Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.875
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 42(1): 401-425, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38360544

ABSTRACT

IgE-mediated food allergy (IgE-FA) occurs due to a breakdown in immune tolerance that leads to a detrimental type 2 helper T cell (TH2) adaptive immune response. While the processes governing this loss of tolerance are incompletely understood, several host-related and environmental factors impacting the risk of IgE-FA development have been identified. Mounting evidence supports the role of an impaired epithelial barrier in the development of IgE-FA, with exposure of allergens through damaged skin and gut epithelium leading to the aberrant production of alarmins and activation of TH2-type allergic inflammation. The treatment of IgE-FA has historically been avoidance with acute management of allergic reactions, but advances in allergen-specific immunotherapy and the development of biologics and other novel therapeutics are rapidly changing the landscape of food allergy treatment. Here, we discuss the pathogenesis and immunobiology of IgE-FA in addition to its diagnosis, prognosis, and treatment.


Subject(s)
Allergens , Food Hypersensitivity , Immunoglobulin E , Humans , Food Hypersensitivity/therapy , Food Hypersensitivity/immunology , Animals , Immunoglobulin E/immunology , Immunoglobulin E/metabolism , Allergens/immunology , Desensitization, Immunologic/methods , Th2 Cells/immunology , Immune Tolerance , Disease Susceptibility
2.
Annu Rev Immunol ; 41: 255-275, 2023 04 26.
Article in English | MEDLINE | ID: mdl-36737596

ABSTRACT

The evolution of IgE in mammals added an extra layer of immune protection at body surfaces to provide a rapid and local response against antigens from the environment. The IgE immune response employs potent expulsive and inflammatory forces against local antigen provocation, at the risk of damaging host tissues and causing allergic disease. Two well-known IgE receptors, the high-affinity FcεRI and low-affinity CD23, mediate the activities of IgE. Unlike other known antibody receptors, CD23 also regulates IgE expression, maintaining IgE homeostasis. This mechanism evolved by adapting the function of the complement receptor CD21. Recent insights into the dynamic character of IgE structure, its resultant capacity for allosteric modulation, and the potential for ligand-induced dissociation have revealed previously unappreciated mechanisms for regulation of IgE and IgE complexes. We describe recent research, highlighting structural studies of the IgE network of proteins to analyze the uniquely versatile activities of IgE and anti-IgE biologics.


Subject(s)
Biological Products , Receptors, IgE , Humans , Animals , Receptors, IgE/chemistry , Receptors, IgE/metabolism , Immunoglobulin E/metabolism , Receptors, Fc , Mammals/metabolism
3.
Annu Rev Immunol ; 39: 167-198, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33534604

ABSTRACT

Type 2 immunity helps protect the host from infection, but it also plays key roles in tissue homeostasis, metabolism, and repair. Unfortunately, inappropriate type 2 immune reactions may lead to allergy and asthma. Group 2 innate lymphoid cells (ILC2s) in the lungs respond rapidly to local environmental cues, such as the release of epithelium-derived type 2 initiator cytokines/alarmins, producing type 2 effector cytokines such as IL-4, IL-5, and IL-13 in response to tissue damage and infection. ILC2s are associated with the severity of allergic asthma, and experimental models of lung inflammation have shown how they act as playmakers, receiving signals variously from stromal and immune cells as well as the nervous system and then distributing cytokine cues to elicit type 2 immune effector functions and potentiate CD4+ T helper cell activation, both of which characterize the pathology of allergic asthma. Recent breakthroughs identifying stromal- and neuronal-derived microenvironmental cues that regulate ILC2s, along with studies recognizing the potential plasticity of ILC2s, have improved our understanding of the immunoregulation of asthma and opened new avenues for drug discovery.


