Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Genomics ; 116(5): 110897, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39032617

ABSTRACT

Vaccinium L. is an important fruit tree with nutritional, medicinal, and ornamental values. However, the mitochondrial (mt) genome of Vaccinium L. remains largely unexplored. Vaccinium carlesii Dunn is an endemic wild resource in China, which is crucial for blueberry breeding. The V. carlesii mt genomes were sequenced using Illumina and Nanopore, which total length was 636,904 bp with 37 protein coding genes, 20 tRNA genes, and three rRNA genes. We found four pairs of long repeat fragments homologous recombination mediated the generation of substructures in the V. carlesii mt genome. We predicted 383 RNA editing sites, all converting cytosine (C) to uracil (U). According to the phylogenetic analysis, V. carlesii and V. macrocarpon of the Ericaceae exhibited the closest genetic relationship. This study provides a theoretical basis for understanding the evolution of higher plants, species classification and identification, and will also be useful for further utilization of Vaccinium germplasm resources.


Subject(s)
Genome, Mitochondrial , Phylogeny , Vaccinium/genetics , Vaccinium/classification , RNA Editing , RNA, Transfer/genetics , Genome, Plant
2.
BMC Plant Biol ; 24(1): 628, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961375

ABSTRACT

BACKGROUND: Cyperus stoloniferus is an important species in coastal ecosystems and possesses economic and ecological value. To elucidate the structural characteristics, variation, and evolution of the organelle genome of C. stoloniferus, we sequenced, assembled, and compared its mitochondrial and chloroplast genomes. RESULTS: We assembled the mitochondrial and chloroplast genomes of C. stoloniferus. The total length of the mitochondrial genome (mtDNA) was 927,413 bp, with a GC content of 40.59%. It consists of two circular DNAs, including 37 protein-coding genes (PCGs), 22 tRNAs, and five rRNAs. The length of the chloroplast genome (cpDNA) was 186,204 bp, containing 93 PCGs, 40 tRNAs, and 8 rRNAs. The mtDNA and cpDNA contained 81 and 129 tandem repeats, respectively, and 346 and 1,170 dispersed repeats, respectively, both of which have 270 simple sequence repeats. The third high-frequency codon (RSCU > 1) in the organellar genome tended to end at A or U, whereas the low-frequency codon (RSCU < 1) tended to end at G or C. The RNA editing sites of the PCGs were relatively few, with only 9 and 23 sites in the mtDNA and cpDNA, respectively. A total of 28 mitochondrial plastid DNAs (MTPTs) in the mtDNA were derived from cpDNA, including three complete trnT-GGU, trnH-GUG, and trnS-GCU. Phylogeny and collinearity indicated that the relationship between C. stoloniferus and C. rotundus are closest. The mitochondrial rns gene exhibited the greatest nucleotide variability, whereas the chloroplast gene with the greatest nucleotide variability was infA. Most PCGs in the organellar genome are negatively selected and highly evolutionarily conserved. Only six mitochondrial genes and two chloroplast genes exhibited Ka/Ks > 1; in particular, atp9, atp6, and rps7 may have undergone potential positive selection. CONCLUSION: We assembled and validated the mtDNA of C. stoloniferus, which contains a 15,034 bp reverse complementary sequence. The organelle genome sequence of C. stoloniferus provides valuable genomic resources for species identification, evolution, and comparative genomic research in Cyperaceae.


