Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Microb Cell Fact ; 23(1): 223, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118116

ABSTRACT

BACKGROUND: The TetR family of transcriptional regulators (TFRs), serving as crucial regulators of diverse cellular processes, undergo conformational changes induced by small-molecule ligands, which either inhibit or activate them to modulate target gene expression. Some ligands of TFRs in actinomycetes and their regulatory effects have been identified and studied; however, regulatory mechanisms of the TetR family in the lincomycin-producing Streptomyces lincolnensis remain poorly understood. RESULTS: In this study, we found that AbrT (SLCG_1979), a TetR family regulator, plays a pivotal role in regulating lincomycin production and morphological development in S. lincolnensis. Deletion of abrT gene resulted in increased lincomycin A (Lin-A) production, but delayed mycelium formation and sporulation on solid media. AbrT directly or indirectly repressed the expression of lincomycin biosynthetic (lin) cluster genes and activated that of the morphological developmental genes amfC, whiB, and ftsZ. We demonstrated that AbrT bound to two motifs (5'-CGCGTACTCGTA-3' and 5'-CGTACGATAGCT-3') present in the bidirectional promoter between abrT and SLCG_1980 genes. This consequently repressed abrT itself and its adjacent gene SLCG_1980 that encodes an arabinose efflux permease. D-arabinose, not naturally occurring as L-arabinose, was identified as the effector molecule of AbrT, reducing its binding affinity to abrT-SLCG_1980 intergenic region. Furthermore, based on functional analysis of the AbrT homologue in Saccharopolyspora erythraea, we inferred that the TetR family regulator AbrT may play an important role in regulating secondary metabolism in actinomycetes. CONCLUSIONS: AbrT functions as a regulator for governing lincomycin production and morphological development of S. lincolnensis. Our findings demonstrated that D-arabinose acts as a ligand of AbrT to mediate the regulation of lincomycin biosynthesis in S. lincolnensis. Our findings provide novel insights into ligand-mediated regulation in antibiotic biosynthesis.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Lincomycin , Streptomyces , Lincomycin/biosynthesis , Streptomyces/metabolism , Streptomyces/genetics , Streptomyces/growth & development , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Multigene Family , Promoter Regions, Genetic , Transcription Factors/metabolism , Transcription Factors/genetics , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/metabolism
2.
Molecules ; 29(5)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38474644

ABSTRACT

During the life activities of microorganisms, a variety of secondary metabolites are produced, including antimicrobials and antitumor drugs, which are widely used in clinical practice. In addition to exploring new antibiotics, this makes it one of the research priorities of Actinomycetes to effectively increase the yield of antibiotics in production strains by various means. Most antibiotic-producing strains have a variety of functional regulatory factors that regulate their growth, development, and secondary metabolite biosynthesis processes. Through the study of precursor substances in antibiotic biosynthesis, researchers have revealed the precursor biosynthesis process and the mechanism by which precursor synthesis regulators affect the biosynthesis of secondary metabolites, which can be used to obtain engineered strains with high antibiotic production. This paper summarizes the supply of antibiotic biosynthesis precursors and the progress of research on the role of regulators in the process of precursors in biosynthesis. This lays the foundation for the establishment of effective breeding methods to improve antibiotic yields through the manipulation of precursor synthesis genes and related regulators.


Subject(s)
Actinobacteria , Anti-Bacterial Agents , Anti-Bacterial Agents/metabolism , Actinobacteria/metabolism , Actinomyces , Secondary Metabolism
3.
Mol Microbiol ; 116(2): 690-706, 2021 08.
Article in English | MEDLINE | ID: mdl-34097792

ABSTRACT

Pseudomonas chlororaphis HT66 exhibits strong antagonistic activity against various phytopathogenic fungi due to its main antibiotic phenazine-1-carboxamide (PCN). PCN gene cluster consists of phzABCDEFG, phzH, phzI, and phzR operons. phzABCDEFG transcription is activated by the PhzI/R quorum sensing system. Deletion of the lon gene encoding an ATP-dependent protease resulted in significant enhancement of PCN production in strain HT66. However, the regulatory pathway and mechanism of Lon on PCN biosynthesis remain unknown. Here, lon mutation was shown to significantly improve antimicrobial activity of strain HT66. The N-acyl-homoserine lactone synthase PhzI mediates the negative regulation of PCN biosynthesis and phzABCDEFG transcription by Lon. Western blot showed that PhzI protein abundance and stability were significantly enhanced by lon deletion. The in vitro degradation assay suggested that Lon could directly degrade PhzI protein. However, Lon with an amino acid replacement (S674 -A) could not degrade PhzI protein. Lon-recognized region was located within the first 50 amino acids of PhzI. In addition, Lon formed a new autoregulatory feedback circuit to modulate its own degradation by other potential proteases. In summary, we elucidated the Lon-regulated pathway mediated by PhzI during PCN biosynthesis and the molecular mechanism underlying the degradation of PhzI by Lon in P. chlororaphis HT66.