Subject(s)
Asthma , Hypersensitivity , Animals , Asthma/etiology , Humans , Immunity, Innate , Interleukin-13 , Lymphocytes
4.
Annu Rev Immunol ; 38: 785-808, 2020 04 26.
Article in English | MEDLINE | ID: mdl-32126183

ABSTRACT

Primary atopic disorders describes a series of monogenic diseases that have allergy- or atopic effector-related symptoms as a substantial feature. The underlying pathogenic genetic lesions help illustrate fundamental pathways in atopy, opening up diagnostic and therapeutic options for further study in those patients, but ultimately for common allergic diseases as well. Key pathways affected in these disorders include T cell receptor and B cell receptor signaling, cytokine signaling, skin barrier function, and mast cell function, as well as pathways that have not yet been elucidated. While comorbidities such as classically syndromic presentation or immune deficiency are often present, in some cases allergy alone is the presenting symptom, suggesting that commonly encountered allergic diseases exist on a spectrum of monogenic and complex genetic etiologies that are impacted by environmental risk factors.


Subject(s)
Disease Susceptibility , Hypersensitivity, Immediate/etiology , Hypersensitivity, Immediate/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Biomarkers , Cytokines/metabolism , Disease Management , Environment , Genetic Predisposition to Disease , Humans , Hypersensitivity, Immediate/diagnosis , Mast Cells/immunology , Mast Cells/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
5.
Annu Rev Immunol ; 38: 49-77, 2020 04 26.
Article in English | MEDLINE | ID: mdl-32340580

ABSTRACT

Mast cells have existed long before the development of adaptive immunity, although they have been given different names. Thus, in the marine urochordate Styela plicata, they have been designated as test cells. However, based on their morphological characteristics (including prominent cytoplasmic granules) and mediator content (including heparin, histamine, and neutral proteases), test cells are thought to represent members of the lineage known in vertebrates as mast cells. So this lineage presumably had important functions that preceded the development of antibodies, including IgE. Yet mast cells are best known, in humans, as key sources of mediators responsible for acute allergic reactions, notably including anaphylaxis, a severe and potentially fatal IgE-dependent immediate hypersensitivity reaction to apparently harmless antigens, including many found in foods and medicines. In this review, we briefly describe the origins of tissue mast cells and outline evidence that these cells can have beneficial as well as detrimental functions, both innately and as participants in adaptive immune responses. We also discuss aspects of mast cell heterogeneity and comment on how the plasticity of this lineage may provide insight into its roles in health and disease. Finally, we consider some currently open questions that are yet unresolved.


Subject(s)
Disease Susceptibility , Inflammation/etiology , Inflammation/metabolism , Mast Cells/immunology , Mast Cells/metabolism , Adaptive Immunity , Animals , Biomarkers , Cytokines/metabolism , Disease Models, Animal , Humans , Immunity, Innate , Inflammation/diagnosis , Inflammation Mediators/metabolism , Signal Transduction
6.
Annu Rev Immunol ; 37: 377-403, 2019 04 26.
Article in English | MEDLINE | ID: mdl-31026410

ABSTRACT

The gut-associated lymphoid tissue (GALT) faces a considerable challenge. It encounters antigens derived from an estimated 1014 commensal microbes and greater than 30 kg of food proteins yearly. It must distinguish these harmless antigens from potential pathogens and mount the appropriate host immune response. Local and systemic hyporesponsiveness to dietary antigens, classically referred to as oral tolerance, comprises a distinct complement of adaptive cellular and humoral immune responses. It is increasingly evident that a functional epithelial barrier engaged in intimate interplay with innate immune cells and the resident microbiota is critical to establishing and maintaining oral tolerance. Moreover, innate immune cells serve as a bridge between the microbiota, epithelium, and the adaptive immune system, parlaying tonic microbial stimulation into signals critical for mucosal homeostasis. Dysregulation of gut homeostasis and the subsequent disruption of tolerance therefore have clinically significant consequences for the development of food allergy.


Subject(s)
Dysbiosis/immunology , Food Hypersensitivity/immunology , Gastrointestinal Microbiome/immunology , Intestinal Mucosa/immunology , Administration, Oral , Allergens/immunology , Animals , Food , Food Hypersensitivity/microbiology , Homeostasis , Humans , Immune Tolerance , Immunity, Innate , Intestinal Mucosa/microbiology
7.
Annu Rev Immunol ; 36: 1-18, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29677471

ABSTRACT

It has been a little more than 50 years since we discovered IgE, a key molecule for the allergic response and a target for treating allergies and severe asthma. Here, I trace my career, from the kindling of my interest in immunochemistry to groundbreaking discoveries in the biology and chemistry of immunoglobulins. I describe my service to the broader community of immunologists and my role in shaping departments and research institutes. My course starts in Japan and includes Southern California, Baltimore, and Denver.


