Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
J Toxicol Environ Health A ; 87(13): 541-559, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38682597

ABSTRACT

Three-dimensional (3D) printing with polycarbonate (PC) plastic occurs in manufacturing settings, homes, and schools. Emissions generated during printing with PC stock and bisphenol-A (BPA), an endocrine disrupter in PC, may induce adverse health effects. Inhalation of 3D printer emissions, and changes in endocrine function may lead to cardiovascular dysfunction. The goal of this study was to determine whether there were any changes in markers of peripheral or cardiovascular dysfunction in animals exposed to PC-emissions. Male Sprague Dawley rats were exposed to PC-emissions generated by 3D printing for 1, 4, 8, 15 or 30 d. Exposure induced a reduction in the expression of the antioxidant catalase (Cat) and endothelial nitric oxide synthase (eNos). Endothelin and hypoxia-induced factor 1α transcripts increased after 30 d. Alterations in transcription were associated with elevations in immunostaining for estrogen and androgen receptors, nitrotyrosine, and vascular endothelial growth factor in cardiac arteries of PC-emission exposed animals. There was also a reduction eNOS immunostaining in cardiac arteries from rats exposed to PC-emissions. Histological analyses of heart sections revealed that exposure to PC-emissions resulted in vasoconstriction of cardiac arteries and thickening of the vascular smooth muscle wall, suggesting there was a prolonged vasoconstriction. These findings are consistent with studies showing that inhalation 3D-printer emissions affect cardiovascular function. Although BPA levels in animals were relatively low, exposure-induced changes in immunostaining for estrogen and androgen receptors in cardiac arteries suggest that changes in the action of steroid hormones may have contributed to the alterations in morphology and markers of cardiac function.


Subject(s)
Oxidative Stress , Polycarboxylate Cement , Printing, Three-Dimensional , Rats, Sprague-Dawley , Animals , Male , Rats , Oxidative Stress/drug effects , Biomarkers/metabolism , Benzhydryl Compounds/toxicity , Phenols/toxicity , Myocardium/metabolism , Air Pollutants/toxicity , Heart/drug effects , Nitric Oxide Synthase Type III/metabolism
2.
Morphologie ; 108(361): 100759, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38215686

ABSTRACT

PURPOSE: Several reviews and meta-analyses about the value of three-dimensional (3D) printing in anatomy education have been published in the last years, with variable-and sometimes confusing- outcomes. We performed a review of those reviews, in order to shed light on the results concerning the effectiveness of 3D printing in anatomy education, compared to specific traditional methods and other technologies. METHODS: The electronic databases PubMed, ERIC and Cochrane library were searched for reviews or meta-analyses with purpose to investigate the effectiveness of 3D printing in undergraduate and postgraduate anatomy education. RESULTS: Seven papers were included: four systematic reviews with meta-analysis, one narrative, one scoping and one systematic review. Overall, it has been shown that 3D printing is more effective than two-dimensional (2D) images for undergraduate health science students, but not for medical residents. Also, it seems to be more effective than 2D methods for teaching anatomy of some relatively complex structures, such as the nervous system. However, there is generally lack of evidence about the effectiveness of 3D printing in comparison with other 3D visualization methods. CONCLUSIONS: For students, the effectiveness of 3D printing in anatomy education is higher than 2D methods. There is need for studies to investigate the effectiveness of 3D printing in comparison with other 3D visualization methods, such as cadaveric dissection, prosection and virtual reality. There is also need for research to explore if 3D printing is effective as a supplementary tool in a blended anatomy learning approach.


Subject(s)
Anatomy , Printing, Three-Dimensional , Anatomy/education , Humans , Education, Medical, Undergraduate/methods , Education, Medical, Graduate/methods , Models, Anatomic
3.
Med J Armed Forces India ; 80(4): 399-403, 2024.
Article in English | MEDLINE | ID: mdl-39071750

