Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 214
Filter
1.
Nano Lett ; 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39373895

ABSTRACT

Two-dimensional (2D) dichalcogenides are modern nanomaterials with unique physical and chemical properties. These materials possess band gaps in the infrared and visible regions of the electromagnetic spectrum that can be tuned by their molecular composition. Excitons generated as a result of such light-matter interactions are capable of catalyzing chemical reactions in molecular analytes present on the dichalcogenide surfaces. However, the photocatalytic properties of such nanomaterials remain poorly understood. In the current study, we utilize tip-enhanced Raman spectroscopy (TERS) to examine photocatalytic reduction of 4-nitrothiophenol (4-NTP) to p,p'-dimercaptoazobisbenzene (DMAB) on tungsten disulfide (WS2) nanoplates and WS2 coupled with palladium nanoparticles (WS2@PdNPs). Our results indicate that although both WS2 and WS2@Pd were capable of reducing 4-NTP into DMAB, the metallic hybrid demonstrated much greater yield and rates of DMAB formation compared to WS2 nanoplate. These results indicate that coupling of catalytic metals to dichalcogenides could be used to enhance their catalytic properties.

2.
Nano Lett ; 24(31): 9658-9665, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39052446

ABSTRACT

Dielectric phase gradient metasurfaces have emerged as promising candidates to shrink bulky optical elements to subwavelength thickness scale based on dielectric meta-atoms. These meta-atoms strongly interact with light, thus offering excellent phase manipulation of incident light. However, to fulfill 2π phase control using meta-atoms, the metasurface thickness, to date, is limited to the order of 102 nm. Here, we present the thickness scaling down of phase gradient metasurfaces to <λ/20 by using excitonic van der Waals metasurfaces. High-refractive-index enabled by exciton resonances and symmetry-breaking nanostructures in the patterned layered tungsten disulfide (WS2) corporately enable quasibound states in the continuum in WS2 metasurfaces, which consequently yield complete phase regulation of 2π with the thickness down to 35 nm. To illustrate the concept, we have experimentally demonstrated beam steering, focusing, and holographic display using WS2 metasurfaces. We envision our results unveiling new venues for ultimate thin phase gradient metasurfaces.

3.
Small ; 20(30): e2312235, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38433104

ABSTRACT

Bombarding WS2 multilayered nanoparticles and nanotubes with focused ion beams of Ga+ ions at high doses, larger than 1016 cm-2, leads to drastic structural changes and melting of the material. At lower doses, when the damage is negligible or significantly smaller, the amount of implanted Ga is very small. A substantial increase in the amount of implanted Ga, and not appreciable structural damage, are observed in nanoparticles previously hydrogenated by a radio-frequency activated hydrogen plasma. Density functional calculations reveal that the implantation of Ga in the spaces between adjacent layers of pristine WS2 nanoparticles is difficult due to the presence of activation barriers. In contrast, in hydrogenated WS2, the hydrogen molecules are able to intercalate in between adjacent layers of the WS2 nanoparticles, giving rise to the expansion of the interlayer distances, that in practice leads to the vanishing of the activation barrier for Ga implantation. This facilitates the implantation of Ga atoms in the irradiation experiments.

4.
Small ; : e2403965, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38994696

ABSTRACT

Nanotube and nanowire transistors hold great promises for future electronic and optoelectronic devices owing to their downscaling possibilities. In this work, a single multi-walled tungsten disulfide (WS2) nanotube is utilized as the channel of a back-gated field-effect transistor. The device exhibits a p-type behavior in ambient conditions, with a hole mobility µp ≈  1.4 cm2V-1s-1 and a subthreshold swing SS ≈ 10 V dec-1. Current-voltage characterization at different temperatures reveals that the device presents two slightly different asymmetric Schottky barriers at drain and source contacts. Self-powered photoconduction driven by the photovoltaic effect is demonstrated, and a photoresponsivity R ≈ 10 mAW-1 at 2 V drain bias and room temperature. Moreover, the transistor is tested for data storage applications. A two-state memory is reported, where positive and negative gate pulses drive the switching between two different current states, separated by a window of 130%. Finally, gate and light pulses are combined to demonstrate an optoelectronic memory with four well-separated states. The results herein presented are promising for data storage, Boolean logic, and neural network applications.

