventricle in mice. In zebrafish, Smyd1 is necessary for sarcomerogenesis in fast-twitch muscles. Smyd1 is expressed in the skeletal muscle lineage throughout myogenesis and in mature myofibers, shuttling from nucleus to cytosol during myoblast differentiation. Because of this expression pattern, we hypothesized that Smyd1 plays multiple roles at different stages of myogenesis. To determine the role of Smyd1 in mammalian myogenesis, we conditionally eliminated Smyd1 from the skeletal muscle lineage at the myoblast stage using Myf5(cre). Deletion of Smyd1 impaired myoblast differentiation, resulted in fewer myofibers and decreased expression of muscle-specific genes. Muscular defects were temporally restricted to the second wave of myogenesis. Thus, in addition to the previously described functions for Smyd1 in heart development and skeletal muscle sarcomerogenesis, these results point to a novel role for Smyd1 in myoblast differentiation.


Subject(s)
DNA-Binding Proteins/physiology , Muscle Development , Muscle Proteins/physiology , Transcription Factors/physiology , Animals , Cell Differentiation , Cells, Cultured , DNA-Binding Proteins/analysis , Mice , Muscle Fibers, Skeletal , Muscle Proteins/analysis , Myoblasts/cytology , Transcription Factors/analysis
13.
Genesis ; 54(8): 431-8, 2016 08.
Article in English | MEDLINE | ID: mdl-27295336

ABSTRACT

Gene therapeutic approaches to cure genetic diseases require tools to express the rescuing gene exclusively within the affected tissues. Viruses are often chosen as gene transfer vehicles but they have limited capacity for genetic information to be carried and transduced. In addition, to avoid off-target effects the therapeutic gene should be driven by a tissue-specific promoter in order to ensure expression in the target organs, tissues, or cell populations. The larger the promoter, the less space will be left for the respective gene. Thus, there is a need for small but tissue-specific promoters. Here, we describe a compact unc45b promoter fragment of 195 bp that retains the ability to drive gene expression exclusively in skeletal and cardiac muscle in zebrafish and mouse. Remarkably, the described unc45b promoter fragment not only drives muscle-specific expression but presents heat-shock inducibility, allowing a temporal and spatial quantity control of (trans)gene expression. Here, we demonstrate that the transgenic expression of the smyd1b gene driven by the unc45b promoter fragment is able to rescue the embryonically lethal heart and skeletal muscle defects in smyd1b-deficient flatline mutant zebrafish. Our findings demonstrate that the described muscle-specific unc45b promoter fragment might be a valuable tool for the development of genetic therapies in patients suffering from myopathies. genesis 54:431-438, 2016. © 2016 The Authors. Genesis Published by Wiley Periodicals, Inc.


Subject(s)
Muscle, Skeletal/metabolism , Myocardium/metabolism , Promoter Regions, Genetic , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Muscle Proteins/genetics , Muscle Proteins/metabolism , Organ Specificity , Transcription Factors/genetics , Transcription Factors/metabolism , Zebrafish
14.
J Cell Sci ; 127(Pt 17): 3794-804, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25002400

ABSTRACT

Skeletal and heart muscle-specific variant of the α subunit of nascent polypeptide associated complex (skNAC; encoded by NACA) is exclusively found in striated muscle cells. Its function, however, is largely unknown. Previous reports have demonstrated that skNAC binds to m-Bop/Smyd1, a multi-functional protein that regulates myogenesis both through the control of transcription and the modulation of sarcomerogenesis, and that both proteins undergo nuclear-to-cytoplasmic translocation at the later stages of myogenic differentiation. Here, we show that skNAC binds to the E3 SUMO ligase mammalian Mms21/Nse2 and that knockdown of Nse2 expression inhibits specific aspects of myogenic differentiation, accompanied by a partial blockade of the nuclear-to-cytoplasmic translocation of the skNAC-Smyd1 complex, retention of the complex in promyelocytic leukemia (PML)-like nuclear bodies and disturbed sarcomerogenesis. In addition, we show that the skNAC interaction partner Smyd1 contains a putative sumoylation motif and is sumoylated in muscle cells, with depletion of Mms21/Nse2 leading to reduced concentrations of sumoylated Smyd1. Taken together, our data suggest that the function, specifically the balance between the nuclear and cytosolic roles, of the skNAC-Smyd1 complex might be regulated by sumoylation.


