Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
1.
J Neurosci ; 43(16): 2988-3006, 2023 04 19.
Article in English | MEDLINE | ID: mdl-36868851

ABSTRACT

Tauopathies including Alzheimer's disease, are characterized by progressive cognitive decline, neurodegeneration, and intraneuronal aggregates comprised largely of the axonal protein Tau. It has been unclear whether cognitive deficits are a consequence of aggregate accumulation thought to compromise neuronal health and eventually lead to neurodegeneration. We use the Drosophila tauopathy model and mixed-sex populations to reveal an adult onset pan-neuronal Tau accumulation-dependent decline in learning efficacy and a specific defect in protein synthesis-dependent memory (PSD-M), but not in its protein synthesis-independent variant. We demonstrate that these neuroplasticity defects are reversible on suppression of new transgenic human Tau expression and surprisingly correlate with an increase in Tau aggregates. Inhibition of aggregate formation via acute oral administration of methylene blue results in re-emergence of deficient memory in animals with suppressed human Tau (hTau)0N4R expression. Significantly, aggregate inhibition results in PSD-M deficits in hTau0N3R-expressing animals, which present elevated aggregates and normal memory if untreated with methylene blue. Moreover, methylene blue-dependent hTau0N4R aggregate suppression within adult mushroom body neurons also resulted in emergence of memory deficits. Therefore, deficient PSD-M on human Tau expression in the Drosophila CNS is not a consequence of toxicity and neuronal loss because it is reversible. Furthermore, PSD-M deficits do not result from aggregate accumulation, which appears permissive, if not protective of processes underlying this memory variant.SIGNIFICANCE STATEMENT Intraneuronal Tau aggregate accumulation has been proposed to underlie the cognitive decline and eventual neurotoxicity that characterizes the neurodegenerative dementias known as tauopathies. However, we show in three experimental settings that Tau aggregates in the Drosophila CNS do not impair but rather appear to facilitate processes underlying protein synthesis-dependent memory within affected neurons.


Subject(s)
Drosophila , Tauopathies , Animals , Humans , Drosophila/metabolism , Methylene Blue , Tauopathies/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Animals, Genetically Modified , Memory Disorders , Disease Models, Animal
2.
J Cell Mol Med ; 28(11): e18477, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38853458

ABSTRACT

Given the pathological role of Tau aggregation in Alzheimer's disease (AD), our laboratory previously developed the novel Tau aggregation inhibitor peptide, RI-AG03. As Tau aggregates accumulate intracellularly, it is essential that the peptide can traverse the cell membrane. Here we examine the cellular uptake and intracellular trafficking of RI-AG03, in both a free and liposome-conjugated form. We also characterize the impact of adding the cell-penetrating peptide (CPP) sequences, polyarginine (polyR) or transactivator of transcription (TAT), to RI-AG03. Our data show that liposome conjugation of CPP containing RI-AG03 peptides, with either the polyR or TAT sequence, increased cellular liposome association three-fold. Inhibition of macropinocytosis modestly reduced the uptake of unconjugated and RI-AG03-polyR-linked liposomes, while having no effect on RI-AG03-TAT-conjugated liposome uptake. Further supporting macropinocytosis-mediated internalization, a 'fair' co-localisation of the free and liposome-conjugated RI-AG03-polyR peptide with macropinosomes and lysosomes was observed. Interestingly, we also demonstrate that RI-AG03-polyR detaches from liposomes following cellular uptake, thereby largely evading organellar entrapment. Collectively, our data indicate that direct membrane penetration and macropinocytosis are key routes for the internalization of liposomes conjugated with CPP containing RI-AG03. Our study also demonstrates that peptide-liposomes are suitable nanocarriers for the cellular delivery of RI-AG03, furthering their potential use in targeting Tau pathology in AD.


Subject(s)
Cell-Penetrating Peptides , Liposomes , Nanoparticles , Pinocytosis , tau Proteins , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/pharmacology , Liposomes/chemistry , Humans , tau Proteins/metabolism , tau Proteins/chemistry , Nanoparticles/chemistry , Pinocytosis/drug effects , Peptides/chemistry , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Lysosomes/metabolism , Drug Delivery Systems/methods
3.
J Biol Chem ; 299(2): 102821, 2023 02.
Article in English | MEDLINE | ID: mdl-36563857