5.
Small ; 20(38): e2403321, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38837576

ABSTRACT

Transition metal derivatives exhibit high theoretical capacity, making them promising anode materials for sodium-ion batteries. Sulfides, known for their superior electrical conductivity compared to oxides, enhance charge transfer, leading to improved electrochemical performance. Here, a hierarchical WS2 micro-flower is synthesized by thermal sulfurization of WO3. Comprising interconnected thin nanosheets, this structure offers increased surface area, facilitating extensive internal surfaces for electrochemical redox reactions. The WS2 micro-flower demonstrates a specific capacity of ≈334 mAh g-1 at 15 mA g-1, nearly three times higher than its oxide counterpart. Further, it shows very stable performance as a high-temperature (65 °C) anode with ≈180 mAh g-1 reversible capacity at 100 mA g-1 current rate. Post-cycling analysis confirms unchanged morphology, highlighting the structural stability and robustness of WS2. DFT calculations show that the electronic bandgap in both WS2 and WO3 increases when going from the bulk to monolayers. Na adsorption calculations show that Na atoms bind strongly in WO3 with a higher energy diffusion barrier when compared to WS2, corroborating the experimental findings. This study presents a significant insight into electrode material selection for sodium-ion storage applications.

6.
Small ; : e2402217, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38924273

ABSTRACT

As demand for higher integration density and smaller devices grows, silicon-based complementary metal-oxide-semiconductor (CMOS) devices will soon reach their ultimate limits. 2D transition metal dichalcogenides (TMDs) semiconductors, known for excellent electrical performance and stable atomic structure, are seen as promising materials for future integrated circuits. However, controlled and reliable doping of 2D TMDs, a key step for creating homogeneous CMOS logic components, remains a challenge. In this study, a continuous electrical polarity modulation of monolayer WS2 from intrinsic n-type to ambipolar, then to p-type, and ultimately to a quasi-metallic state is achieved simply by introducing controllable amounts of vanadium (V) atoms into the WS2 lattice as p-type dopants during chemical vapor deposition (CVD). The achievement of purely p-type field-effect transistors (FETs) is particularly noteworthy based on the 4.7 at% V-doped monolayer WS2, demonstrating a remarkable on/off current ratio of 105. Expanding on this triumph, the first initial prototype of ultrathin homogeneous CMOS inverters based on monolayer WS2 is being constructed. These outcomes validate the feasibility of constructing homogeneous CMOS devices through the atomic doping process of 2D materials, marking a significant milestone for the future development of integrated circuits.

7.
Nanotechnology ; 35(47)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39178889

ABSTRACT

Due to their unique properties, two-dimensional transition metal dichalcogenides (2D TMDCs) are considered for diverse applications in microelectronics, sensing, catalysis, to name a few. A common challenge in 2D TMDC research is the film's inherent instability i.e. spontaneous oxidation upon ambient exposure. The present study systematically explores the effect aging on the film composition and photoluminescent properties of monolayer WS2, synthetically grown by metal-organic chemical vapor deposition. The aging rate is investigated for different oxygen- (i.e. O2gas concentration and humidity) and light-controlled environments. Simple mitigation strategies that do not involve capping the 2D TMDC layer are discussed, and their effectiveness demonstrated by benchmarking the evolution in photoluminescence response against ambient exposed monolayer WS2. These results highlight the need to store 2D TMDCs in controlled environments to preserve the film quality and how future studies can account for the aging effect.