Subject(s)
Cyperus , Genome, Chloroplast , Genome, Mitochondrial , Cyperus/genetics , Phylogeny , Salt Tolerance/genetics , Salt-Tolerant Plants/genetics , Base Composition , Alkalies
3.
Environ Res ; 248: 118095, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38272295

ABSTRACT

The key to controlling environmental pollution is to promote green innovation in relevant enterprises and achieve a healthy development of the environmental governance system. This paper constructs a tripartite evolutionary game model of environmental protection enterprises, polluting enterprises, and governments, and conducts in-depth research on the influencing factors that promote green innovation in two types of enterprises. MATLAB software is used to analyze the impact of different degrees of influencing variables on system evolution. It has found that (1) increasing the intensity of environmental governance and the level of innovation subsidies by the government can effectively promote green innovation in both types of enterprises. (2) The varying degrees of innovation compensation from polluting enterprises to environmental protection enterprises have a significant impact on system evolution. (3) The initial intention and population size of two types of enterprise entities will have a significant impact on system evolution. In the initial state, subjects with more green innovation are less willing to change their strategies during the evolution process, while the willingness of the other party to green innovation will be suppressed.


Subject(s)
Conservation of Natural Resources , Environmental Policy , Humans , Environmental Pollution , Government , Health Status , China
4.
Int J Mol Sci ; 25(18)2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39337349

ABSTRACT

The Casparian strip membrane domain proteins (CASPs) are pivotal for the formation of the Casparian strip (CS) in endodermal cells and play a crucial role in a plant's response to environmental stresses. However, existing research on the CASP gene family in rice and Arabidopsis lacks a comprehensive bioinformatics analysis and necessitates further exploration. In this study, we identified 41 OsCASP and 39 AtCASP genes, which were grouped into six distinct subgroups. Collinearity analysis underscored the pivotal roles of WGD and TD events in driving the evolution of CASPs, with WGDs being the dominant force. On the one hand, the analysis of cis-elements indicated that most OsCASP and AtCASP genes contain MYB binding motifs. On the other hand, RNA-seq revealed that the majority of OsCASP and AtCASP genes are highly expressed in roots, particularly in endodermal cells, where OsCASP_like11/9 and AtCASP_like1/31 demonstrated the most pronounced expression. These results suggest that OsCASP_like11/9 and AtCASP_like1/31 might be candidate genes involved in the formation of the endodermis CS. RT-qPCR results demonstrated that OsCASP_like2/3/13/17/21/30 may be candidate genes for the ion defect process. Collectively, this study offers a theoretical foundation for unraveling the biological functions of CASP genes in rice and Arabidopsis.


Subject(s)
Arabidopsis , Gene Expression Regulation, Plant , Multigene Family , Oryza , Phylogeny , Plant Proteins , Oryza/genetics , Oryza/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
5.
Int J Mol Sci ; 25(19)2024 Sep 29.
Article in English | MEDLINE | ID: mdl-39408815

ABSTRACT

Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) plays pivotal roles in regulating plant growth and development, mediating intercellular signal transduction, and modulating responses to environmental stresses. However, a comprehensive genome-wide identification and analysis of the CrRLK1L gene family in maize remains elusive. In this study, a total of 24 CrRLK1L genes were identified in the maize whole genome. A phylogenetic analysis further revealed that CrRLK1L proteins from Arabidopsis, rice, and maize were grouped into nine distinct subgroups, with subgroup IV being unique to maize. Gene structure analysis demonstrated that the number of introns varied greatly among ZmCrRLK1L genes. Notably, the genome-wide duplication (WGD) events promoted the expansion of the ZmCrRLK1L gene family. Compared with Arabidopsis, there were more collinear gene pairs between maize and rice. Tissue expression patterns indicated that ZmCrRLK1L genes are widely expressed in various tissues, with ZmCrRLK1L5/9 specifically highly expressed in roots, and ZmCrRLK1L8/14/16/21/22 expressed in anthers. Additionally, RNA-seq and RT-qPCR analyses revealed that the expression of ZmCrRLK1L1/2/20/22 genes exhibited different expression patterns under drought and salt stresses. In summary, our study lays a foundation for elucidating the biological roles of ZmCrRLK1L genes in maize growth and development, reproductive development, and stress responses.