ABSTRACT

Tauopathies are neurodegenerative diseases caused by pathologic misfolded tau protein aggregation in the nervous system. Population studies implicate EIF2AK3 (eukaryotic translation initiation factor 2 alpha kinase 3), better known as PERK (protein kinase R-like endoplasmic reticulum kinase), as a genetic risk factor in several tauopathies. PERK is a key regulator of intracellular proteostatic mechanisms-unfolded protein response and integrated stress response. Previous studies found that tauopathy-associated PERK variants encoded functional hypomorphs with reduced signaling in vitro. But, it remained unclear how altered PERK activity led to tauopathy. Here, we chemically or genetically modulated PERK signaling in cell culture models of tau aggregation and found that PERK pathway activation prevented tau aggregation, whereas inhibition exacerbated tau aggregation. In primary tauopathy patient brain tissues, we found that reduced PERK signaling correlated with increased tau neuropathology. We found that tauopathy-associated PERK variants targeted the endoplasmic reticulum luminal domain; and two of these variants damaged hydrogen bond formation. Our studies support that PERK activity protects against tau aggregation and pathology. This may explain why people carrying hypomorphic PERK variants have increased risk for developing tauopathies. Finally, our studies identify small-molecule augmentation of PERK signaling as an attractive therapeutic strategy to treat tauopathies by preventing tau pathology.


Subject(s)
Protein Aggregates , Protein Aggregation, Pathological , eIF-2 Kinase , tau Proteins , Humans , Disease Susceptibility , eIF-2 Kinase/chemistry , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism , Mutation , Risk Factors , tau Proteins/chemistry , tau Proteins/metabolism , Tauopathies/metabolism , Tauopathies/pathology
4.
Bioorg Chem ; 151: 107625, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39013241

ABSTRACT

Ten macrocyclic peptides, each comprising 14 amino acids, were designed and synthesized based on the Tau aggregation model hexapeptides AcPHF6* and AcPHF6. The design took into account the aggregation tendencies of each residue in AcPHF6* and AcPHF6, their aggregation models, while employing peptide-based structural design principles including N-methylation to promote turns and to block hydrogen bond propagation and elongation of the aggregation chain. NMR analysis supported that all these peptides adopted an antiparallel ß-sheet conformation. Self-aggregation studies characterized the aggregation properties of these peptides, identifying two peptides with the highest (P3) and lowest (P8) aggregation tendencies. In cross-aggregation studies with the parent peptides AcPHF6* and AcPHF6, P3 and P8 were found to promote and reduce aggregation, respectively. Furthermore, P3 and P8 demonstrated an enhancement and diminution effect on the aggregation of K18wt, indicating their capacity to modulate aggregation even at the macromolecular level. Thus, the two simple peptides, P3 and P8 selectively exhibit pro- or anti-aggregation effects on PHF peptides and Tau. This study, has thus developed structurally well-defined non-complex peptides, derived from AcPHF6* and AcPHF6, to modulate Tau aggregation as desired, offering applications in Tau model studies and the development of Tau aggregation inhibitors or promoters.


Subject(s)
Protein Aggregates , tau Proteins , tau Proteins/metabolism , tau Proteins/chemistry , tau Proteins/antagonists & inhibitors , Protein Aggregates/drug effects , Humans , Molecular Structure , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemical synthesis , Oligopeptides/chemistry , Oligopeptides/pharmacology , Oligopeptides/chemical synthesis , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacology , Macrocyclic Compounds/chemical synthesis , Dose-Response Relationship, Drug
5.
Int J Mol Sci ; 25(18)2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39337433

ABSTRACT

Tau is an intrinsically disordered protein involved in several neurodegenerative diseases where a common hallmark is the appearance of tau aggregates in the brain. One common approach to elucidate the mechanisms behind the aggregation of tau has been to recapitulate in vitro the self-assembly process in a fast and reproducible manner. While the seeding of tau aggregation is prompted by negatively charged cofactors, the obtained fibrils are morphologically distinct from those found in vivo. The Tau AD core fragment (TADC, tau 306-378) has emerged as a new model and potential solution for the cofactor-free in vitro aggregation of tau. Here, we use TADC to further study this process combining multiple amyloid-detecting fluorophores and fibril bioimaging. We confirmed by transmission electron microscopy that this fragment forms fibrils after quiescent incubation at 37 °C. We then employed a panel of eight amyloid-binding fluorophores to query the formed species by acquiring their emission spectra. The results obtained showed that nearly all dyes detect TADC self-assembled species. However, the successful monitoring of TADC aggregation kinetics was limited to three fluorophores (X-34, Bis-ANS, and pFTAA) which yielded sigmoidal curves but different aggregation half-times, hinting to different species being detected. Altogether, this study highlights the potential of using multiple extrinsic fluorescent probes, alone or in combination, as tools to further clarify mechanisms behind the aggregation of amyloidogenic proteins.