8.
Nanotechnology ; 35(39)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38906122

ABSTRACT

In this study, we have investigated the thermal transport characteristics of single-layer tungsten disulfide, WS2nanoribbons (SLTDSNRs) using equilibrium molecular dynamics simulations with the help of Green-Kubo formulation. Using Stillinger-Weber (SW) inter-atomic potential, the calculated room temperature thermal conductivities of 15 nm × 4 nm pristine zigzag and armchair SLTDSNRs are 126 ± 10 W m-1K-1and 110 ± 6 W m-1K-1, respectively. We have explored the dependency of thermal conductivity on temperature, width, and length of the nanoribbon. The study shows that the thermal conductivity of the nanoribbon decreases with the increase in temperature, whereas the thermal conductivity increases with an increase in either the width or length of the ribbon. The thermal conductivity does not increase uniformly as the size of the ribbon changes. We have also observed that the thermal conductivity of SLTDSNRs depends on edge orientations; the zigzag nanoribbon has greater thermal conductivity than the armchair nanoribbon, regardless of temperature or dimension variations. Our study additionally delves into the tunable thermal properties of SLTDSNRs by incorporating defects, namely vacancies such as point vacancy, edge vacancy, and bi-vacancy. The thermal conductivities of nanoribbons with defects have been found to be considerably lower than their pristine counterparts, which aid in enhanced values for the thermoelectric figure of merit (zT). We have varied the vacancy concentration within a range of 0.1% to 0.9% and found that a point vacancy concentration of 0.1% leads to a 64% reduction in the thermal conductivity of SLTDSNRs. To elucidate these phenomena, we have calculated the phonon density of states for WS2under different aspects. The findings of our work provide important understandings of the prospective applications of WS2in nanoelectronic and thermoelectric devices by tailoring the thermal transport properties of WS2nanoribbons.

9.
Nano Lett ; 23(13): 6010-6017, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37387593

ABSTRACT

Fabrication of chiral assemblies of plasmonic nanoparticles is a highly attractive and challenging task, with promising applications in light emission, detection, and sensing. So far, primarily organic chiral templates have been used for chirality inscription. Despite recent progress in using chiral ionic liquids in synthesis, the use of organic templates significantly limits the variety of nanoparticle preparation techniques. Here, we demonstrate the utilization of seemingly achiral inorganic nanotubes as templates for the chiral assembly of nanoparticles. We show that both metallic and dielectric nanoparticles can be attached to scroll-like chiral edges propagating on the surfaces of WS2 nanotubes. Such assembly can be performed at temperatures as high as 550 °C. This large temperature range significantly widens the portfolio of nanoparticle fabrication techniques, allowing us to demonstrate a variety of chiral nanoparticle assemblies, ranging from metals (Au, Ga), semiconductors (Ge), and compound semiconductors (GaAs) to oxides (WO3).

10.
Nano Lett ; 23(22): 10259-10266, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37805929

ABSTRACT

WS2 nanotubes present many new technologies under development, including reinforced biocompatible polymers, membranes, photovoltaic-based memories, ferroelectric devices, etc. These technologies depend on the aspect ratio (length/diameter) of the nanotubes, which was limited to 100 or so. A new synthetic technique is presented, resulting in WS2 nanotubes a few hundred micrometers long and diameters below 50 nm (aspect ratios of 2000-5000) in high yields. Preliminary investigation into the mechanistic aspects of the two-step synthesis reveals that W5O14 nanowhisker intermediates are formed in the first step of the reaction instead of the ubiquitous W18O49 nanowhiskers used in the previous syntheses. The electrical and photoluminescence properties of the long nanotubes were studied. WS2 nanotube-based paper-like material was prepared via a wet-laying process, which could not be realized with the 10 µm long WS2 nanotubes. Ultrafiltration of gold nanoparticles using the nanotube-paper membrane was demonstrated.