ABSTRACT

The three-dimensional (3D) printing technology has led to transformative shift in prosthodontics. This review summarizes the evolution, processing techniques, materials, integration of digital plan, challenges, clinical applications and future directions of 3D printing in prosthodontics. It appraises from the launch of 3D printing to its current applications in prosthodontics. The convergence of printing technology with digital dentistry has facilitated the creation of accurate, customized prostheses, redefining treatment planning, design, and manufacturing processes. The progression of this technology is from generating models to prosthesis like-fixed dental prosthesis (FDP), implants, and splints. Additionally, it exhibits more wide capabilities. The exploration of materials for 3D printing provides various options like polymers, ceramics, metals, and hybrids, each with distinctive properties that are applicable to different clinical scenarios. The combination of 3D-printing technology and digital workflow simplifies the processes of data transfer, computer-aided design (CAD) design to fabrication, decreasing errors and chairside time. The clinical benefits include enhanced accuracy, comfort, conservative lab procedures, and economics. Challenges in the technology involve significant aspects like initial investment, material availability, and skill requirements. Future trends emphasize on research for improved materials, bioprinting integration, artificial intelligence (AI) application, regularization efforts to ensure safe and common use of the technology. 3D printing offers promise in prosthodontics, addressing challenges through research. The material improvements will promote its broader adoption and revolutionize the future of dental rehabilitation.

4.
Biol Pharm Bull ; 46(10): 1461-1467, 2023.
Article in English | MEDLINE | ID: mdl-37779048

ABSTRACT

Since three-dimensional (3D)-printed tablets were approved by the United States Food and Drug Administration (FDA), 3D printing technology has garnered increasing interest for the fabrication of medical and pharmaceutical devices. With various dosing devices being designed for manufacture by 3D printing, 3D-printed ophthalmic formulations to release drugs have been one such target of investigation. In the current study, 3D-printed contact lenses designed for the controlled release of the antibiotic azithromycin were produced by vat photopolymerization, and the effect of the printer ink composition and a second curing process was investigated. The azithromycin-loaded contact lenses were composed of the cross-linking reagent polyethylene glycol diacrylate (PEGDA), PEG 400 as a solvent, a photoinitiator, and azithromycin. The 3D-printed contact lenses were fabricated successfully, and formulations with lower PEGDA concentrations produced thicker lenses. The mechanical strength of the PEGDA-based contact lenses was dependent on the amount of PEGDA and was improved by a second curing process. Drug release from 3D-printed contact lenses was reduced in the samples with a second curing process. The azithromycin-loaded contact lenses exhibited antimicrobial effects in vitro for both Gram-positive and -negative bacteria. These results suggest that 3D-printed contact lenses containing antibiotics are an effective model for treating eye infections by controlling drug release.


Subject(s)
Azithromycin , Contact Lenses , Technology, Pharmaceutical/methods , Delayed-Action Preparations , Polyethylene Glycols , Drug Liberation , Printing, Three-Dimensional
5.
Int J Mol Sci ; 23(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35216411

ABSTRACT

Photopolymer resins are widely used in the production of dental prostheses, but their mechanical properties require improvement. We evaluated the effects of different zirconia filler contents and printing directions on the mechanical properties of photopolymer resin. Three-dimensional (3D) printing was used to fabricate specimens using composite photopolymers with 0 (control), 3, 5, and 10 wt.% zirconia filler. Two printing directions for fabricating rectangular specimens (25 mm × 2 mm × 2 mm) and disk-shaped specimens (φ10 mm × 2 mm) were used, 0° and 90°. Three-point bending tests were performed to determine the flexural strengths and moduli of the specimens. The Vickers hardness test was performed to determine the hardness of the specimens. Tukey's multiple comparison tests were performed on the average values of the flexural strengths, elastic moduli, and Vickers hardness after one-way ANOVA (α = 0.05). The flexural strengths and elastic moduli at 0° from high to low were in the order of 0, 3, 10, and 5 wt.%, and those at 90° were in the order of 3, 0, 10, and 5 wt.% (p < 0.05). For 5 and 10 wt.%, no significant differences were observed in mechanical properties at 0° and 90° (p < 0.05). The Vickers hardness values at 0° and 90° from low to high were in the order of 0, 3, 5, and 10 wt.% (p < 0.05). Within the limits of this study, the optimal zirconia filler content in the photopolymer resin for 3D printing was 0 wt.% at 0° and 3 wt.% at 90°.