Subject(s)
Bacterial Proteins/metabolism , Phenazines/metabolism , Protease La/metabolism , Pseudomonas chlororaphis/metabolism , Antifungal Agents/metabolism , Down-Regulation , Feedback, Physiological , Gene Deletion , Gene Expression Regulation, Bacterial/genetics , Protease La/genetics , Quorum Sensing/physiology
4.
Appl Environ Microbiol ; 85(7)2019 04 01.
Article in English | MEDLINE | ID: mdl-30709825

ABSTRACT

Streptomyces species are important antibiotic-producing organisms that tightly regulate their antibiotic production. Actinorhodin is a typical antibiotic produced by the model actinomycete Streptomyces coelicolor To discover the regulators of actinorhodin production, we constructed a library of 50,000 independent mutants with hyperactive Tn5 transposase-based transposition systems. Five hundred fifty-one genes were found to influence actinorhodin production in 988 individual mutants. Genetic complementation suggested that most of the insertions (76%) were responsible for the changes in antibiotic production. Genes involved in diverse cellular processes such as amino acid biosynthesis, carbohydrate metabolism, cell wall homeostasis, and DNA metabolism affected actinorhodin production. Genome-wide mutagenesis can identify novel genes and pathways that impact antibiotic levels, potentially aiding in engineering strains to optimize the production of antibiotics in StreptomycesIMPORTANCE Previous studies have shown that various genes can influence antibiotic production in Streptomyces and that intercommunication between regulators can complicate antibiotic production. Therefore, to gain a better understanding of antibiotic regulation, a genome-wide perspective on genes that influence antibiotic production was needed. We searched for genes that affected production of the antibiotic actinorhodin using a genome-wide gene disruption system. We identified 551 genes that altered actinorhodin levels, and more than half of these genes were newly identified effectors. Some of these genes may be candidates for engineering Streptomyces strains to improve antibiotic production levels.


Subject(s)
Anti-Bacterial Agents/metabolism , Metabolic Networks and Pathways/genetics , Mutagenesis , Streptomyces coelicolor/genetics , Streptomyces coelicolor/metabolism , Anthraquinones/metabolism , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Gene Library , Metabolic Engineering , Recombination, Genetic , Transposases
5.
Appl Microbiol Biotechnol ; 103(8): 3465-3476, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30868205

ABSTRACT

Pyoluteorin (Plt) is a PKS-NRPS hybrid antibiotic that is produced by Pseudomonas spp. and shows strong antifungal and antibacterial activities. Pseudomonas protegens H78, which was isolated from the rape rhizosphere in Shanghai, can produce a large array of secondary metabolites, including antibiotics and siderophores. Plt is produced at low levels in the H78 wild-type strain. This study aimed to improve Plt production through combinatory genetic engineered strategies. Plt production was significantly enhanced (by14.3-fold) in the strain engineered by the following steps: (1) deletion of the translational repressor gene rsmE in the Gac/Rsm-RsmE pathway; (2) deletion of the ATP-dependent protease gene lon that encodes a potential enzyme that degrades positive regulators; (3) deletion of the negative regulatory gene pltZ of the Plt ABC-type transporter operon pltIJKNOP; (4) deletion of an inhibitory sequence within the operator of the transcriptional activator gene pltR; and (5) overexpression of the pltIJKNOP transport operon. The Plt production of the final engineered strain was increased to 214 from 15 µg ml-1 in the H78 wild-type strain. In addition, the pltA gene in the pltLABCDEFG biosynthetic operon was characterized as the gene encoding the rate-limiting enzyme in the Plt biosynthetic pathway of H78. However, overexpression of the rate-limiting enzyme gene pltA or the transcriptional activator gene pltR did not further improve Plt biosynthesis in the above multiple-gene knockout strains.