Subject(s)
Alzheimer Disease , Amyloid , Fluorescent Dyes , tau Proteins , tau Proteins/metabolism , tau Proteins/chemistry , tau Proteins/ultrastructure , Humans , Amyloid/metabolism , Amyloid/chemistry , Fluorescent Dyes/chemistry , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Protein Aggregates , Protein Aggregation, Pathological/metabolism , Kinetics , Protein Binding
6.
J Biol Chem ; 298(6): 102014, 2022 06.
Article in English | MEDLINE | ID: mdl-35525272

ABSTRACT

Tau assembly movement from the extracellular to intracellular space may underlie transcellular propagation of neurodegenerative tauopathies. This begins with tau binding to cell surface heparan sulfate proteoglycans, which triggers macropinocytosis. Pathological tau assemblies are proposed then to exit the vesicular compartment as "seeds" for replication in the cytoplasm. Tau uptake is highly efficient, but only ∼1 to 10% of cells that endocytose aggregates exhibit seeding. Consequently, we studied fluorescently tagged full-length (FL) tau fibrils added to native U2OS cells or "biosensor" cells expressing FL tau or repeat domain. FL tau fibrils bound tubulin. Seeds triggered its aggregation in multiple locations simultaneously in the cytoplasm, generally independent of visible exogenous aggregates. Most exogenous tau trafficked to the lysosome, but fluorescence imaging revealed a small percentage that steadily accumulated in the cytosol. Intracellular expression of Gal3-mRuby, which binds intravesicular galactosides and forms puncta upon vesicle rupture, revealed no evidence of vesicle damage following tau exposure, and most seeded cells had no evidence of endolysosome rupture. However, live-cell imaging indicated that cells with pre-existing Gal3-positive puncta were seeded at a slightly higher rate than the general population, suggesting a potential predisposing role for vesicle instability. Clearance of tau seeds occurred rapidly in both vesicular and cytosolic fractions. The lysosome/autophagy inhibitor bafilomycin inhibited vesicular clearance, whereas the proteasome inhibitor MG132 inhibited cytosolic clearance. Tau seeds that enter the cell thus have at least two fates: lysosomal clearance that degrades most tau, and entry into the cytosol, where seeds amplify, and are cleared by the proteasome.


Subject(s)
Cytosol , Lysosomes , Tauopathies , tau Proteins , Alzheimer Disease/physiopathology , Cytosol/metabolism , Heparan Sulfate Proteoglycans/metabolism , Humans , Lysosomes/metabolism , Tauopathies/metabolism , Tauopathies/physiopathology , tau Proteins/metabolism
7.
Neurobiol Dis ; 178: 106011, 2023 03.
Article in English | MEDLINE | ID: mdl-36702317

ABSTRACT

Metabolic reactions within cells occur in various isolated compartments with or without borders, the latter being known as membrane-less organelles (MLOs). The MLOs show liquid-like properties and are formed by a process known as liquid-liquid phase separation (LLPS). MLOs contribute to different molecules interactions such as protein-protein, protein-RNA, and RNA-RNA driven by various factors, such as multivalency of intrinsic disorders. MLOs are involved in several cell signaling pathways such as transcription, immune response, and cellular organization. However, disruption of these processes has been found in different pathologies. Recently, it has been demonstrated that protein aggregates, a characteristic of some neurodegenerative diseases, undergo similar phase separation. Tau protein is known as a major neurofibrillary tangles component in Alzheimer's disease (AD). This protein can undergo phase separation to form a MLO known as tau droplet in vitro and in vivo, and this process can be facilitated by several factors, including crowding agents, RNA, and phosphorylation. Tau droplet has been shown to mature into insoluble aggregates suggesting that this process may precede and induce neurodegeneration in AD. Here we review major factors involved in liquid droplet formation within a cell. Additionally, we highlight recent findings concerning tau aggregation following phase separation in AD, along with the potential therapeutic strategies that could be explored in this process against the progression of this pathology.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , tau Proteins/metabolism , Neurofibrillary Tangles/metabolism , RNA/metabolism
8.
Cell Physiol Biochem ; 57(2): 123-136, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37074918

ABSTRACT

BACKGROUND/AIMS: Alzheimer's disease is a progressive neurological disorder characterized by the intracellular accumulation of Tau protein aggregates. In the present work, we studied the effect of Toluidine Blue and photo-excited Toluidine Blue on the aggregation of repeat Tau using in vitro assays. METHODS: The in vitro experiments were carried out on recombinant repeat Tau which was purified by cation exchange chromatography. The ThS fluorescence analysis was used to study the aggregation kinetics of Tau. CD spectroscopy and electron microscopy were used to study the secondary structure and morphology of Tau respectively. The actin cytoskeleton modulation was studied in Neuro2a cells with help of immunofluorescent microscopy. RESULTS: Results showed that Toluidine Blue efficiently inhibited the formation of higher-order aggregates, which was evidenced by Thioflavin S fluorescence assay, SDS-PAGE, and TEM. Immunofluorescence studies on the cytoskeleton of Neuro2a cells showed that Toluidine Blue and photo-excited Toluidine Blue treatment at a non-toxic concentration of 0.5 µM stimulated the formation of actin-rich lamellipodia and filopodia structures. Tubulin networks were also differentially modulated after the treatment of Toluidine Blue and photo-excited Toluidine Blue. End-binding protein 1 (EB1) levels were observed to increase after Toluidine Blue and photo-excited Toluidine Blue treatment indicating accelerated microtubule polymerization. CONCLUSION: The overall study suggested that Toluidine Blue inhibited the aggregation of soluble Tau and photo-excited Toluidine Blue disaggregated the pre-formed Tau filaments. In our study, TB and PE-TB were observed to be potent against Tau aggregation. We observed a distinctive modulation of actin, tubulin networks, and EB1 levels after TB and PE-TB treatment, which suggested that TB and PE-TB have potency against cytoskeleton deformities.