Subject(s)
Composite Resins/chemistry , Polymers/chemistry , Resins, Synthetic/chemistry , Elastic Modulus , Hardness , Materials Testing/methods , Stress, Mechanical , Surface Properties , Zirconium/chemistry
6.
Molecules ; 26(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383691

ABSTRACT

Various three-dimensional printing (3DP) technologies have been investigated so far in relation to their potential to produce customizable medicines and medical devices. The aim of this study was to examine the possibility of tailoring drug release rates from immediate to prolonged release by varying the tablet thickness and the drug loading, as well as to develop artificial neural network (ANN) predictive models for atomoxetine (ATH) release rate from DLP 3D-printed tablets. Photoreactive mixtures were comprised of poly(ethylene glycol) diacrylate (PEGDA) and poly(ethylene glycol) 400 in a constant ratio of 3:1, water, photoinitiator and ATH as a model drug whose content was varied from 5% to 20% (w/w). Designed 3D models of cylindrical shape tablets were of constant diameter, but different thickness. A series of tablets with doses ranging from 2.06 mg to 37.48 mg, exhibiting immediate- and modified-release profiles were successfully fabricated, confirming the potential of this technology in manufacturing dosage forms on demand, with the possibility to adjust the dose and release behavior by varying drug loading and dimensions of tablets. DSC (differential scanning calorimetry), XRPD (X-ray powder diffraction) and microscopic analysis showed that ATH remained in a crystalline form in tablets, while FTIR spectroscopy confirmed that no interactions occurred between ATH and polymers.


Subject(s)
Adrenergic Uptake Inhibitors/chemistry , Atomoxetine Hydrochloride/chemistry , Adrenergic Uptake Inhibitors/administration & dosage , Atomoxetine Hydrochloride/administration & dosage , Drug Liberation , Excipients/chemistry , Neural Networks, Computer , Polyethylene Glycols/chemistry , Printing, Three-Dimensional , Tablets
7.
Biol Pharm Bull ; 42(10): 1753-1760, 2019.
Article in English | MEDLINE | ID: mdl-31582663

ABSTRACT

The use of three-dimensional (3D) printing technology is expanding in various fields. The application of 3D printing is expected to increase in the pharmaceutical industry after 3D-printed tablets were approved by the U.S. Food and Drug Administration (FDA). Fused deposition modeling (FDM), a type of 3D printing, has been extensively studied for the manufacturing of tablets. A drug-loaded polymer filament, the ink of FDM 3D printers, can be prepared using the hot melt extrusion method or a simple drug-soaking method. In the present study, we investigate the influence of the experimental conditions on the loading of curcumin (model drug with fluorescence) into a polyvinylalcohol polymer filament using the soaking method. We show that organic solvent type (isopropanol, methanol, acetone, and ethanol), temperature (25 and 80°C), and drug concentration (2-333 mg/mL) greatly affect drug loading. Around 5% curcumin can be incorporated into the polyvinylalcohol filament using the soaking method. The drug dissolution from 3D-printed tablets depends on the drug content in the polymer filament. The incorporation of a higher amount of curcumin, which has poor water solubility, greatly delays drug dissolution. These results provide useful information on the preparation of 3D-printed tablets using a drug-loaded polymer filament obtained with the soaking method.


Subject(s)
Printing, Three-Dimensional , Tablets/chemistry , Technology, Pharmaceutical/methods , Curcumin/chemistry , Drug Liberation , Polyvinyl Alcohol/chemistry , Solubility , Solvents/chemistry , Temperature
8.
Biol Pharm Bull ; 42(11): 1898-1905, 2019.
Article in English | MEDLINE | ID: mdl-31685772

ABSTRACT

Pharmaceutical applications of three dimensional (3D) printing technology are increasing following the approval of 3D-printed tablets by the U.S. Food and Drug Administration. Semi-solid extrusion-type 3D printers are used to 3D print hydrogel- and paste-based materials. We previously developed tablet formulations for semi-solid extrusion-type 3D bioprinters. In the present study, we extended our study to the preparation of muco-adhesive oral film formulations to 3D bioprint mouth ulcer pharmaceuticals. We focused on hydroxypropyl methylcellulose (HPMC)-based catechin (model drug)-loaded hydrogel formulations and found that the viscosity of a hydrogel formulation is dependent on the HPMC concentration, and that viscosity is important for facile 3D printing. HPMC-based films were prepared using two different drying methods (air drying and freeze drying). The films exhibited different drug dissolution profiles, and increasing the amount of HPMC in the film delayed drug dissolution. The fabrication of HPMC-based catechin-loaded films with different shapes provides a model of individualized, on-demand pharmaceuticals. Our results support the flexible application of 3D bioprinters (semi-solid extrusion-type 3D printers) for preparing film formulations.