Subject(s)
DNA-Binding Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Morphogenesis/genetics , Muscle Development/genetics , Muscle Proteins/metabolism , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Cell Differentiation/physiology , Cell Line , Mice , Muscle, Skeletal/metabolism , Myocardium/metabolism , Sumoylation/genetics
15.
Am J Physiol Heart Circ Physiol ; 311(5): H1234-H1247, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27663768

ABSTRACT

All terminally differentiated organs face two challenges, maintaining their cellular identity and restricting organ size. The molecular mechanisms responsible for these decisions are of critical importance to organismal development, and perturbations in their normal balance can lead to disease. A hallmark of heart failure, a condition affecting millions of people worldwide, is hypertrophic growth of cardiomyocytes. The various forms of heart failure in human and animal models share conserved transcriptome remodeling events that lead to expression of genes normally silenced in the healthy adult heart. However, the chromatin remodeling events that maintain cell and organ size are incompletely understood; insights into these mechanisms could provide new targets for heart failure therapy. Using a quantitative proteomics approach to identify muscle-specific chromatin regulators in a mouse model of hypertrophy and heart failure, we identified upregulation of the histone methyltransferase Smyd1 during disease. Inducible loss-of-function studies in vivo demonstrate that Smyd1 is responsible for restricting growth in the adult heart, with its absence leading to cellular hypertrophy, organ remodeling, and fulminate heart failure. Molecular studies reveal Smyd1 to be a muscle-specific regulator of gene expression and indicate that Smyd1 modulates expression of gene isoforms whose expression is associated with cardiac pathology. Importantly, activation of Smyd1 can prevent pathological cell growth. These findings have basic implications for our understanding of cardiac pathologies and open new avenues to the treatment of cardiac hypertrophy and failure by modulating Smyd1.


Subject(s)
Cardiomegaly/genetics , Chromatin Assembly and Disassembly/genetics , DNA-Binding Proteins/genetics , Heart Failure/genetics , Muscle Proteins/genetics , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Transcription Factors/genetics , Animals , Blotting, Western , Cardiomegaly/diagnostic imaging , Cardiomegaly/metabolism , Cell Enlargement , Echocardiography , Gene Expression Regulation , Gene Knock-In Techniques , HeLa Cells , Heart Failure/diagnostic imaging , Heart Failure/metabolism , Humans , Mice , Mice, Knockout , Myocardium/pathology , Myocytes, Cardiac/pathology , Proteomics , RNA, Messenger/metabolism , Rats , Real-Time Polymerase Chain Reaction , Up-Regulation , Ventricular Remodeling/genetics
16.
Exp Cell Res ; 336(2): 182-91, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26162853

ABSTRACT

Skeletal and heart muscle-specific variant of the alpha subunit of nascent polypeptide associated complex (skNAC) is exclusively found in striated muscle cells. Its function, however, is largely unknown. Previous reports could demonstrate that skNAC binds to Smyd1 (SET and MYND domain containing protein 1). The facts that (a) SET domains have histone methyltransferase activity, and (b) MYND domains are known recruiters of histone deacetylases (HDACs), implicate the skNAC-Smyd1 complex in transcriptional control. To study potential target genes, we carried out cDNA microarray analysis on differentiating C2C12 myoblasts in which expression of the skNAC gene had been knocked down. We found and confirmed a series of targets, specifically genes encoding regulators of inflammation, cellular metabolism, and cell migration. Mechanistically, as shown by Western blot, ELISA, and ChIP analysis at selected promoter regions, transcriptional control by skNAC-Smyd1 appears to be exerted at least in part by affecting a series of histone modifications, specifically H3K4 di- and trimethylation and potentially also histone acetylation. Taken together, our data suggest that the skNAC-Smyd1 complex is involved in transcriptional regulation both via the control of histone methylation and histone (de)acetylation.