Subject(s)
Alzheimer Disease , Tolonium Chloride , Humans , Tolonium Chloride/pharmacology , Tubulin/metabolism , Actins/metabolism , Carrier Proteins , Cytoskeleton/metabolism , tau Proteins/metabolism , Alzheimer Disease/metabolism
9.
Biol Proced Online ; 25(1): 4, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36814189

ABSTRACT

BACKGROUND: Intraneuronal tau aggregation is the major pathological hallmark of neurodegenerative tauopathies. It is now generally acknowledged that tau aggregation also affects astrocytes in a cell non-autonomous manner. However, mechanisms involved are unclear, partly because of the lack of models that reflect the situation in the human tauopathy brain. To accurately model neuron-astrocyte interaction in tauopathies, there is a need for a model that contains both human neurons and human astrocytes, intraneuronal tau pathology and mimics the three-dimensional architecture of the brain. RESULTS: Here we established a novel 100-200 µm thick 3D human neuron/astrocyte co-culture model of tau pathology, comprising homogenous populations of hiPSC-derived neurons and primary human astrocytes in microwell format. Using confocal, electron and live microscopy, we validate the procedures by showing that neurons in the 3D co-culture form pre- and postsynapses and display spontaneous calcium transients within 4 weeks. Astrocytes in the 3D co-culture display bipolar and stellate morphologies with extensive processes that ensheath neuronal somas, spatially align with axons and dendrites and can be found perisynaptically. The complex morphology of astrocytes and the interaction with neurons in the 3D co-culture mirrors that in the human brain, indicating the model's potential to study physiological and pathological neuron-astrocyte interaction in vitro. Finally, we successfully implemented a methodology to introduce seed-independent intraneuronal tau aggregation in the 3D co-culture, enabling study of neuron-astrocyte interaction in early tau pathogenesis. CONCLUSIONS: Altogether, these data provide proof-of-concept for the utility of this rapid, miniaturized, and standardized 3D model for cell type-specific manipulations, such as the intraneuronal pathology that is associated with neurodegenerative disorders.

10.
Mol Divers ; 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37022608

ABSTRACT

Alzheimer's disease (AD) is a severe, growing, multifactorial disorder affecting millions of people worldwide characterized by cognitive decline and neurodegeneration. The accumulation of tau protein into paired helical filaments is one of the major pathological hallmarks of AD and has gained the interest of researchers as a potential drug target to treat AD. Lately, Artificial Intelligence (AI) has revolutionized the drug discovery process by speeding it up and reducing the overall cost. As a part of our continuous effort to identify potential tau aggregation inhibitors, and leveraging the power of AI, in this study, we used a fully automated AI-assisted ligand-based virtual screening tool, PyRMD to screen a library of 12 million compounds from the ZINC database to identify potential tau aggregation inhibitors. The preliminary hits from virtual screening were filtered for similar compounds and pan-assay interference compounds (the compounds containing reactive functional groups which can interfere with the assays) using RDKit. Further, the selected compounds were prioritized based on their molecular docking score with the binding pocket of tau where the binding pockets were identified using replica exchange molecular dynamics simulation. Thirty-three compounds showing good docking scores for all the tau clusters were selected and were further subjected to in silico pharmacokinetic prediction. Finally, top 10 compounds were selected for molecular dynamics simulation and MMPBSA binding free energy calculations resulting in the identification of UNK_175, UNK_1027, UNK_1172, UNK_1173, UNK_1237, UNK_1518, and UNK_2181 as potential tau aggregation inhibitors.