Subject(s)
Catechin/therapeutic use , Drug Compounding/methods , Methylcellulose/therapeutic use , Printing, Three-Dimensional , Technology, Pharmaceutical/methods , Adhesives , Drug Liberation , Hypromellose Derivatives , Methylcellulose/analogs & derivatives , Viscosity
9.
Int Orthop ; 43(8): 1969-1976, 2019 08.
Article in English | MEDLINE | ID: mdl-30128670

ABSTRACT

PURPOSE: Surgical treatment of acetabular fractures with plate fixation is challenging for orthopaedic surgeons because of variations of the surface curvature and complex fracture patterns of the acetabulum. We present our experience with pre-operative computer-assisted virtual simulation and three-dimensional (3D) printing techniques for the surgical treatment of acetabular fractures, especially in terms of operative time and surgical outcomes. METHODS: Twenty-nine patients with acetabular fractures treated with locking plates were included in this retrospective study (conventional locking plate fixation, n = 17; 3D-printing-assisted precontoured locking plate fixation, n = 12). Fracture types were classified according to the Letournel-Judet classification. Surgical duration, instrumentation time, blood loss, post-operative fracture reduction quality, and complication rates were compared between the two surgical groups. RESULTS: The 3D-printing group had a significantly shorter total surgical duration and instrumentation time for fractures with posterior wall or posterior column involvement (222.75 ± 48.12 and 35.75 ± 9.21 minutes, respectively; P < 0.05) and significantly shorter instrumentation time and less blood loss for fractures with anterior column involvement (43.40 ± 10.92 minutes and 433.33 ± 317.28 mL, respectively; P < 0.05) than those in the control group. The post-operative radiological results (assessed by consensus) were similar for both groups (good/fair: 14/3 vs. 11/1; P = 0.622). The complication rate was lower in the 3D-printing group than in the conventional group (16.67 vs. 29.41%). CONCLUSIONS: The 3D printing is a reliable method for treating acetabular fractures, and can reduce the surgical duration, instrumentation time, and blood loss.


Subject(s)
Acetabulum/diagnostic imaging , Acetabulum/surgery , Fractures, Bone/diagnostic imaging , Fractures, Bone/surgery , Printing, Three-Dimensional , Acetabulum/injuries , Adult , Bone Plates , Computer Simulation , Female , Fracture Fixation, Internal/instrumentation , Fracture Fixation, Internal/methods , Humans , Imaging, Three-Dimensional , Male , Middle Aged , Preoperative Care , Retrospective Studies , Surgery, Computer-Assisted , Young Adult
10.
Int J Comput Dent ; 21(3): 251-259, 2018.
Article in English | MEDLINE | ID: mdl-30264054

ABSTRACT

OBJECTIVE: In most cases, according to our treatment concept, a presurgical orthodontic treatment (POT) is performed on patients with cleft lip and palate (CLP). The aim of this case report is to demonstrate a completely digital workflow for the production of a palate plate. MATERIALS AND METHODS: For the assessment of the maxillary arch, a digital impression of the jaw was made on two patients with an intraoral scanner (Cerec Omnicam Ortho). After reconstruction of a virtual model from the scan data, appropriate areas of the jaw could be blocked out and a plate constructed. This was printed with a DLP three-dimensional (3D) printer (SHERA EcoPrint D30) with class IIa biocompatible material. After minor surface finishing, the plates could be incorporated in the patients' mouths. RESULTS: The scans could be performed in a short time without affecting the very young patients. All clinically relevant areas for the production and digital measurement of the models could be recorded. The plates showed an extremely good fit, and there were no differences in wear compared with a conventionally manufactured plate. CONCLUSION: For the first time, a risk-free digital impression of the edentulous jaw in CLP babies with a subsequently completely digitally constructed and 3D-printed palatal plate could be shown.


Subject(s)
Cleft Lip/surgery , Cleft Palate/surgery , Computer Simulation , Palatal Obturators , Printing, Three-Dimensional , Computer-Aided Design , Humans , Infant , Photography , Workflow
11.
Sensors (Basel) ; 17(9)2017 Aug 26.
Article in English | MEDLINE | ID: mdl-28846603

ABSTRACT

We propose a push/pull origami antenna, transformable between a single antenna element and a three-element array. In limited space, the proposed origami antenna can work as a single antenna. When the space is not limited and a higher gain is required, the proposed origami antenna can be transformed to a series antenna array by pulling the frame. In order to push the antenna array back to a single antenna, the frame for each antenna element size must be different. The frame and supporting dielectric materials are built using a three-dimensional (3D) printer. The conductive patterns are inkjet-printed on paper. Thus, the proposed origami antenna is built using hybrid printing technology. The 10-dB impedance bandwidth is 2.5-2.65 GHz and 2.48-2.62 GHz for the single-antenna and array mode, respectively, and the peak gains in the single-antenna and array mode are 5.8 dBi and 7.6 dBi, respectively. The proposed antenna can be used for wireless remote-sensing applications.