Subject(s)
Evolution, Molecular , Gene Duplication , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins , Zea mays , Zea mays/genetics , Zea mays/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Gene Expression Profiling , Oryza/genetics , Genome, Plant , Arabidopsis/genetics
6.
Zhongguo Zhong Yao Za Zhi ; 49(16): 4407-4419, 2024 Aug.
Article in Zh | MEDLINE | ID: mdl-39307777

ABSTRACT

The MYB(v-myb avian myeloblastosis viral oncogene homolog) family of transcription factors is the largest class of genes among higher plant transcription factors, which can be divided into four subfamilies, with the R2R3-MYB being the most common subfamily type. R2R3-MYB transcription factors are widely involved in the regulation of organ development and secondary metabolite biosynthesis in plants. To investigate the role of R2R3-MYB family transcription factors in the synthesis of flavonoids and glandular trichome development in Artemisia argyi, this study screened and identified 92 R2R3-MYB transcription factors based on the whole genome data of A. argyi, and predicted their potential functions based on bioinformatics. The results showed that the amino acid lengths of the 92 transcription factors ranged from 168 to 547 aa, with relative molecular weights ranging from 19. 6 to 60. 5 kDa, all of which were hydrophilic proteins. Subcellular localization analysis showed that 89 AaMYB proteins were located in the nucleus, while three proteins were simultaneously located in the nucleus and cytoplasm. According to the classification of Arabidopsis R2R3-MYB family, the 92 A. argyi R2R3-MYB proteins were divided into 26 subfamilies, with similar gene structures within the same subfamily.Cis-acting element prediction results showed that light-responsive elements, methyl jasmonate elements, and abscisic acid elements were widely distributed in the promoter regions of R2R3-MYB genes. Transcriptome expression analysis results showed that the expression of AaMYB60, AaMYB63, and AaMYB86 in leaves was higher than that in stems and roots, indicating that these three transcription factors mainly function in leaves. Additionally, five candidate R2R3-MYB transcription factors involved in A. argyi flavonoid biosynthesis or glandular trichome development were selected through phylogenetic analysis. This study provides important genetic resources for the breeding of superior varieties and germplasm innovation of A. argyi in the future.


Subject(s)
Artemisia , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Transcription Factors , Artemisia/genetics , Artemisia/metabolism , Artemisia/growth & development , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling , Amino Acid Sequence
7.
Ann Clin Microbiol Antimicrob ; 22(1): 35, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37170137

ABSTRACT

BACKGROUND: The clinical symptoms of invasive fungal infections (IFI) are nonspecific, and early clinical diagnosis is challenging, resulting in high mortality rates. This study reports the development of a novel aptamer-G-quadruplex/hemin self-assembling color system (AGSCS) based on (1 → 3)-ß-D-glucans' detection for rapid, specific and visual diagnosis of IFI. METHODS: We screened high affinity and specificity ssDNA aptamers binding to (1 → 3)-ß-D-glucans, the main components of cell wall from Candida albicans via Systematic Evolution of Ligands by EXponential enrichment. Next, a comparison of diagnostic efficiency of AGSCS and the (1 → 3)-ß-D-glucans assay ("G test") with regard to predicting IFI in 198 clinical serum samples was done. RESULTS: Water-soluble (1 → 3)-ß-D-glucans were successfully isolated from C. albicans ATCC 10,231 strain, and these low degree of polymerization glucans (< 1.7 kD) were targeted for aptamer screening with the complementary sequences of G-quadruplex. Six high affinity single stranded DNA aptamers (A1, A2, A3, A4, A5 and A6) were found. The linear detection range for (1 → 3)-ß-D-glucans stretched from 1.6 pg/mL to 400 pg/mL on a microplate reader, and the detection limit was 3.125 pg/mL using naked eye observation. Using a microplate reader, the sensitivity and specificity of AGSCS for the diagnosis of IFI were 92.68% and 89.65%, respectively, which was higher than that of the G test. CONCLUSION: This newly developed visual diagnostic method for detecting IFI showed promising results and is expected to be developed as a point-of-care testing kit to enable quick and cost effective diagnosis of IFI in the future.