Subject(s)
Biosynthetic Pathways/genetics , Gene Expression Regulation, Bacterial/genetics , Phenols/metabolism , Pseudomonas/genetics , Pseudomonas/metabolism , Pyrroles/metabolism , Bacterial Proteins/genetics , Gene Deletion , Gene Expression , Metabolic Engineering
6.
Article in English | MEDLINE | ID: mdl-30275088

ABSTRACT

Glycopeptide antibiotics (GPAs) include clinically important drugs used for the treatment of infections caused by Gram-positive pathogens. These antibiotics are specialized metabolites produced by several genera of actinomycete bacteria. While many GPAs are highly chemically modified, A47934 is a relatively unadorned GPA lacking sugar or acyl modifications, common to other members of the class, but which is chlorinated at three distinct sites. The biosynthesis of A47934 is encoded by a 68-kb gene cluster in Streptomyces toyocaensis NRRL 15009. The cluster includes all necessary genes for the synthesis of A47934, including two predicted halogenase genes, staI and staK In this study, we report that only one of the halogenase genes, staI, is necessary and essential for A47934 biosynthesis. Chlorination of the A47934 scaffold is important for antibiotic activity, as assessed by binding affinity for the target N-acyl-d-Ala-d-Ala. Surprisingly, chlorination is also vital to avoid activation of enterococcal and Streptomyces VanB-type GPA resistance through induction of resistance genes. Phenotypic assays showed stronger induction of GPA resistance by the dechlorinated compared to the chlorinated GPA. Correspondingly, the relative expression of the enterococcal vanA resistance gene was shown to be increased by the dechlorinated compared to the chlorinated compound. These results provide insight into the biosynthesis of GPAs and the biological function of GPA chlorination for this medically important class of antibiotic.


Subject(s)
Bacterial Proteins/metabolism , Glycopeptides/chemistry , Ristocetin/analogs & derivatives , Streptomyces/drug effects , Bacterial Proteins/genetics , Drug Resistance, Bacterial , Enterococcus faecalis/drug effects , Gene Deletion , Glycopeptides/pharmacology , Halogenation , Microbial Sensitivity Tests , Molecular Structure , Multigene Family , Ristocetin/biosynthesis , Ristocetin/chemistry , Ristocetin/pharmacology , Streptomyces/genetics , Streptomyces/metabolism , Teicoplanin/chemistry , Teicoplanin/pharmacology
7.
Mol Phylogenet Evol ; 127: 239-247, 2018 10.
Article in English | MEDLINE | ID: mdl-29885934

ABSTRACT

Antibiotics are the most marvelous evolutionary products of microbes to obtain competitive advantage and maintain ecological balance. However, the origination and development of antibiotics has yet to be explicitly investigated. Due to diverse structures and similar biosynthesis, glycosylated polyene macrolides (gPEMs) were chosen to explore antibiotic evolution. A total of 130 candidate and 38 transitional gPEM clusters were collected from actinomycetes genomes, providing abundant references for phenotypic gaps in gPEM evolution. The most conserved parts of gPEM biosynthesis were found and used for phylogeny construction. On this basis, we proposed ancestral gPEM clusters at different evolutionary stages and interpreted the possible evolutionary histories in detail. The results revealed that gPEMs evolved from small rings to large rings and continuously increased structural diversity through acquiring, discarding and exchanging genes from different evolutionary origins, as well as co-evolution of functionally related proteins. The combination of horizontal gene transfers, environmental effects and host preference resulted in the diversity and worldwide distribution of gPEMs. This study is not only a useful exploration on antibiotic evolution but also an inspiration for diversity and biogeographic investigations on antibiotics in the era of Big Data.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Evolution, Molecular , Macrolides/metabolism , Polyenes/metabolism , Biosynthetic Pathways , Conserved Sequence , Genome , Glycosylation , Phylogeny , Proteins/genetics
8.
Appl Microbiol Biotechnol ; 102(22): 9719-9730, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30128583