Subject(s)
Allergy and Immunology , Famous Persons , Allergy and Immunology/history , Animals , History, 20th Century , History, 21st Century , Humans , Hypersensitivity/history , Japan , United States
8.
Annu Rev Immunol ; 35: 53-84, 2017 04 26.
Article in English | MEDLINE | ID: mdl-27912316

ABSTRACT

Helper T (Th) cell subsets direct immune responses by producing signature cytokines. Th2 cells produce IL-4, IL-5, and IL-13, which are important in humoral immunity and protection from helminth infection and are central to the pathogenesis of many allergic inflammatory diseases. Molecular analysis of Th2 cell differentiation and maintenance of function has led to recent discoveries that have refined our understanding of Th2 cell biology. Epigenetic regulation of Gata3 expression by chromatin remodeling complexes such as Polycomb and Trithorax is crucial for maintaining Th2 cell identity. In the context of allergic diseases, memory-type pathogenic Th2 cells have been identified in both mice and humans. To better understand these disease-driving cell populations, we have developed a model called the pathogenic Th population disease induction model. The concept of defined subsets of pathogenic Th cells may spur new, effective strategies for treating intractable chronic inflammatory disorders.


Subject(s)
Helminthiasis/immunology , Hypersensitivity/immunology , Th2 Cells/immunology , Animals , Cell Differentiation , Disease Models, Animal , Epigenesis, Genetic , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Immunity, Humoral , Immunologic Memory , Interleukin-13/metabolism , Interleukin-4/metabolism , Interleukin-5/metabolism , Mice , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism
9.
Cell ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39243765

ABSTRACT

Sneezing and coughing are primary symptoms of many respiratory viral infections and allergies. It is generally assumed that sneezing and coughing involve common sensory receptors and molecular neurotransmission mechanisms. Here, we show that the nasal mucosa is innervated by several discrete populations of sensory neurons, but only one population (MrgprC11+MrgprA3-) mediates sneezing responses to a multitude of nasal irritants, allergens, and viruses. Although this population also innervates the trachea, it does not mediate coughing, as revealed by our newly established cough model. Instead, a distinct sensory population (somatostatin [SST+]) mediates coughing but not sneezing, unraveling an unforeseen sensory difference between sneezing and coughing. At the circuit level, sneeze and cough signals are transmitted and modulated by divergent neuropathways. Together, our study reveals the difference in sensory receptors and neurotransmission/modulation mechanisms between sneezing and coughing, offering neuronal drug targets for symptom management in respiratory viral infections and allergies.

10.
Cell ; 187(19): 5316-5335.e28, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39096902

ABSTRACT

Neutrophils are sentinel immune cells with essential roles for antimicrobial defense. Most of our knowledge on neutrophil tissue navigation derived from wounding and infection models, whereas allergic conditions remained largely neglected. Here, we analyzed allergen-challenged mouse tissues and discovered that degranulating mast cells (MCs) trap living neutrophils inside them. MCs release the attractant leukotriene B4 to re-route neutrophils toward them, thus exploiting a chemotactic system that neutrophils normally use for intercellular communication. After MC intracellular trap (MIT) formation, neutrophils die, but their undigested material remains inside MC vacuoles over days. MCs benefit from MIT formation, increasing their functional and metabolic fitness. Additionally, they are more pro-inflammatory and can exocytose active neutrophilic compounds with a time delay (nexocytosis), eliciting a type 1 interferon response in surrounding macrophages. Together, our study highlights neutrophil trapping and nexocytosis as MC-mediated processes, which may relay neutrophilic features over the course of chronic allergic inflammation.