11.
Alzheimers Dement ; 19(10): 4662-4674, 2023 10.
Article in English | MEDLINE | ID: mdl-37002928

ABSTRACT

BACKGROUND: The cis-conformer of tau phosphorylated at threonine-231 (cis-pT231 tau) is hypothesized to contribute to tauopathies. PNT001 is a humanized, monoclonal antibody that recognizes cis-pT231 tau. PNT001 was characterized to assess clinical development readiness. METHODS: Affinity and selectivity were assessed by surface plasmon resonance and enzyme-linked immunosorbent assay. Immunohistochemistry (IHC) was performed with brain sections from human tauopathy patients and controls. Real-time quaking-induced conversion (RT-QuIC) was used to assess whether PNT001 reduced tau seeds from Tg4510 transgenic mouse brain. Murine PNT001 was evaluated in vivo in the Tg4510 mouse. RESULTS: The affinity of PNT001 for a cis-pT231 peptide was 0.3 to 3 nM. IHC revealed neurofibrillary tangle-like structures in tauopathy patients with no detectable staining in controls. Incubation of Tg4510 brain homogenates with PNT001 lowered seeding in RT-QuIC. Multiple endpoints were improved in the Tg4510 mouse. No adverse findings attributable to PNT001 were detected in Good Laboratory Practice safety studies. DISCUSSION: The data support clinical development of PNT001 in human tauopathies.


Subject(s)
Tauopathies , tau Proteins , Humans , Mice , Animals , tau Proteins/metabolism , Brain/metabolism , Mice, Transgenic , Neurofibrillary Tangles , Antibodies, Monoclonal, Humanized
12.
Int J Mol Sci ; 24(3)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36768484

ABSTRACT

Alzheimer's disease and other tauopathies are the world's leading causes of dementia and memory loss. These diseases are thought to be caused by the misfolding and aggregation of the intracellular tau protein, ultimately leading to neurodegeneration. The tau protein is involved in a multitude of different neurodegenerative diseases. During the onset of tauopathies, tau undergoes structural changes and posttranslational modifications and aggregates into amyloid fibrils that are able to spread with a prion-like behavior. Up to now, there is no therapeutic agent which effectively controls or reverses the disease. Most of the therapeutics that were developed and underwent clinical trials targeted misfolded or aggregated forms of tau. In the current manuscript, we present the selection and characterization of two all D-enantiomeric peptides that bind monomeric tau protein with a low nanomolar KD, stabilize tau in its monomeric intrinsically disordered conformation, and stop the conversion of monomers into aggregates. We show that the effect of the two all D-enantiomeric peptides is strong enough to stop ongoing tau aggregation in vitro and is able to significantly reduce tau fibril assembly in cell culture. Both compounds may serve as new lead components for the development of therapeutic agents against Alzheimer's disease and other tauopathies.


Subject(s)
Alzheimer Disease , Tauopathies , Humans , tau Proteins/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Tauopathies/drug therapy , Tauopathies/metabolism , Amyloid/metabolism , Peptides/pharmacology , Peptides/therapeutic use
13.
J Neurosci ; 41(19): 4335-4348, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33893219

ABSTRACT

Tau aggregation within neurons is a critical feature of Alzheimer's disease (AD) and related tauopathies. It is believed that soluble pathologic tau species seed the formation of tau aggregates in a prion-like manner and propagate through connected neurons during the progression of disease. Both soluble and aggregated forms of tau are thought to have neurotoxic properties. In addition, different strains of misfolded tau may cause differential neurotoxicity. In this work, we present an accelerated human neuronal model of tau-induced neurotoxicity that incorporates both soluble tau species and tau aggregation. Using patient-derived induced pluripotent stem cell (iPSC) neurons expressing a tau aggregation biosensor, we develop a cell culture system that allows continuous assessment of both induced tau aggregation and neuronal viability at single-cell resolution for periods of >1 week. We show that exogenous tau "seed" uptake, as measured by tau repeat domain (TauRD) reporter aggregation, increases the risk for subsequent neuronal death in vitro These results are the first to directly visualize neuronal TauRD aggregation and subsequent cell death in single human iPSC neurons. Specific morphologic strains or patterns of TauRD aggregation are then identified and associated with differing neurotoxicity. Furthermore, we demonstrate that familial AD iPSC neurons expressing the PSEN1 L435F mutation exhibit accelerated TauRD aggregation kinetics and a tau strain propagation bias when compared with control iPSC neurons.SIGNIFICANCE STATEMENT Neuronal intracellular aggregation of the microtubule binding protein tau occurs in Alzheimer's disease and related neurodegenerative tauopathies. Tau aggregates are believed to spread from neuron to neuron via prion-like misfolded tau seeds. Our work develops a human neuronal live-imaging system to visualize seeded tau aggregation and tau-induced neurotoxicity within single neurons. Using an aggregation-sensing tau reporter, we find that neuronal uptake and propagation of tau seeds reduces subsequent survival. In addition, human induced pluripotent stem cell (iPSC) neurons carrying an Alzheimer's disease-causing mutation in presenilin-1 undergo tau seeding more rapidly than control iPSC neurons. However, they do not show subsequent differences in neuronal survival. Finally, specific morphologies of tau aggregates are associated with increased neurotoxicity.