ABSTRACT

The rhizobacterium Pseudomonas protegens H78 biosynthesizes a number of antibiotic compounds, including pyoluteorin, 2,4-diacetylphloroglucinol, and pyrrolnitrin. Here, we investigated the global regulatory function of the nitrogen metabolism-related sigma factor RpoN in P. protegens H78 through RNA-seq and phenotypic analysis. During the mid- to late-log growth phase, transcriptomic profiling revealed that 562 genes were significantly upregulated, and 502 genes were downregulated by at least twofold at the RNA level in the rpoN deletion mutant in comparison with the wild-type strain H78. With respect to antibiotics, Plt biosynthesis and the expression of its operon were positively regulated, while Prn biosynthesis and the expression of its operon were negatively regulated by RpoN. RpoN is responsible for the global activation of operons involved in flagellar biogenesis and assembly, biofilm formation, and bacterial mobility. In contrast, RpoN was shown to negatively control a number of secretion system operons including one type VI secretion system operon (H1-T6SS), two pilus biogenesis operons (Flp/Tad-T4b pili and Csu-T1 pili), and one polysaccharide biosynthetic operon (psl). In addition, two operons that are involved in mannitol and inositol utilization are under the positive regulation of RpoN. Consistent with this result, the ability of H78 to utilize mannitol or inositol as a sole carbon source is positively influenced by RpoN. Taken together, the RpoN-mediated global regulation is mainly involved in flagellar biogenesis and assembly, bacterial mobility, biofilm formation, antibiotic biosynthesis, secretion systems, and carbon utilization in P. protegens H78.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Bacterial Proteins/metabolism , Biofilms , Carbon/metabolism , Gene Expression Regulation, Bacterial , Operon , Pseudomonas/physiology , RNA Polymerase Sigma 54/metabolism , Bacterial Proteins/genetics , Fimbriae, Bacterial/metabolism , Pseudomonas/genetics , RNA Polymerase Sigma 54/genetics
9.
Proc Natl Acad Sci U S A ; 112(37): 11547-52, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26240321

ABSTRACT

Orthosomycins are oligosaccharide antibiotics that include avilamycin, everninomicin, and hygromycin B and are hallmarked by a rigidifying interglycosidic spirocyclic ortho-δ-lactone (orthoester) linkage between at least one pair of carbohydrates. A subset of orthosomycins additionally contain a carbohydrate capped by a methylenedioxy bridge. The orthoester linkage is necessary for antibiotic activity but rarely observed in natural products. Orthoester linkage and methylenedioxy bridge biosynthesis require similar oxidative cyclizations adjacent to a sugar ring. We have identified a conserved group of nonheme iron, α-ketoglutarate-dependent oxygenases likely responsible for this chemistry. High-resolution crystal structures of the EvdO1 and EvdO2 oxygenases of everninomicin biosynthesis, the AviO1 oxygenase of avilamycin biosynthesis, and HygX of hygromycin B biosynthesis show how these enzymes accommodate large substrates, a challenge that requires a variation in metal coordination in HygX. Excitingly, the ternary complex of HygX with cosubstrate α-ketoglutarate and putative product hygromycin B identified an orientation of one glycosidic linkage of hygromycin B consistent with metal-catalyzed hydrogen atom abstraction from substrate. These structural results are complemented by gene disruption of the oxygenases evdO1 and evdMO1 from the everninomicin biosynthetic cluster, which demonstrate that functional oxygenase activity is critical for antibiotic production. Our data therefore support a role for these enzymes in the production of key features of the orthosomycin antibiotics.


Subject(s)
Aminoglycosides/chemistry , Anti-Bacterial Agents/chemistry , Oxygen/chemistry , Oxygenases/chemistry , Catalytic Domain , Crystallography, X-Ray , Cyclization , Hydrogen/chemistry , Hygromycin B/chemistry , Metals/chemistry , Micromonospora/enzymology , Micromonospora/genetics , Multigene Family , Oligosaccharides/chemistry , Open Reading Frames , Oxidation-Reduction , Phylogeny , Protein Binding , Protein Structure, Secondary , Reproducibility of Results , Streptomyces/enzymology , Streptomyces/genetics
10.
Appl Environ Microbiol ; 83(6)2017 03 15.
Article in English | MEDLINE | ID: mdl-28062460