Subject(s)
Inflammation , Mast Cells , Mice, Inbred C57BL , Neutrophils , Animals , Mast Cells/metabolism , Mast Cells/immunology , Neutrophils/metabolism , Neutrophils/immunology , Mice , Inflammation/metabolism , Inflammation/immunology , Inflammation/pathology , Leukotriene B4/metabolism , Signal Transduction , Cell Degranulation , Macrophages/metabolism , Macrophages/immunology , Extracellular Traps/metabolism , Male , Female
11.
Annu Rev Immunol ; 34: 421-47, 2016 05 20.
Article in English | MEDLINE | ID: mdl-26907213

ABSTRACT

Evolution has yielded multiple complex and complementary mechanisms to detect environmental danger and protect tissues from damage. The nervous system rapidly processes information and coordinates complex defense behaviors, and the immune system eliminates diverse threats by virtue of mobile, specialized cell populations. The two systems are tightly integrated, cooperating in local and systemic reflexes that restore homeostasis in response to tissue injury and infection. They further share a broad common language of cytokines, growth factors, and neuropeptides that enables bidirectional communication. However, this reciprocal cross talk permits amplification of maladaptive feedforward inflammatory loops that contribute to the development of allergy, autoimmunity, itch, and pain. Appreciating the immune and nervous systems as a holistic, coordinated defense system provides both new insights into inflammation and exciting opportunities for managing acute and chronic inflammatory diseases.


Subject(s)
Hypersensitivity/physiopathology , Inflammation , Neuroimmunomodulation , Pain/physiopathology , Animals , Autoimmunity , Cell Communication , Cytokines/metabolism , Homeostasis , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Neuropeptides/metabolism
12.
Annu Rev Immunol ; 33: 475-504, 2015.
Article in English | MEDLINE | ID: mdl-25622195

ABSTRACT

In this review we discuss the effects of microbial exposure on the B cell repertoire. Neonatal exposure to conserved bacterial carbohydrates and phospholipids permanently reprograms the natural antibody repertoire directed toward these antigens by clonal expansion, alterations in clonal dominance, and increased serum antibody levels. These epitopes are present not only in bacterial cell walls, but also in common environmental allergens. Neonatal immunization with bacterial polysaccharide vaccines results in attenuated allergic airway responses to fungi-, house dust mite-, and cockroach-associated allergens in mouse models. The similarities between mouse and human natural antibody repertoires suggest that reduced microbial exposure in children may have the opposite effect, providing a potential mechanistic explanation for the hygiene hypothesis. We propose that understanding the effects of childhood infections on the natural antibody repertoire and the mechanisms of antibody-mediated immunoregulation observed in allergy models will lead to the development of prevention/interventional strategies for treatment of allergic asthma.


Subject(s)
Allergens/immunology , Antibodies/immunology , Respiratory Hypersensitivity/immunology , Animals , Antibodies/blood , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Bacteria/immunology , Host-Pathogen Interactions/immunology , Humans , Respiratory Hypersensitivity/blood , Respiratory Hypersensitivity/metabolism , Respiratory Hypersensitivity/microbiology
13.
Cell ; 184(2): 422-440.e17, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33450207

ABSTRACT

Itch is an evolutionarily conserved sensation that facilitates expulsion of pathogens and noxious stimuli from the skin. However, in organ failure, cancer, and chronic inflammatory disorders such as atopic dermatitis (AD), itch becomes chronic, intractable, and debilitating. In addition to chronic itch, patients often experience intense acute itch exacerbations. Recent discoveries have unearthed the neuroimmune circuitry of itch, leading to the development of anti-itch treatments. However, mechanisms underlying acute itch exacerbations remain overlooked. Herein, we identify that a large proportion of patients with AD harbor allergen-specific immunoglobulin E (IgE) and exhibit a propensity for acute itch flares. In mice, while allergen-provoked acute itch is mediated by the mast cell-histamine axis in steady state, AD-associated inflammation renders this pathway dispensable. Instead, a previously unrecognized basophil-leukotriene (LT) axis emerges as critical for acute itch flares. By probing fundamental itch mechanisms, our study highlights a basophil-neuronal circuit that may underlie a variety of neuroimmune processes.