Subject(s)
Induced Pluripotent Stem Cells/drug effects , Neurotoxicity Syndromes/pathology , Tauopathies/pathology , tau Proteins/toxicity , Aged, 80 and over , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Cell Survival , Cells, Cultured , Female , Humans , Male , Mice , Middle Aged , Presenilin-1/biosynthesis , Presenilin-1/genetics , tau Proteins/genetics , tau Proteins/metabolism
14.
Psychogeriatrics ; 22(4): 445-452, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35474398

ABSTRACT

BACKGROUND: This study used positron emission tomography to examine whether the seasonal birth effect as an exogenic indicator of early life environmental factors influenced vulnerability to Alzheimer's disease (AD) pathology in the elderly. METHODS: We analysed datasets from the Alzheimer's Disease Neuroimaging Initiative, which included the data for 234 cognitively normal (CN) individuals and patients with mild cognitive impairment (MCI) (n = 114) and AD dementia (n = 38). As an index of amyloid ß (Aß)/tau accumulation, the 18 F-AV-45- and 18 F-AV-1451-standardized uptake value ratios (SUVRs) were compared between groups of spring-to-summer births and fall-to-winter births by analysis of covariance. In addition, a multiple linear regression analysis was performed to determine whether the season of birth was a predictor of 18 F-AV-45 and/or 18 F-AV-1451 SUVRs, for which a difference was observed. RESULTS: Seasonal birth difference was a good predictor of 18 F-AV-1451 SUVR. We found that participants with a fall-to-winter birth showed lower 18 F-AV-1451 SUVRs than those with a spring-to-summer birth in both the CN and MCI/AD groups, after correcting for the effect of age, sex, years of education, and Alzheimer's Disease Assessment Scale cognitive subscale score, that could possibly affect tau accumulation. CONCLUSIONS: Participants with a fall-to-winter birth showed less tau accumulation than those with a spring-to-summer birth after accounting for the factors that could affect tau accumulation. Our findings showed a vulnerability to tau pathology in participants with a fall-to-winter birth, which may be caused by perinatal or postnatal brain damage due to the risk factors associated with the cold season.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Aged , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides/metabolism , Brain/diagnostic imaging , Brain/metabolism , Cognitive Dysfunction/diagnostic imaging , Humans , Positron-Emission Tomography/methods , Seasons , tau Proteins/metabolism
15.
J Biol Chem ; 295(44): 14807-14825, 2020 10 30.
Article in English | MEDLINE | ID: mdl-32737202

ABSTRACT

The pathological aggregation of tau plays an important role in Alzheimer's disease and many other related neurodegenerative diseases, collectively referred to as tauopathies. Recent evidence has demonstrated that tau oligomers, small and soluble prefibrillar aggregates, are highly toxic due to their strong ability to seed tau misfolding and propagate the pathology seen across different neurodegenerative diseases. We previously showed that novel curcumin derivatives affect preformed tau oligomer aggregation pathways by promoting the formation of more aggregated and nontoxic tau aggregates. To further investigate their therapeutic potential, we have extended our studies o disease-relevant brain-derived tau oligomers (BDTOs). Herein, using well-characterized BDTOs, isolated from brain tissues of different tauopathies, including Alzheimer's disease, progressive supranuclear palsy, and dementia with Lewy bodies, we found that curcumin derivatives modulate the aggregation state of BDTOs by reshaping them and rescue neurons from BDTO-associated toxicity. Interestingly, compound CL3 showed an effect on the aggregation pattern of BDTOs from different tauopathies, resulting in the formation of less neurotoxic larger tau aggregates with decreased hydrophobicity and seeding propensity. Our results lay the groundwork for potential investigations of the efficacy and beneficial effects of CL3 and other promising compounds for the treatment of tauopathies. Furthermore, CL3 may aid in the development of tau imaging agent for the detection of tau oligomeric strains and differential diagnosis of the tauopathies, thus enabling earlier interventions.


Subject(s)
Biopolymers/chemistry , Small Molecule Libraries/pharmacology , Tauopathies/drug therapy , tau Proteins/metabolism , Biopolymers/metabolism , Brain/cytology , Brain/metabolism , Cells, Cultured , Curcumin/analogs & derivatives , Curcumin/pharmacology , Diagnosis, Differential , Humans , Neurons/metabolism , Small Molecule Libraries/therapeutic use , Tauopathies/diagnosis , tau Proteins/drug effects
16.
Neurobiol Dis ; 161: 105536, 2021 12.
Article in English | MEDLINE | ID: mdl-34718129