11.
Nano Lett ; 23(10): 4183-4190, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37158482

ABSTRACT

Locally routing the exciton emissions in two-dimensional (2D) transition-metal dichalcogenides along different directions at the nanophotonic interface is of great interest in exploiting the promising 2D excitonic systems for functional nano-optical components. However, such control has remained elusive. Herein we report on a facile plasmonic approach for electrically controlled spatial modulation of the exciton emissions in a WS2 monolayer. The emission routing is enabled by the resonance coupling between the WS2 excitons and the multipole plasmon modes in individual silver nanorods placed on a WS2 monolayer. Different from prior demonstrations, the routing effect can be modulated by the doping level of the WS2 monolayer, enabling electrical control. Our work takes advantage of the high-quality plasmon modes supported by simple rod-shaped metal nanocrystals for the angularly resolved manipulation of 2D exciton emissions. Active control is achieved, which offers great opportunities for the development of nanoscale light sources and nanophotonic devices.

12.
Molecules ; 29(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38276630

ABSTRACT

Thyroid transcription factor 1 (TTF1) is an important cancer-related biomarker for clinical diagnosis, especially for carcinomas of lung and thyroid origin. Herein, a novel label-free electrochemical immunosensor was prepared for TTF1 detection based on nanohybrids of ribbon-like tungsten disulfide-reduced graphene oxide (WS2-rGO) and gold nanoparticles (AuNPs). The proposed immunosensor employed H2O2 as the electrochemical probe because of the excellent peroxidase-like activity of ribbon-like WS2-rGO. The introduction of AuNPs not only enhanced the electrocatalytic activity of the immunosensor, but also provided immobilization sites for binding TTF1 antibodies. The electrochemical signals can be greatly amplified due to their excellent electrochemical performance, which realized the sensitive determination of TTF1 with a wide linear range of 0.025-50 ng mL-1 and a lower detection limit of 0.016 ng mL-1 (S/N = 3). Moreover, the immunosensor exhibited high selectivity, good reproducibility, and robust stability, as well as the ability to detect TTF1 in human serum with satisfactory results. These observed properties of the immunosensor enhance its potential practicability in clinical applications. This method can also be used for the detection of other tumor biomarkers by using the corresponding antigen-antibody complex.


Subject(s)
Biosensing Techniques , Graphite , Metal Nanoparticles , Sulfides , Tungsten Compounds , Humans , Gold/chemistry , Electrochemical Techniques/methods , Biosensing Techniques/methods , Reproducibility of Results , Thyroid Nuclear Factor 1 , Hydrogen Peroxide , Metal Nanoparticles/chemistry , Immunoassay/methods , Graphite/chemistry , Biomarkers, Tumor , Limit of Detection
13.
Small ; 19(50): e2304233, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37616506

ABSTRACT

Monolayer tungsten disulfide (ML WS2 ) is believed as an ideal photosensitive material due to its small direct bandgap, large exciton/trion binding energy, high carrier mobility, and considerable quantum conversion efficiency. Compared with other photosensitive devices, planar field emission (FE)-type photodetectors with a full-plane structure should simultaneously have rapider switching speed and lower power consumption. In this work, ML WS2 microtips are fabricated by electron beam lithography (EBL) way and used to construct a planar FE-type photodetector. By optimization design, ML WS2 with three microtips can exhibit the maximum current density as high as  52 A cm-2 (@300 V µm-1 ), and the largest photoresponsivity is up to 6.8 × 105 A W-1 under green light irradiation, superior to that of many other ML transition metal dichalcogenide (TMDC) detectors. More interestingly, ML WS2 devices with microtips can effectively solve the contradictory problem between large photoresponsivity and rapid switching speed. The excellent photoresponse performances of ML WS2 with microtips should be attributed to their high carrier mobility, sharp emission edge, ultrahigh quantum yield, and unique planar FE device structure. Our research may shed new light on exploring the fabrication technology and photosensitive mechanism of two dimensional (2D) material-based planar FE photodetectors.