12.
World J Urol ; 34(4): 533-7, 2016 Apr.
Article in English | MEDLINE | ID: mdl-25841361

ABSTRACT

OBJECTIVES: To investigate the impact of three-dimensional (3D) printing on the surgical planning, potential of training and patients' comprehension of minimally invasive surgery for renal tumors. METHODS: Patients of a T1N0M0 single renal tumor and indicated for laparoscopic partial nephrectomy were selected. CT data were sent for post-processing and output to the 3D printer to create kidney models with tumor. By presenting to experienced laparoscopic urologists and patients, respectively, the models' realism, effectiveness for surgical planning and training, and patients' comprehension of disease and procedure were evaluated with plotted questionnaires (10-point rating scales, 1-not at all useful/not at all realistic/poor, 10-very useful/very realistic/excellent). The size of resected tumors was compared with that on the models. RESULTS: Ten kidney models of such patients were fabricated successfully. The overall effectiveness in surgical planning and training (7.8 ± 0.7-8.0 ± 1.1), and realism (6.0 ± 0.6-7.8 ± 1.0) were reached by four invited urologists. Intraoperative correlation was advocated by the two performing urologists. Patients were fascinated with the demonstration of a tactile "diseased organ" (average ≥ 9.0). The size deviation was 3.4 ± 1.3 mm. CONCLUSIONS: Generating kidney models of T1N0M0 tumors with 3D printing are feasible with refinements to be performed. Face and content validity was obtained when those models were presented to experienced urologists for making practical planning and training. Understandings of the disease and procedure from patients were well appreciated with this novel technology.


Subject(s)
Imaging, Three-Dimensional/methods , Kidney Neoplasms/diagnosis , Kidney/diagnostic imaging , Neoplasm Staging/methods , Nephrectomy/methods , Printing, Three-Dimensional , Female , Humans , Kidney/surgery , Kidney Neoplasms/surgery , Laparoscopy/methods , Male , Middle Aged , Retrospective Studies
13.
Surg Innov ; 23(2): 189-95, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26423911

ABSTRACT

BACKGROUND: Three-dimensional (3D) printing has been used in the manufacturing industry for rapid prototyping and product testing. The aim of our study was to assess the feasibility of creating anatomical 3D models from a digital image using 3D printers. Furthermore, we sought face validity of models and explored potential opportunities for using 3D printing to enhance surgical education and clinical practice. METHODS: Computed tomography and magnetic resonance images were reviewed, converted to computer models, and printed by stereolithography to create near exact replicas of human organs. Medical students and surgeons provided feedback via survey at the 2014 Surgical Education Week conference. RESULTS: There were 51 respondents, and 95.8% wanted these models for their patients. Cost was a concern, but 82.6% found value in these models at a price less than $500. All respondents thought the models would be useful for integration into the medical school curriculum. CONCLUSION: Three-dimensional printing is a potentially disruptive technology to improve both surgical education and clinical practice. As the technology matures and cost decreases, we envision 3D models being increasingly used in surgery.


Subject(s)
Imaging, Three-Dimensional/methods , Models, Anatomic , Printing, Three-Dimensional , Adult , Female , Humans , Magnetic Resonance Imaging , Male , Neoplasms , Students, Medical/statistics & numerical data , Tomography, X-Ray Computed , Young Adult
14.
Cureus ; 16(6): e62614, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39027795

ABSTRACT

Magistral formulations emerged years ago and were of great help in the personalization of treatments for patients. Over time, innovation began in this area with new technologies such as three-dimensional (3D) printing, which has brought greater benefits, ease of preparation, new scopes, and even cost reduction. Three-dimensional printing of medicines opened the way to create personalized multi-dose, controlled-release, multi-drug tablets, among others. In addition, this technology manages to be more specific in adjusting pharmacokinetics, doses, and even organoleptic qualities, which is precisely what is sought since the medication is being personalized for a patient due to a particular case or condition. Throughout the research, some studies can be observed that function as a base that provides safety and effectiveness for the subsequent use of other pharmaceuticals in the 3D printing of medicines.