ABSTRACT

The accumulation of hyperphosphorylated fibrillar Tau aggregates in the brain is one of the defining hallmarks of Tauopathy diseases, including Alzheimer's disease. However, the primary events or molecules responsible for initiation of the pathological Tau aggregation and spreading remain unknown. The discovery of heparin as an effective inducer of Tau aggregation in vitro was instrumental to enabling different lines of research into the role of Tau aggregation in the pathogenesis of Tauopathies. However, recent proteomics and cryogenic electron microscopy (cryo-EM) studies have revealed that heparin-induced Tau fibrils generated in vitro do not reproduce the biochemical and ultrastructural properties of disease-associated brain-derived Tau fibrils. These observations demand that we reassess our current approaches for investigating the mechanisms underpinning Tau aggregation and pathology formation. Our review article presents an up-to-date survey and analyses of 1) the evolution of our understanding of the interactions between Tau and heparin, 2) the various structural and mechanistic models of the heparin-induced Tau aggregation, 3) the similarities and differences between brain-derived and heparin-induced Tau fibrils; and 4) emerging concepts on the biochemical and structural determinants underpinning Tau pathological heterogeneity in Tauopathies. Our analyses identify specific knowledge gaps and call for 1) embracing the complexities of Tau pathologies; 2) reassessment of current approaches to investigate, model and reproduce pathological Tau aggregation as it occurs in the brain; 3) more research towards a better understanding of the naturally-occurring cofactor molecules that are associated with Tau brain pathology initiation and propagation; and 4) developing improved approaches for in vitro production of the Tau aggregates and fibrils that recapitulate and/or amplify the biochemical and structural complexity and diversity of pathological Tau in Tauopathies. This will result in better and more relevant tools, assays, and mechanistic models, which could significantly improve translational research and the development of drugs and antibodies that have higher chances for success in the clinic.


Subject(s)
Alzheimer Disease , Tauopathies , Alzheimer Disease/pathology , Brain/metabolism , Humans , Tauopathies/pathology , tau Proteins/metabolism
17.
Biochem Biophys Res Commun ; 585: 36-41, 2021 12 31.
Article in English | MEDLINE | ID: mdl-34784549

ABSTRACT

One of the histopathological features of Alzheimer's disease (AD) is higher order neurofibrillary tangles formed by abnormally aggregated tau protein. The sequence 275VQIINK280 in the microtubule-binding domain of tau plays a key role in tau aggregation. Therefore, an aggregation inhibitor targeting the VQIINK region in tau may be an effective therapeutic agent for AD. We have previously shown that the Fab domain (Fab2r3) of a tau antibody that recognizes the VQIINK sequence can inhibit tau aggregation, and we have determined the tertiary structure of the Fab2r3-VQIINK complex. In this report, we determined the tertiary structure of apo Fab2r3 and analyzed differences in the structures of apo Fab2r3 and Fab2r3-VQIINK to examine the ligand recognition mechanism of Fab2r3. In comparison with the Fab2r3-VQIINK structure, there were large differences in the arrangement of the constant and variable domains in apo Fab2r3. Remarkable structural changes were especially observed in the H3 and L3 loop regions of the complementarity determining regions (CDRs) in apo Fab2r3 and the Fab2r3-VQIINK complex. These structural differences in CDRs suggest that formation of hydrophobic pockets suitable for the antigen is important for antigen recognition by tau antibodies.


Subject(s)
Alzheimer Disease/metabolism , Amino Acid Motifs , Antibodies, Monoclonal/metabolism , Protein Aggregates , Protein Aggregation, Pathological/metabolism , tau Proteins/metabolism , Amino Acid Sequence , Antibodies, Monoclonal/chemistry , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/metabolism , Crystallography, X-Ray , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/metabolism , Models, Molecular , Neurofibrillary Tangles/chemistry , Neurofibrillary Tangles/metabolism , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , tau Proteins/chemistry , tau Proteins/immunology
18.
Chembiochem ; 22(21): 3049-3059, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34375027

ABSTRACT

Alzheimer's disease and other Tauopathies are associated with neurofibrillary tangles composed of Tau protein, as well as toxic Tau oligomers. Therefore, inhibitors of pathological Tau aggregation are potentially useful candidates for future therapies targeting Tauopathies. Two hexapeptides within Tau, designated PHF6* (275-VQIINK-280) and PHF6 (306-VQIVYK-311), are known to promote Tau aggregation. Recently, the PHF6* segment has been described as the more potent driver of Tau aggregation. We therefore employed mirror-image phage display with a large peptide library to identify PHF6* fibril binding peptides consisting of D-enantiomeric amino acids. The suitability of D-enantiomeric peptides for in vivo applications, which are protease stable and less immunogenic than L-peptides, has already been demonstrated. The identified D-enantiomeric peptide MMD3 and its retro-inverso form, designated MMD3rev, inhibited in vitro fibrillization of the PHF6* peptide, the repeat domain of Tau as well as full-length Tau. Dynamic light scattering, pelleting assays and atomic force microscopy demonstrated that MMD3 prevents the formation of tau ß-sheet-rich fibrils by diverting Tau into large amorphous aggregates. NMR data suggest that the D-enantiomeric peptides bound to Tau monomers with rather low affinity, but ELISA (enzyme-linked immunosorbent assay) data demonstrated binding to PHF6* and full length Tau fibrils. In addition, molecular insight into the binding mode of MMD3 to PHF6* fibrils were gained by in silico modelling. The identified PHF6*-targeting peptides were able to penetrate cells. The study establishes PHF6* fibril binding peptides consisting of D-enantiomeric amino acids as potential molecules for therapeutic and diagnostic applications in AD research.