14.
Small ; 19(22): e2207081, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36861293

ABSTRACT

Nanocomposites with enhanced mechanical properties and efficient self-healing characteristics can change how the artificially engineered materials' life cycle is perceived. Improved adhesion of nanomaterials with the host matrix can drastically improve the structural properties and confer the material with repeatable bonding/debonding capabilities. In this work, exfoliated 2H-WS2 nanosheets are modified using an organic thiol to impart hydrogen bonding sites on the otherwise inert nanosheets by surface functionalization. These modified nanosheets are incorporated within the PVA hydrogel matrix and analyzed for their contribution to the composite's intrinsic self-healing and mechanical strength. The resulting hydrogel forms a highly flexible macrostructure with an impressive enhancement in mechanical properties and a very high autonomous healing efficiency of 89.92%. Interesting changes in the surface properties after functionalization show that such modification is highly suitable for water-based polymeric systems. Probing into the healing mechanism using advanced spectroscopic techniques reveals the formation of a stable cyclic structure on the surface of nanosheets, mainly responsible for the improved healing response. This work opens an avenue toward the development of self-healing nanocomposites where chemically inert nanoparticles participate in the healing network rather than just mechanically reinforcing the matrix by slender adhesion.

15.
Small ; 19(45): e2303654, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37415518

ABSTRACT

Laser-driven phase transition of 2D transition metal dichalcogenides has attracted much attention due to its high flexibility and rapidity. However, there are some limitations during the laser irradiation process, especially the unsatisfied surface ablation, the inability of nanoscale phase patterning, and the unexploited physical properties of new phase. In this work, the well-controlled femtosecond (fs) laser-driven transformation from the metallic 2M-WS2 to the semiconducting 2H-WS2 is reported, which is confirmed to be a single-crystal to single-crystal transition without layer thinning or obvious ablation. Moreover, a highly ordered 2H/2M nano-periodic phase transition with a resolution of ≈435 nm is achieved, breaking through the existing size bottleneck of laser-driven phase transition, which is attributed to the selective deposition of plasmon energy induced by fs laser. It is also demonstrated that the achieved 2H-WS2 after laser irradiation contains rich sulfur vacancies, which exhibits highly competitive ammonia gas sensing performance, with a detection limit below 0.1 ppm and a fast response/recovery time of 43/67 s at room temperature. This study provides a new strategy for the preparation of the phase-selective transition homojunction and high-performance applications in electronics.

16.
Small ; 19(19): e2204898, 2023 May.
Article in English | MEDLINE | ID: mdl-36581491

ABSTRACT

Two-dimensional (2D) transition metal dichalcogenides and graphene have revealed promising applications in optoelectronic and energy storage and conversion. However, there are rare reports of modifying the light-to-heat transformation via preparing their heterostructures for solar steam generation. In this work, commercial WS2 and sucrose are utilized as precursors to produce 2D WS2 -O-doped-graphene heterostructures (WS2 -O-graphene) for solar water evaporation. The WS2 -O-graphene evaporators demonstrate excellent average water evaporation rate (2.11 kg m-2  h-1 ) and energy efficiency (82.2%), which are 1.3- and 1.2-fold higher than WS2 and O-doped graphene-based evaporators, respectively. Furthermore, for the real seawater with different pH values (pH 1 and 12) and rhodamine B pollutants, the WS2 -O-graphene evaporators show great average evaporation rates (≈2.08 and 2.09 kg m-2  h-1 , respectively) for producing freshwater with an extremely low-grade of dye residual and nearly neutral pH values. More interestingly, due to the self-storage water ability of WS2 -O-graphene evaporators, water evaporation can be implemented without the presence of bulk water. As a result, the evaporation rate reaches 3.23 kg m-2  h-1 , which is ≈1.5 times higher than the regular solar water evaporation system. This work provides a new approach for preparing 2D transition metal dichalcogenides and graphene heterostructures for efficient solar water evaporation.