Subject(s)
DNA-Binding Proteins/genetics , Histones/metabolism , Molecular Chaperones/genetics , Muscle Proteins/genetics , Transcription Factors/genetics , Transcription, Genetic/genetics , Acetylation , Animals , Cell Differentiation , Cell Line , Cell Movement/genetics , Energy Metabolism/genetics , Gene Expression Regulation , Histone Deacetylases/metabolism , Inflammation/genetics , Methylation , Mice , Muscle, Skeletal/metabolism , Myoblasts, Cardiac/cytology , Myoblasts, Skeletal/cytology , Myocardium/metabolism , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic/genetics , RNA Interference , RNA, Small Interfering , Succinate Dehydrogenase/metabolism , ras Guanine Nucleotide Exchange Factors/biosynthesis
17.
Free Radic Biol Med ; 210: 304-317, 2024 01.
Article in English | MEDLINE | ID: mdl-38042222

ABSTRACT

Persistent oxidative stress and endoplasmic reticulum (ER) stress are the primary mechanisms of age-related cardiovascular diseases. Although exercise training is viewed as an effective anti-aging approach, further exploration is needed to identify the mechanisms and functional targets. In this study, the impact of resistance training (RT) on the expression of Smyd1, the levels of reactive oxygen species (ROS) and the expression of ER stress-related protein in the hearts of mice of different ages were assessed. In addition, the role of Smyd1 in the aging-induced oxidative stress and ER stress were evaluated in d-galactose (D-gal)-treated H9C2 cells. We demonstrated that RT in middle age increased the expression of Smyd1 and restricted heart aging-induced ER stress. Overexpression of Smyd1 restrained oxidative stress and ER stress in D-gal-treated H9C2 cells, while the inhibition of Nrf2 and Smyd1 escalated ER stress. These findings demonstrate that Smyd1 has significant impact in regulating age-related ER stress. RT in middle age can up-regulates Smyd1 expression and inhibits oxidative stress and ER stress in the heart.


Subject(s)
Resistance Training , Humans , Mice , Animals , Heart , Endoplasmic Reticulum Stress/genetics , Oxidative Stress , Reactive Oxygen Species/metabolism , Apoptosis , DNA-Binding Proteins/metabolism , Muscle Proteins/metabolism , Transcription Factors/metabolism
18.
Front Psychiatry ; 14: 1104563, 2023.
Article in English | MEDLINE | ID: mdl-36846236

ABSTRACT

Introduction: Chronic nicotine exposure induces changes in the expression of key regulatory genes associated with metabolic function and neuronal alterations in the brain. Many bioregulatory genes have been associated with exposure to nicotine, but the modulating effects of sex and diet on gene expression in nicotine-exposed brains have been largely unexplored. Both humans and rodents display motivation for nicotine use and the emergence of withdrawal symptoms during abstinence. Research comparing pre-clinical models with human subjects provides an important opportunity to understand common biomarkers of the harmful effects of nicotine as well as information that may help guide the development of more effective interventions for nicotine cessation. Methods: Human postmortem dorsolateral prefrontal cortex (dLPFC) tissue BA9 was collected from female and male subjects, smokers and non-smokers (N = 12 per group). Rat frontal lobes were collected from female and male rats that received a regular diet (RD) or a high-fat diet (HFD) (N = 12 per group) for 14 days following implantation of a osmotic mini-pump (Alzet) that delivered nicotine continuously. Controls (control-s) received a sham surgical procedure. RNA was extracted from tissue from human and rat samples and reversed-transcribed to cDNA. Gene expression of CHRNA10 (Cholinergic receptor nicotinic alpha 10), CERKL (Ceramide Kinase-Like), SMYD1 (SET and MYD Domin Containing 1), and FA2H (Fatty Acid 2-Hydrolase) in humans was compared to rats in each subset of groups and quantified by qPCR methods. Additionally, protein expression of FA2H was analyzed by immunohistochemistry (IHC) in human dLPFC. Results: Humans with a history of smoking displayed decreased CHRNA10 (p = 0.0005), CERKL (p ≤ 0.0001), and SMYD1 (p = 0.0005) expression and increased FA2H (p = 0.0097) expression compared to non-smokers (p < 0.05). Similar patterns of results were observed in nicotine exposed vs. control rats. Interestingly, sex-related differences in gene expression for CERKL and FA2H were observed. In addition, ANCOVA analysis showed a significant effect of nicotine in a sex-different manner, including an increase in CERKL in male and female rats with RD or HFD. In rats exposed to an HFD, FA2H gene expression was lower in nicotine-treated rats compared to RD rats treated with nicotine. Protein expression of FA2H (p = 0.001) by IHC was significantly higher in smokers compared to non-smokers. Conclusion: These results suggest that a history of long-term nicotine exposure in humans alters the expression of sphingolipid metabolism-related (CERKL, SMYD1, and FA2H) and neuronal (CHRNA10) marker genes similarly as compared to rats. Sex- and diet-dependent differences appear in nicotine-exposed rats, critical in regulating sphingolipid metabolism and nicotinic acetylcholine receptors. This research enhances the construct validity of rat models of nicotine usage by showing a similar pattern of changes in gene expression in human subjects with a smoking history.