15.
ACS Appl Mater Interfaces ; 16(35): 46044-46052, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39103250

ABSTRACT

Lipid nanoparticles (LNPs) are gaining recognition as potentially effective carriers for delivery of therapeutic agents, including nucleic acids (DNA and RNA), for the prevention and treatment of various diseases. Much effort has been devoted to the implementation of microfluidic techniques for the production of monodisperse and stable LNPs and the improvement of encapsulation efficiency. Here, we developed three-dimensional (3D)-printed ring micromixers for the production of size-controllable and monodispersed LNPs with a high mRNA delivery efficiency. The effects of flow rate and ring shape asymmetry on the mixing performance were initially examined. Furthermore, the physicochemical properties (such as hydrodynamic diameter, polydispersity, and encapsulation efficiency) of the generated LNPs were quantified as a function of these physical parameters via biochemical analysis and cryo-electron microscopy imaging. With a high production rate of 68 mL/min, our 3D-printed ring micromixers can be used to manufacture LNPs with diameters less than 90 nm, low polydispersity (<0.2), and high mRNA encapsulation efficiency (>91%). Despite the simplicity of the ring-shaped mixer structure, we can produce mRNA-loaded LNPs with exceptional quality and high throughput, outperforming costly commercial micromixers.


Subject(s)
Nanoparticles , Particle Size , Printing, Three-Dimensional , RNA, Messenger , RNA, Messenger/genetics , RNA, Messenger/metabolism , Nanoparticles/chemistry , Lipids/chemistry , Humans , Liposomes
16.
Front Surg ; 11: 1435955, 2024.
Article in English | MEDLINE | ID: mdl-39157290

ABSTRACT

Recent years have seen the publication of numerous papers on the application of three-dimensional (3D) printing in plastic surgery. Despite this growing interest, a comprehensive bibliometric analysis of the field has yet to be conducted. To address this gap, we undertook a bibliometric study to map out the knowledge structure and identify research hotspots related to 3D printing in plastic surgery. We analyzed publications from 1995 to 2024, found in the Web of Science Core Collection (WoSCC), utilizing tools such as VOSviewer, CiteSpace, and the R package "bibliometrix". Our analysis included 1,057 documents contributed by 5,545 authors from 1,620 organizations across 71 regions, and these were published in 400 journals. We observed a steady growth in annual publications, with Europe, Asia, North America, and Oceania leading in research output. Notably, Shanghai Jiao Tong University emerged as a primary research institution in this domain. The Journal of Craniofacial Surgery and Journal of Oral and Maxillofacial Surgery have made significant contributions to the field, with Thieringer, Florian M being the most prolific and frequently cited author. Key areas of focus include medical education and surgical procedures, with "3D printing", "virtual surgical planning" and "reconstructive/orthognathic surgery" highlighted as future research hotspots. Our study provides a detailed bibliometric analysis, revealing the evolution and progress of 3D printing technologies in plastic surgery. As these technologies continue to advance, their impact on clinical practice and patient lives is expected to be profound.

17.
Sci Rep ; 14(1): 7661, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38561420

ABSTRACT

Complex temporal bone anatomy complicates operations; thus, surgeons must engage in practice to mitigate risks, improving patient safety and outcomes. However, existing training methods often involve prohibitive costs and ethical problems. Therefore, we developed an educational mastoidectomy simulator, considering mechanical properties using 3D printing. The mastoidectomy simulator was modeled on computed tomography images of a patient undergoing a mastoidectomy. Infill was modeled for each anatomical part to provide a realistic drilling sensation. Bone and other anatomies appear in assorted colors to enhance the simulator's educational utility. The mechanical properties of the simulator were evaluated by measuring the screw insertion torque for infill specimens and cadaveric temporal bones and investigating its usability with a five-point Likert-scale questionnaire completed by five otolaryngologists. The maximum insertion torque values of the sigmoid sinus, tegmen, and semicircular canal were 1.08 ± 0.62, 0.44 ± 0.42, and 1.54 ± 0.43 N mm, displaying similar-strength infill specimens of 40%, 30%, and 50%. Otolaryngologists evaluated the quality and usability at 4.25 ± 0.81 and 4.53 ± 0.62. The mastoidectomy simulator could provide realistic bone drilling feedback for educational mastoidectomy training while reinforcing skills and comprehension of anatomical structures.