Subject(s)
Invasive Fungal Infections , beta-Glucans , Humans , Hemin , Sensitivity and Specificity , Glucans , Candida albicans
8.
Int J Mol Sci ; 24(4)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36835109

ABSTRACT

Flagella are vital bacterial organs that allow microorganisms to move to favorable environments. However, their construction and operation consume a large amount of energy. The master regulator FlhDC mediates all flagellum-forming genes in E. coli through a transcriptional regulatory cascade, the details of which remain elusive. In this study, we attempted to uncover a direct set of target genes in vitro using gSELEX-chip screening to re-examine the role of FlhDC in the entire E. coli genome regulatory network. We identified novel target genes involved in the sugar utilization phosphotransferase system, sugar catabolic pathway of glycolysis, and other carbon source metabolic pathways in addition to the known flagella formation target genes. Examining FlhDC transcriptional regulation in vitro and in vivo and its effects on sugar consumption and cell growth suggested that FlhDC activates these new targets. Based on these results, we proposed that the flagella master transcriptional regulator FlhDC acts in the activation of a set of flagella-forming genes, sugar utilization, and carbon source catabolic pathways to provide coordinated regulation between flagella formation, operation and energy production.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Bacterial Proteins/metabolism , Trans-Activators/metabolism , Genomics , Flagella/metabolism , Sugars/metabolism , Gene Expression Regulation, Bacterial
9.
Int J Mol Sci ; 23(9)2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35563155

ABSTRACT

In this study, 52 AAAP genes were identified in the L. chinense genome and divided into eight subgroups based on phylogenetic relationships, gene structure, and conserved motif. A total of 48 LcAAAP genes were located on the 14 chromosomes, and the remaining four genes were mapped in the contigs. Multispecies phylogenetic tree and codon usage bias analysis show that the LcAAAP gene family is closer to the AAAP of Amborella trichopoda, indicating that the LcAAAP gene family is relatively primitive in angiosperms. Gene duplication events revealed six pairs of segmental duplications and one pair of tandem duplications, in which many paralogous genes diverged in function before monocotyledonous and dicotyledonous plants differentiation and were strongly purification selected. Gene expression pattern analysis showed that the LcAAAP gene plays a certain role in the development of Liriodendron nectary and somatic embryogenesis. Low temperature, drought, and heat stresses may activate some WRKY/MYB transcription factors to positively regulate the expression of LcAAAP genes to achieve long-distance transport of amino acids in plants to resist the unfavorable external environment. In addition, the GAT and PorT subgroups could involve gamma-aminobutyric acid (GABA) transport under aluminum poisoning. These findings could lay a solid foundation for further study of the biological role of LcAAAP and improvement of the stress resistance of Liriodendron.


Subject(s)
Liriodendron , Gene Expression Regulation, Plant , Genome, Plant , Liriodendron/genetics , Multigene Family , Phylogeny , Plant Proteins/metabolism , Stress, Physiological/genetics
10.
Molecules ; 27(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36144553

ABSTRACT

This study reports a novel aptamer selection method based on microscale electrophoretic filtration. Aptamers are versatile materials that recognize specific targets and are attractive for their applications in biosensors, diagnosis, and therapy. However, their practical applications remain scarce due to issues with conventional selection methods, such as complicated operations, low-efficiency separation, and expensive apparatus. To overcome these drawbacks, a selection method based on microscale electrophoretic filtration using a capillary partially filled with hydrogel was developed. The electrophoretic filtration of model target proteins (immunoglobulin E (IgE)) using hydrogel, the electrokinetic injection of DNAs to interact with the trapped proteins, the elimination of DNAs with weak interactions, and the selective acquisition of aptamer candidates with strong interactions were successfully demonstrated, revealing the validity of the proposed concept. Two aptamer candidates for IgE were obtained after three selection cycles, and their affinity for the target was confirmed to be less than 1 nM based on their dissociation constant (KD) values. Therefore, the proposed method allows for the selection of aptamers with simple operations, highly effective separation based on electrophoresis and filtration, and a relatively cheap apparatus with disposable devices.