Subject(s)
Basophils/pathology , Neurons/pathology , Pruritus/pathology , Acute Disease , Allergens/immunology , Animals , Chronic Disease , Dermatitis, Atopic/immunology , Dermatitis, Atopic/pathology , Disease Models, Animal , Histamine/metabolism , Humans , Immunoglobulin E/immunology , Inflammation/pathology , Leukotrienes/metabolism , Mast Cells/immunology , Mice, Inbred C57BL , Phenotype , Pruritus/immunology , TRPA1 Cation Channel/metabolism , TRPV Cation Channels/metabolism
14.
Cell ; 177(3): 524-540, 2019 04 18.
Article in English | MEDLINE | ID: mdl-31002794

ABSTRACT

B cells and the antibodies they produce have a deeply penetrating influence on human physiology. Here, we review current understanding of how B cell responses are initiated; the different paths to generate short- and long-lived plasma cells, germinal center cells, and memory cells; and how each path impacts antibody diversity, selectivity, and affinity. We discuss how basic research is informing efforts to generate vaccines that induce broadly neutralizing antibodies against viral pathogens, revealing the special features associated with allergen-reactive IgE responses and uncovering the antibody-independent mechanisms by which B cells contribute to health and disease.


Subject(s)
B-Lymphocytes/metabolism , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antigens/immunology , B-Lymphocytes/immunology , Germinal Center/immunology , Germinal Center/metabolism , Humans , Immunologic Memory , Plasma Cells/immunology , Plasma Cells/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Vaccines/immunology
15.
Annu Rev Cell Dev Biol ; 36: 511-528, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32634325

ABSTRACT

Pediatric allergic disease is a significant health concern worldwide, and the prevalence of childhood eczema, asthma, allergic rhinitis, and food allergy continues to increase. Evidence to support specific interventions for the prevention of eczema, asthma, and allergic rhinitis is limited, and no consensus on prevention strategies has been reached. Randomized controlled trials investigating the prevention of food allergy via oral tolerance induction and the early introduction of allergenic foods have been successful in reducing peanut and egg allergy prevalence. Infant weaning guidelines in the United Sates were recently amended to actively encourage the introduction of peanut for prevention of peanut allergy.


Subject(s)
Food Hypersensitivity/immunology , Immune Tolerance , Animals , Child , Humans , Immunotherapy , Models, Biological , Peanut Hypersensitivity/immunology , Practice Guidelines as Topic
16.
Immunity ; 57(10): 2269-2279, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39383844

ABSTRACT

The immune system recognizes a multitude of innocuous antigens from food and intestinal commensal microbes toward which it orchestrates appropriate, non-inflammatory responses. This process requires antigen-presenting cells (APCs) that induce T cells with either regulatory or effector functions. Compromised APC function disrupts the T cell balance, leading to inflammation and dysbiosis. Although their precise identities continue to be debated, it has become clear that multiple APC lineages direct the differentiation of distinct microbiota-specific CD4+ T cell programs. Here, we review how unique APC subsets instruct T cell differentiation and function in response to microbiota and dietary antigens. These discoveries provide new opportunities to investigate T cell-APC regulatory networks controlling immune homeostasis and perturbations associated with inflammatory and allergic diseases.


Subject(s)
Antigen-Presenting Cells , Humans , Antigen-Presenting Cells/immunology , Animals , Cell Differentiation/immunology , Intestines/immunology , Homeostasis/immunology , Gastrointestinal Microbiome/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Inflammation/immunology , T-Lymphocytes/immunology
17.
Immunity ; 57(8): 1939-1954.e7, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39013465

ABSTRACT

Antibiotic use in early life disrupts microbial colonization and increases the risk of developing allergies and asthma. We report that mice given antibiotics in early life (EL-Abx), but not in adulthood, were more susceptible to house dust mite (HDM)-induced allergic airway inflammation. This susceptibility was maintained even after normalization of the gut microbiome. EL-Abx decreased systemic levels of indole-3-propionic acid (IPA), which induced long-term changes to cellular stress, metabolism, and mitochondrial respiration in the lung epithelium. IPA reduced mitochondrial respiration and superoxide production and altered chemokine and cytokine production. Consequently, early-life IPA supplementation protected EL-Abx mice against exacerbated HDM-induced allergic airway inflammation in adulthood. These results reveal a mechanism through which EL-Abx can predispose the lung to allergic airway inflammation and highlight a possible preventative approach to mitigate the detrimental consequences of EL-Abx.