17.
Environ Sci Technol ; 57(39): 14493-14501, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37726893

ABSTRACT

Escalating the production and application of tungsten disulfide (WS2) nanosheets inevitably increases environmental human exposure and warrants the necessity of studies to elucidate their biological impacts. Herein, we assessed the toxicity of WS2 nanosheets and focused on the impacts of low doses (≤10 µg/mL) on normal (BEAS-2B) and tumorigenic (A549) lung epithelial cells. The low doses, which approximate real-world exposures, were found to induce cell apoptosis, while doses ≥ 50 µg/mL cause necrosis. Focused studies on low-dose exposure to WS2 nanosheets revealed more details of the impacts on both cell lines, including reduction of cell metabolic activity, induction of lipid peroxidation in cell membranes, and uncoupling of mitochondrial oxidative phosphorylation that led to the loss of ATP production. These phenomena, along with the expression situations of a few key proteins involved in apoptosis, point toward the occurrence of mitochondria-dependent apoptotic signaling in exposed cells. Substantial differences in responses to WS2 exposure between normal and tumorigenic lung epithelial cells were noticed as well. Specifically, BEAS-2B cells experienced more adverse effects and took up more nanosheets than A549 cells. Our results highlight the importance of dose and cell model selection in the assessment of nanotoxicity. By using doses consistent with real-world exposures and comparing normal and diseased cells, we can gain knowledge to guide the development of safety precautions for mitigating the adverse impacts of nanomaterial exposure on human health.

18.
Nano Lett ; 22(19): 8025-8031, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36095301

ABSTRACT

We demonstrate self-sensing tungsten disulfide nanotube (WS2 NT) torsional resonators. These resonators exhibit all-electrical self-sensing operation with electrostatic excitation and piezoresistive motion detection. We show that the torsional motion of the WS2 NT resonators results in a change of the nanotube electrical resistance, with the most significant change around their mechanical resonance, where the amplitude of torsional vibrations is maximal. Atomic force microscopy analysis revealed the torsional and bending stiffness of the WS2 NTs, which we used for modeling the behavior of the WS2 NT devices. In addition, the solution of the electrostatic boundary value problem shows how the spatial potential and electrostatic field lines around the device impact its capacitance. The results uncover the coupling between the electrical and mechanical behaviors of WS2 and emphasize their potential to operate as key components in functional devices, such as nanosensors and radio frequency devices.

19.
Nano Lett ; 22(18): 7667-7673, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36083833

ABSTRACT

Two-dimensional semiconducting transition metal dichalcogenides (TMDs) enable ultimate channel length scaling of transistor technology due to their atomic-thin body nature, which also brings the challenge of a pronounced self-heating effect inside the ultrathin channel. In particular, high current density under high electric field could lead to negative differential resistance behavior due to self-heating, not only limiting the current carrying capability of the TMDs transistors but also leading to severe reliability issues. Here, we report high-performance monolayer WS2 transistors on a high-thermal-conductivity BeO dielectric with effective suppression of the self-heating effects, eliminating the negative differential resistance behavior at high field, as observed in the case of the HfO2 dielectric. The monolayer CVD WS2 device on BeO with a 50 nm channel length exhibits a record-high on-state current of 325 µA/µm, transconductance (gm) of 150 µS/µm, and a on/off ratio of 1.8 × 108 at Vds = 1 V, far exceeding previous results.

20.
Nano Lett ; 22(7): 3087-3094, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35290068

ABSTRACT

Transition-metal dichalcogenides (TMDs) are layered materials that have a semiconducting phase with many advantageous optoelectronic properties, including tightly bound excitons and spin-valley locking. In tungsten-based TMDs, spin- and momentum-forbidden transitions give rise to dark excitons that typically are optically inaccessible but represent the lowest excitonic states of the system. Dark excitons can deeply affect the transport, dynamics, and coherence of bright excitons, hampering device performance. Therefore, it is crucial to create conditions in which these excitonic states can be visualized and controlled. Here, we show that compressive strain in WS2 enables phonon scattering of photoexcited electrons between momentum valleys, enhancing the formation of dark intervalley excitons. We show that the emission and spectral properties of momentum-forbidden excitons are accessible and strongly depend on the local strain environment that modifies the band alignment. This mechanism is further exploited for strain sensing in two-dimensional semiconductors, revealing a gauge factor exceeding 104.


Subject(s)
Semiconductors , Transition Elements , Motion , Phonons , Tungsten
SELECTION OF CITATIONS
SEARCH DETAIL