Subject(s)
Aptamers, Nucleotide , SELEX Aptamer Technique , Aptamers, Nucleotide/metabolism , Electrophoresis , Hydrogels , Immunoglobulin E , SELEX Aptamer Technique/methods
11.
BMC Genomics ; 22(1): 463, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34157978

ABSTRACT

BACKGROUND: The amino acid/auxin permease (AAAP) family represents a class of proteins that transport amino acids across cell membranes. Members of this family are widely distributed in different organisms and participate in processes such as growth and development and the stress response in plants. However, a systematic comprehensive analysis of AAAP genes of the pepper (Capsicum annuum) genome has not been reported. RESULTS: In this study, we performed systematic bioinformatics analyses to identify AAAP family genes in the C. annuum 'Zunla-1' genome to determine gene number, distribution, structure, duplications and expression patterns in different tissues and stress. A total of 53 CaAAAP genes were identified in the 'Zunla-1' pepper genome and could be divided into eight subgroups. Significant differences in gene structure and protein conserved domains were observed among the subgroups. In addition to CaGAT1, CaATL4, and CaVAAT1, the remaining CaAAAP genes were unevenly distributed on 11 of 12 chromosomes. In total, 33.96% (18/53) of the CaAAAP genes were a result of duplication events, including three pairs of genes due to segmental duplication and 12 tandem duplication events. Analyses of evolutionary patterns showed that segmental duplication of AAAPs in pepper occurred before tandem duplication. The expression profiling of the CaAAAP by transcriptomic data analysis showed distinct expression patterns in various tissues and response to different stress treatment, which further suggest that the function of CaAAAP genes has been differentiated. CONCLUSIONS: This study of CaAAAP genes provides a theoretical basis for exploring the roles of AAAP family members in C. annuum.


Subject(s)
Capsicum , Capsicum/genetics , Capsicum/metabolism , Gene Expression Regulation, Plant , Genome, Plant , Indoleacetic Acids , Multigene Family , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism
12.
Int J Mol Sci ; 22(16)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34445583

ABSTRACT

Aptamers, single-stranded oligonucleotides that specifically bind a molecule with high affinity, are used as ligands in analytical and therapeutic applications. For the foodborne pathogen norovirus, multiple aptamers exist but have not been thoroughly characterized. Consequently, there is little research on aptamer-mediated assay development. This study characterized seven previously described norovirus aptamers for target affinity, structure, and potential use in extraction and detection assays. Norovirus-aptamer affinities were determined by filter retention assays using norovirus genotype (G) I.1, GI.7, GII.3, GII.4 New Orleans and GII.4 Sydney virus-like particles. Of the seven aptamers characterized, equilibrium dissociation constants for GI.7, GII.3, GII.4 New Orleans and GII.4 Sydney ranged from 71 ± 38 to 1777 ± 1021 nM. Four aptamers exhibited affinity to norovirus GII.4 strains; three aptamers additionally exhibited affinity toward GII.3 and GI.7. Aptamer affinity towards GI.1 was not observed. Aptamer structure analysis by circular dichroism (CD) spectroscopy showed that six aptamers exhibit B-DNA structure, and one aptamer displays parallel/antiparallel G-quadruplex hybrid structure. CD studies also showed that biotinylated aptamer structures were unchanged from non-biotinylated aptamers. Finally, norovirus aptamer assay feasibility was demonstrated in dot-blot and pull-down assays. This characterization of existing aptamers provides a knowledge base for future aptamer-based norovirus detection and extraction assay development and aptamer modification.