Subject(s)
Mastoidectomy , Simulation Training , Humans , Printing, Three-Dimensional , Temporal Bone/surgery , Simulation Training/methods
18.
Cureus ; 16(3): e55723, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38586748

ABSTRACT

We present a case detailing the successful reconstruction of the hindfoot in a 15-year-old male patient who suffered a self-inflicted shotgun wound. The patient had multiple complex fractures in these bones, resulting in considerable bone loss and the destruction of the articular surface. Considering the extent of the injuries and the failure of prior intervention from an outside surgeon, traditional reconstruction methods would not have adequately addressed the severity of the damage. Consequently, the treating physician opted to address the deformity using a three-dimensional (3D)-printed custom implant to salvage the limb. The treatment involved a two-stage surgical plan. The first stage encompassed debridement with the removal of antibiotic cement, which had been placed at the time of the initial injury, followed by debridement and placement of a new temporary antibiotic spacer. A 21-day course of antibiotics was administered to combat the developing osteomyelitis. Following the successful eradication of the infection, a second surgery entailed removing the spacer and residual bone, inserting the 3D-printed implant filled with bone graft, and fusing the hindfoot. Post-surgery, the patient steadily progressed from non-weight-bearing to full weight-bearing and was fully weight-bearing at five months post-surgery. He had reported significant improvements in pain and mobility. There were no complications, and the 3D-printed implant exhibited excellent integration with the surrounding bone tissue with a two-year follow-up. This case serves as a demonstration of the utility of 3D-printed custom implants in severe foot and ankle trauma, showcasing the technology's potential to revolutionize orthopedic surgery. Despite the potential risks, this approach highlights significant benefits and opens avenues for tailored reconstructions in complex orthopedic injuries.

19.
Polymers (Basel) ; 16(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38674964

ABSTRACT

Polyethylene terephthalate glycol (PETG) and silicon nitride (Si3N4) were combined to create five composite materials with Si3N4 loadings ranging from 2.0 wt.% to 10.0 wt.%. The goal was to improve the mechanical properties of PETG in material extrusion (MEX) additive manufacturing (AM) and assess the effectiveness of Si3N4 as a reinforcing agent for this particular polymer. The process began with the production of filaments, which were subsequently fed into a 3D printer to create various specimens. The specimens were manufactured according to international standards to ensure their suitability for various tests. The thermal, rheological, mechanical, electrical, and morphological properties of the prepared samples were evaluated. The mechanical performance investigations performed included tensile, flexural, Charpy impact, and microhardness tests. Scanning electron microscopy and energy-dispersive X-ray spectroscopy mapping were performed to investigate the structures and morphologies of the samples, respectively. Among all the composites tested, the PETG/6.0 wt.% Si3N4 showed the greatest improvement in mechanical properties (with a 24.5% increase in tensile strength compared to unfilled PETG polymer), indicating its potential for use in MEX 3D printing when enhanced mechanical performance is required from the PETG polymer.

20.
J Zhejiang Univ Sci B ; 25(2): 168-180, 2024 Feb 15.
Article in English, Zh | MEDLINE | ID: mdl-38303499

ABSTRACT

Energy metabolism is fundamental for life. It encompasses the utilization of carbohydrates, lipids, and proteins for internal processes, while aberrant energy metabolism is implicated in many diseases. In the present study, using three-dimensional (3D) printing from polycarbonate via fused deposition modeling, we propose a multi-nuclear radiofrequency (RF) coil design with integrated 1H birdcage and interchangeable X-nuclei (2H, 13C, 23Na, and 31P) single-loop coils for magnetic resonance imaging (MRI)/magnetic resonance spectroscopy (MRS). The single-loop coil for each nucleus attaches to an arc bracket that slides unrestrictedly along the birdcage coil inner surface, enabling convenient switching among various nuclei and animal handling. Compared to a commercial 1H birdcage coil, the proposed 1H birdcage coil exhibited superior signal-excitation homogeneity and imaging signal-to-noise ratio (SNR). For X-nuclei study, prominent peaks in spectroscopy for phantom solutions showed excellent SNR, and the static and dynamic peaks of in vivo spectroscopy validated the efficacy of the coil design in structural imaging and energy metabolism detection simultaneously.


Subject(s)
Magnetic Resonance Imaging , Protons , Animals , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Phantoms, Imaging , Signal-To-Noise Ratio , Equipment Design
SELECTION OF CITATIONS
SEARCH DETAIL