19.
Genes (Basel) ; 14(3)2023 03 06.
Article in English | MEDLINE | ID: mdl-36980931

ABSTRACT

Mutations in cardiac genes are one of the primary causes of infantile cardiomyopathy. In this study, we report the genetic findings of two siblings carrying variations in the MYBPC3 and SMYD1 genes. The first patient is a female proband exhibiting hypertrophic cardiomyopathy (HCM) and biventricular heart failure carrying a truncating homozygous MYBPC3 variant c.1224-52G>A (IVS13-52G>A) and a novel homozygous variant (c.302A>G; p.Asn101Ser) in the SMYD1 gene. The second patient, the proband's sibling, is a male infant diagnosed with hypertrophic cardiomyopathy and carries the same homozygous MYBPC3 variant. While this specific MYBPC3 variant (c.1224-52G>A, IVS13-52G>A) has been previously reported to be associated with adult-onset hypertrophic cardiomyopathy, this is the first report linking it to infantile cardiomyopathy. In addition, this work describes, for the first time, a novel SMYD1 variant (c.302A>G; p.Asn101Ser) that has never been reported. We performed a histopathological evaluation of tissues collected from both probands and show that these variants lead to myofibrillar disarray, reduced and irregular mitochondrial cristae and cardiac fibrosis. Together, these results provide critical insight into the molecular functionality of these genes in human cardiac physiology.


Subject(s)
Cardiomyopathy, Hypertrophic , Heart Failure , Adult , Female , Humans , Infant , Male , Cardiomyopathy, Hypertrophic/genetics , Carrier Proteins/genetics , Cytoskeletal Proteins/genetics , DNA-Binding Proteins/genetics , Muscle Proteins/genetics , Mutation , Transcription Factors/genetics
20.
Toxicol Lett ; 383: 98-111, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37385529

ABSTRACT

The histone methyltransferase Smyd1 is essential for muscle development; however, its role in smoking-induced skeletal muscle atrophy and dysfunction has not been investigated thus far. In this study, Smyd1 was overexpressed or knocked down in C2C12 myoblasts by an adenovirus vector and cultured in differentiation medium containing 5% cigarette smoke extract (CSE) for 4 days. CSE exposure resulted in inhibition of C2C12 cell differentiation and downregulation of Smyd1 expression, whereas Smyd1 overexpression reduced the degree of inhibition of myotube differentiation caused by CSE exposure. CSE exposure activated P2RX7-mediated apoptosis and pyroptosis, caused increased intracellular reactive oxygen species (ROS) levels, and impaired mitochondrial biogenesis and increased protein degradation by downregulating PGC1α, whereas Smyd1 overexpression partially restored the altered protein levels caused by CSE exposure. Smyd1 knockdown alone produced a phenotype similar to CSE exposure, and Smyd1 knockdown during CSE exposure aggravated the degree of inhibition of myotube differentiation and the degree of activation of P2RX7. CSE exposure suppressed H3K4me2 expression, and chromatin immunoprecipitation confirmed the transcriptional regulation of P2rx7 by H3K4me2 modification. Our findings suggest that CSE exposure mediates C2C12 cell apoptosis and pyroptosis through the Smyd1-H3K4me2-P2RX7 axis, and inhibits PGC1α expression to impair mitochondrial biosynthesis and increase protein degradation by inhibiting Smyd1 expression, ultimately leading to abnormal C2C12 myoblasts differentiation and impaired myotube formation.


Subject(s)
Cigarette Smoking , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Cell Line , Cell Differentiation , Nicotiana , Myoblasts
SELECTION OF CITATIONS
SEARCH DETAIL