Subject(s)
Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Capsid Proteins/metabolism , Norovirus/metabolism , SELEX Aptamer Technique/methods , Aptamers, Nucleotide/isolation & purification , Biological Assay , Ligands , Norovirus/chemistry , Norovirus/genetics
13.
Int J Mol Sci ; 22(18)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34575825

ABSTRACT

An aptamer is a short sequence of synthetic oligonucleotides which bind to their cognate target, specifically while maintaining similar or higher sensitivity compared to an antibody. The in-vitro selection of an aptamer, applying a conjoining approach of chemistry and molecular biology, is referred as Systematic Evolution of Ligands by Exponential enrichment (SELEX). These initial products of SELEX are further modified chemically in an attempt to make them stable in biofluid, avoiding nuclease digestion and renal clearance. While the modification is incorporated, enough care should be taken to maintain its sensitivity and specificity. These modifications and several improvisations have widened the window frame of aptamer applications that are currently not only restricted to in-vitro systems, but have also been used in molecular imaging for disease pathology and treatment. In the food industry, it has been used as sensor for detection of different diseases and fungal infections. In this review, we have discussed a brief history of its journey, along with applications where its role as a therapeutic plus diagnostic (theranostic) tool has been demonstrated. We have also highlighted the potential aptamer-mediated strategies for molecular targeting of COVID-19. Finally, the review focused on its future prospective in immunotherapy, as well as in identification of novel biomarkers in stem cells and also in single cell proteomics (scProteomics) to study intra or inter-tumor heterogeneity at the protein level. Small size, chemical synthesis, low batch variation, cost effectiveness, long shelf life and low immunogenicity provide advantages to the aptamer over the antibody. These physical and chemical properties of aptamers render them as a strong biomedical tool for theranostic purposes over the existing ones. The significance of aptamers in human health was the key finding of this review.


Subject(s)
Aptamers, Nucleotide , COVID-19 Drug Treatment , COVID-19 , Precision Medicine/methods , SELEX Aptamer Technique/methods , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/therapeutic use , COVID-19/diagnosis , Humans
14.
J Cell Biochem ; 120(9): 16264-16272, 2019 09.
Article in English | MEDLINE | ID: mdl-31111537

ABSTRACT

One of the most important molecules for multiple sclerosis pathogenesis is α4 integrin, which is responsible for autoreactive leukocytes migration into the brain. The monoclonal antibody, natalizumab, was introduced to market for blocking the extravasation of autoreactive leukocytes via inhibition of α4 integrin. However, the disadvantages of antibodies provided a suitable background for other agents to be replaced with antibodies. Considering the profound advantages of aptamers over antibodies, aptamer isolation against α4 integrin was intended in the current study. The α4 integrin-specific aptamers were selected using cell-systematic evolution of ligands by exponential enrichment (SELEX) method with human embryonic kidney (HEK)-293T overexpressing α4 integrin and HEK-293T as target and control cells, respectively. Evaluation of selected aptamer was performed through flow cytometric analysis. The selected clones were then sequenced and analyzed for any possible secondary structure and affinity. The results of this study led to isolation of 13 different single-stranded DNA clones in 11 rounds of selection which were categorized to three clusters based on common structural motifs and the equilibrium dissociation constant (K d ) of the most stable structure was calculated. The evaluation of SELEX progress showed growth in aptamer affinity with increasing of the number of cycles. Taken together, the findings of this study demonstrated the isolation of α4-specific single-stranded DNA aptamers with suitable affinity for ligand, which can further be replaced with natalizumab.


Subject(s)
Aptamers, Nucleotide/genetics , Integrin alpha4/chemistry , Multiple Sclerosis/genetics , Aptamers, Nucleotide/pharmacology , HEK293 Cells , Humans , Integrin alpha4/genetics , Models, Molecular , Multiple Sclerosis/drug therapy , Nucleic Acid Conformation , SELEX Aptamer Technique
15.
J Fish Dis ; 42(6): 851-858, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30859598