Subject(s)
Peptides/pharmacology , tau Proteins/antagonists & inhibitors , Humans , Peptide Library , Peptides/chemistry , Protein Aggregates/drug effects , tau Proteins/metabolism
19.
Int J Geriatr Psychiatry ; 36(8): 1274-1283, 2021 08.
Article in English | MEDLINE | ID: mdl-33594726

ABSTRACT

OBJECTIVES: No prior study has assessed the effects of cholinesterase inhibitors (ChEIs) on tau pathology in the brains of patients with Alzheimer's disease (AD). Using positron emission tomography, this study aimed to investigate whether ChEIs reduce tau aggregation in amyloid-positive participants. METHODS: We analyzed datasets from the Alzheimer's Disease Neuroimaging Initiative and included amyloid-positive participants who had undergone baseline and 1- or 2-year follow-up AV-1451 positron emission tomography scans. We included participants treated with and without ChEIs (ChEIs group: n = 15, No-ChEIs group, n = 45). The annual change in tau aggregation was calculated as the difference in AV-1451- standardized uptake value ratio (SUVR) between the two scans divided by the time between scans. Group differences in annual AV-1451-SUVR change were examined. RESULTS: We found a significantly lower annual change in AV-1451-SUVR in the Braak 1/2 regions (entorhinal cortex and hippocampus) of participants taking ChEIs. Increased AV-1451-SUVR between the first and second examinations were observed in 22 of 45 participants not taking ChEIs and 2 of 15 participants taking ChEIs. Fisher's exact test showed a significant difference in the ratio of participants with increased AV-1451-SUVR between the groups. CONCLUSIONS: The findings of this positron emission tomography study suggest that the administration of ChEIs has some neuroprotective effects in patients of the AD continuum, at least in the early stage of the disease progression. This in vivo effect may be mediated via tau, preventing amyloid ß-induced neurotoxicity.


Subject(s)
Alzheimer Disease , Cholinesterase Inhibitors , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/drug therapy , Amyloid beta-Peptides , Cholinesterase Inhibitors/therapeutic use , Humans , Positron-Emission Tomography , tau Proteins
20.
Int J Geriatr Psychiatry ; 36(4): 598-605, 2021 04.
Article in English | MEDLINE | ID: mdl-33165946

ABSTRACT

OBJECTIVES: To investigate the relationship between amyloid-ß- and tau-based Alzheimer's disease (AD) pathologies assessed using positron emission tomography imaging and neuropsychiatric symptoms (NPS) in a sample of AD continuum including clinically normal subjects and patients with mild cognitive impairment or AD. METHODS: We analyzed datasets of the Alzheimer's disease Neuroimaging Initiative and included amyloid-positive subjects who underwent an AV-45 scan within 1 year of an AV-1451 scan (n = 99). Correlation between standardized uptake value ratio (SUVR) of AV-45 and AV-1451 and the Neuropsychiatric Inventory (NPI) score (and its four domain subscores for hyperactivity, psychosis, affective, and apathy) was evaluated. Stepwise logistic regression analysis was used to examine the influence of SUVRs on the presence of NPS. SUVRs were also tested for their ability to discriminate the group with NPS using receiver operating characteristic (ROC) curve analyses. RESULTS: Significant positive relationships were found between the total NPI score and affective symptoms and Braak 1&2 (transentorhinal region) AV-1451 SUVR. Stepwise logistic regression analysis identified tau accumulation in the area of Braak 1&2 as a significant covariate discriminating the presence of affective symptoms. The area under the ROC curve analysis showed that subjects with affective symptoms were discriminated by AV-1451 SUVR with an accuracy of 77.7%. CONCLUSIONS: Tau aggregation in the transentorhinal region, where neurodegeneration affected by tau pathology was seen in the early stage of AD, correlated with more severe NPS, especially affective symptoms. Therefore, tau pathology in the transentorhinal cortex might be associated with affective symptoms in the early stage of AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides , Cognitive Dysfunction/diagnostic imaging , Humans , Positron-Emission Tomography , tau Proteins
SELECTION OF CITATIONS
SEARCH DETAIL