Subject(s)
Anti-Bacterial Agents , Asthma , Dysbiosis , Gastrointestinal Microbiome , Indoles , Pyroglyphidae , Animals , Mice , Dysbiosis/immunology , Indoles/pharmacology , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/pharmacology , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/immunology , Asthma/immunology , Pyroglyphidae/immunology , Lung/immunology , Lung/pathology , Mice, Inbred C57BL , Female , Inflammation/immunology , Disease Models, Animal , Mitochondria/metabolism , Cytokines/metabolism , Hypersensitivity/immunology , Propionates
18.
Immunity ; 56(7): 1451-1467.e12, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37263273

ABSTRACT

Multi-enhancer hubs are spatial clusters of enhancers present across numerous developmental programs. Here, we studied the functional relevance of these three-dimensional structures in T cell biology. Mathematical modeling identified a highly connected multi-enhancer hub at the Ets1 locus, comprising a noncoding regulatory element that was a hotspot for sequence variation associated with allergic disease in humans. Deletion of this regulatory element in mice revealed that the multi-enhancer connectivity was dispensable for T cell development but required for CD4+ T helper 1 (Th1) differentiation. These mice were protected from Th1-mediated colitis but exhibited overt allergic responses. Mechanistically, the multi-enhancer hub controlled the dosage of Ets1 that was required for CTCF recruitment and assembly of Th1-specific genome topology. Our findings establish a paradigm wherein multi-enhancer hubs control cellular competence to respond to an inductive cue through quantitative control of gene dosage and provide insight into how sequence variation within noncoding elements at the Ets1 locus predisposes individuals to allergic responses.


Subject(s)
Hypersensitivity , T-Lymphocytes , Humans , Mice , Animals , Cell Differentiation/genetics , Hematopoiesis , Inflammation/genetics , Regulatory Sequences, Nucleic Acid , Hypersensitivity/genetics , Enhancer Elements, Genetic/genetics
19.
Immunity ; 56(11): 2542-2554.e7, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37714152

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) are crucial in promoting type 2 inflammation that contributes to both anti-parasite immunity and allergic diseases. However, the molecular checkpoints in ILC2s that determine whether to immediately launch a proinflammatory response are unknown. Here, we found that retinoid X receptor gamma (Rxrg) was highly expressed in small intestinal ILC2s and rapidly suppressed by alarmin cytokines. Genetic deletion of Rxrg did not impact ILC2 development but facilitated ILC2 responses and the tissue inflammation induced by alarmins. Mechanistically, RXRγ maintained the expression of its target genes that support intracellular cholesterol efflux, which in turn reduce ILC2 proliferation. Furthermore, RXRγ expression prevented ILC2 response to mild stimulations, including low doses of alarmin cytokine and mechanical skin injury. Together, we propose that RXRγ expression and its mediated lipid metabolic states function as a cell-intrinsic checkpoint that confers the threshold of ILC2 activation in the small intestine.


Subject(s)
Immunity, Innate , Retinoid X Receptor gamma , Humans , Alarmins , Lymphocytes , Inflammation , Cytokines/metabolism , Intestine, Small/metabolism
20.
Cell ; 167(4): 1067-1078.e16, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27773482

ABSTRACT

FOXP3+ regulatory T cells (Tregs) maintain tolerance against self-antigens and innocuous environmental antigens. However, it is still unknown whether Treg-mediated tolerance is antigen specific and how Treg specificity contributes to the selective loss of tolerance, as observed in human immunopathologies such as allergies. Here, we used antigen-reactive T cell enrichment to identify antigen-specific human Tregs. We demonstrate dominant Treg-mediated tolerance against particulate aeroallergens, such as pollen, house dust mites, and fungal spores. Surprisingly, we found no evidence of functional impairment of Treg responses in allergic donors. Rather, major allergenic proteins, known to rapidly dissociate from inhaled allergenic particles, have a generally reduced capability to generate Treg responses. Most strikingly, in individual allergic donors, Th2 cells and Tregs always target disparate proteins. Thus, our data highlight the importance of Treg antigen-specificity for tolerance in humans and identify antigen-specific escape from Treg control as an important mechanism enabling antigen-specific loss of tolerance in human allergy.


Subject(s)
Hypersensitivity/immunology , Immunity, Mucosal , Self Tolerance , T-Lymphocytes, Regulatory/immunology , Allergens/immunology , Autoantigens/immunology , Humans , Immunologic Memory
SELECTION OF CITATIONS
SEARCH DETAIL