ABSTRACT

Vibrio alginolyticus (V. alginolyticus) is a major opportunistic pathogen to both marine animals and humans, which has also caused heavy economic losses to mariculture. The aim of this study was to develop highly specific aptamers for V. alginolyticus. Single-stranded DNA (ssDNA) aptamers with high binding affinity to viable V. alginolyticus were generated by Systematic Evolution of Ligands by Exponential Enrichment (SELEX) and identified by flow cytometric analysis in this study. The selected aptamers showed high specificity for V. alginolyticus and low apparent binding for other bacteria. The aptamers formed distinct stem-loop structures, which could form the basis of aptamers' specific binding to the target V. alginolyticus. Aptamer VA2 and VA8 showed particularly high binding affinity constant (Kd) of 14.31 ± 4.26 and 90.00 ± 13.51 nM, respectively. The aptamers produced no cytotoxic effects in vitro and in vivo. ssDNA aptamers were successfully selected against the viable bacteria pathogen V. alginolyticus by SELEX. The aptamers selected in this study could be not only applied as specific chemical molecular probes for studying V. alginolyticus pathogenesis to Trachinotus ovatus, but also developing rapid convenient diagnosis assay for V. alginolyticus infection, even when applied to the complex sample matrix, such as food and environment samples.


Subject(s)
Aptamers, Nucleotide/chemistry , DNA, Single-Stranded/chemistry , Vibrio Infections/veterinary , Vibrio alginolyticus/genetics , Animals , Fish Diseases/diagnosis , Fish Diseases/microbiology , Fishes/microbiology , Flow Cytometry , Ligands , Sensitivity and Specificity , Vibrio alginolyticus/pathogenicity
16.
Sensors (Basel) ; 19(15)2019 Jul 25.
Article in English | MEDLINE | ID: mdl-31349595

ABSTRACT

Aptamers have a well-earned place in therapeutic, diagnostic, and sensor applications, and we now show that they provide an excellent foundation for education, as well. Within the context of the Freshman Research Initiative (FRI) at The University of Texas at Austin, students have used aptamer selection and development technologies in a teaching laboratory to build technical and 21st century skills appropriate for research scientists. One of the unique aspects of this course-based undergraduate research experience is that students develop and execute their own projects, taking ownership of their experience in what would otherwise be a traditional teaching lab setting. Of the many successes, this work includes the isolation and characterization of novel calf intestinal alkaline phosphatase (anti-CIAP) RNA aptamers by an undergraduate researcher. Further, preliminary survey data suggest that students who participate in the aptamer research experience express significant gains in their self-efficacy to conduct research, and their perceived ability to communicate scientific results, as well as organize and interpret data. This work describes, for the first time, the use of aptamers in an educational setting, highlights the positive student outcomes of the aptamer research experience, and presents the research findings relative to the novel anti-CIAP aptamer.


Subject(s)
Aptamers, Nucleotide/genetics , Biomedical Research/education , SELEX Aptamer Technique/trends , Education , Humans
17.
Molecules ; 24(5)2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30866536

ABSTRACT

Aptamers are short, single-stranded DNA, RNA, or synthetic XNA molecules that can be developed with high affinity and specificity to interact with any desired targets. They have been widely used in facilitating discoveries in basic research, ensuring food safety and monitoring the environment. Furthermore, aptamers play promising roles as clinical diagnostics and therapeutic agents. This review provides update on the recent advances in this rapidly progressing field of research with particular emphasis on generation of aptamers and their applications in biosensing, biotechnology and medicine. The limitations and future directions of aptamers in target specific delivery and real-time detection are also discussed.


Subject(s)
Aptamers, Nucleotide/chemical synthesis , SELEX Aptamer Technique/methods , Animals , Aptamers, Nucleotide/chemistry , Biosensing Techniques , Biotechnology , Environmental Monitoring , Food Safety , Humans , Medicine
18.
Int J Mol Sci ; 19(3)2018 Feb 27.
Article in English | MEDLINE | ID: mdl-29495486

ABSTRACT

Aptamers are versatile oligonucleotide ligands used for molecular recognition of diverse targets. However, application of aptamers to the field of amyloid ß-protein (Aß) has been limited so far. Aß is an intrinsically disordered protein that exists in a dynamic conformational equilibrium, presenting time-dependent ensembles of short-lived, metastable structures and assemblies that have been generally difficult to isolate and characterize. Moreover, despite understanding of potential physiological roles of Aß, this peptide has been linked to the pathogenesis of Alzheimer disease, and its pathogenic roles remain controversial. Accumulated scientific evidence thus far highlights undesirable or nonspecific interactions between selected aptamers and different Aß assemblies likely due to the metastable nature of Aß or inherent affinity of RNA oligonucleotides to ß-sheet-rich fibrillar structures of amyloidogenic proteins. Accordingly, lessons drawn from Aß-aptamer studies emphasize that purity and uniformity of the protein target and rigorous characterization of aptamers' specificity are important for realizing and garnering the full potential of aptamers selected for recognizing Aß or other intrinsically disordered proteins. This review summarizes studies of aptamers selected for recognizing different Aß assemblies and highlights controversies, difficulties, and limitations of such studies.


Subject(s)
Amyloid beta-Peptides/metabolism , Aptamers, Nucleotide/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Aptamers, Nucleotide/genetics , Drug Discovery , Humans , Ligands , Protein Aggregates , Protein Aggregation, Pathological , Protein Binding , SELEX Aptamer Technique
19.
Molecules ; 23(9)2018 Sep 13.
Article in English | MEDLINE | ID: mdl-30216975

ABSTRACT

We describe a multiple combined strategy to discover novel aptamers specific for clenbuterol (CBL). An immobilized ssDNA library was used for the selection of specific aptamers using the systematic evolution of ligands by exponential enrichment (SELEX). Progress was monitored using real-time quantitative PCR (Q-PCR), and the enriched library was sequenced by high-throughput sequencing. Candidate aptamers were picked and preliminarily identified using a gold nanoparticles (AuNPs) biosensor. Bioactive aptamers were characterized for affinity, circular dichroism (CD), specificity and sensitivity. The Q-PCR amplification curve increased and the retention rate was about 1% at the eighth round. Use of the AuNPs biosensor and CD analyses determined that six aptamers had binding activity. Affinity analysis showed that aptamer 47 had the highest affinity (Kd = 42.17 ± 8.98 nM) with no cross reactivity to CBL analogs. Indirect competitive enzyme linked aptamer assay (IC-ELAA) based on a 5'-biotin aptamer 47 indicated the limit of detection (LOD) was 0.18 ± 0.02 ng/L (n = 3), and it was used to detect pork samples with a mean recovery of 83.33⁻97.03%. This is the first report of a universal strategy including library fixation, Q-PCR monitoring, high-throughput sequencing, and AuNPs biosensor identification to select aptamers specific for small molecules.


Subject(s)
Adrenergic beta-Agonists/analysis , Aptamers, Nucleotide/isolation & purification , Clenbuterol/analysis , DNA, Single-Stranded/metabolism , Gold/chemistry , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Biosensing Techniques , Circular Dichroism , DNA, Single-Stranded/chemistry , Gene Library , High-Throughput Nucleotide Sequencing , Limit of Detection , Metal Nanoparticles/chemistry , SELEX Aptamer Technique , Sequence Analysis, DNA
20.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 35(6): 964-969, 2018 12 25.
Article in Zh | MEDLINE | ID: mdl-30583324

ABSTRACT

Nucleic acid aptamer is an oligonucleotide sequence screened by the exponential enrichment ligand system evolution technology (SELEX). Previous studies have shown that nucleic acid aptamer has a good application prospect in tumor diagnosis and treatment. Therefore, we reviewed the selection and identification of nucleic acid aptamer of lung cancer cells in recent years, and discussed the effect of aptamer as targeting drugs and targeting vectors on the diagnosis of tumors, which provide a new idea for early diagnosis and treatment of tumor.

SELECTION OF CITATIONS
SEARCH DETAIL