ABSTRACT

Gram-positive Streptomyces bacteria produce thousands of bioactive secondary metabolites, including antibiotics. To systematically investigate genes affecting secondary metabolism, we developed a hyperactive transposase-based Tn5 transposition system and employed it to mutagenize the model species Streptomyces coelicolor, leading to the identification of 51,443 transposition insertions. These insertions were distributed randomly along the chromosome except for some preferred regions associated with relatively low GC content in the chromosomal core. The base composition of the insertion site and its flanking sequences compiled from the 51,443 insertions implied a 19-bp expanded target site surrounding the insertion site, with a slight nucleic acid base preference in some positions, suggesting a relative randomness of Tn5 transposition targeting in the high-GC Streptomyces genome. From the mutagenesis library, 724 mutants involving 365 genes had altered levels of production of the tripyrrole antibiotic undecylprodigiosin (RED), including 17 genes in the RED biosynthetic gene cluster. Genetic complementation revealed that most of the insertions (more than two-thirds) were responsible for the changed antibiotic production. Genes associated with branched-chain amino acid biosynthesis, DNA metabolism, and protein modification affected RED production, and genes involved in signaling, stress, and transcriptional regulation were overrepresented. Some insertions caused dramatic changes in RED production, identifying future targets for strain improvement.IMPORTANCE High-GC Gram-positive streptomycetes and related actinomycetes have provided more than 100 clinical drugs used as antibiotics, immunosuppressants, and antitumor drugs. Their genomes harbor biosynthetic genes for many more unknown compounds with potential as future drugs. Here we developed a useful genome-wide mutagenesis tool based on the transposon Tn5 for the study of secondary metabolism and its regulation. Using Streptomyces coelicolor as a model strain, we found that chromosomal insertion was relatively random, except at some hot spots, though there was evidence of a slightly preferred 19-bp target site. We then used prodiginine production as a model to systematically survey genes affecting antibiotic biosynthesis, providing a global view of antibiotic regulation. The analysis revealed 348 genes that modulate antibiotic production, among which more than half act to reduce production. These might be valuable targets in future investigations of regulatory mechanisms, for strain improvement, and for the activation of silent biosynthetic gene clusters.


Subject(s)
Anti-Bacterial Agents/biosynthesis , DNA Transposable Elements/genetics , Prodigiosin/analogs & derivatives , Secondary Metabolism/genetics , Streptomyces coelicolor/genetics , Transposases/genetics , Base Composition/genetics , Base Sequence , Gene Expression Regulation, Bacterial , Gene Library , Mutagenesis, Insertional , Prodigiosin/biosynthesis
11.
Mol Ecol ; 26(12): 3217-3229, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28316142

ABSTRACT

Beta-lactam biosynthesis was thought to occur only in fungi and bacteria, but we recently reported the presence of isopenicillin N synthase in a soil-dwelling animal, Folsomia candida. However, it has remained unclear whether this gene is part of a larger beta-lactam biosynthesis pathway and how widespread the occurrence of penicillin biosynthesis is among animals. Here, we analysed the distribution of beta-lactam biosynthesis genes throughout the animal kingdom and identified a beta-lactam gene cluster in the genome of F. candida (Collembola), consisting of isopenicillin N synthase (IPNS), δ-(L-α-aminoadipoyl)-L-cysteinyl-D-valine synthetase (ACVS), and two cephamycin C genes (cmcI and cmcJ) on a genomic scaffold of 0.76 Mb. All genes are transcriptionally active and are inducible by stress (heat shock). A beta-lactam compound was detected in vivo using an ELISA beta-lactam assay. The gene cluster also contains an ABC transporter which is coregulated with IPNS and ACVS after heat shock. Furthermore, we show that different combinations of beta-lactam biosynthesis genes are present in over 60% of springtail families, but they are absent from genome- and transcript libraries of other animals including close relatives of springtails (Protura, Diplura and insects). The presence of beta-lactam genes is strongly correlated with an euedaphic (soil-living) lifestyle. Beta-lactam genes IPNS and ACVS each form a phylogenetic clade in between bacteria and fungi, while cmcI and cmcJ genes cluster within bacteria. This suggests a single horizontal gene transfer event most probably from a bacterial host, followed by differential loss in more recently evolving species.


Subject(s)
Arthropod Proteins/genetics , Arthropods/genetics , Multigene Family , beta-Lactams , Animals , Arthropods/enzymology , Cephamycins , Oxidoreductases/genetics , Peptide Synthases/genetics , Phylogeny
12.
Microb Cell Fact ; 16(1): 177, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-29065880

ABSTRACT

BACKGROUND: Griseoviridin (GV) and viridogrisein (VG, also referred as etamycin), both biosynthesized by a distinct 105 kb biosynthetic gene cluster (BGC) in Streptomyces griseoviridis NRRL 2427, are a pair of synergistic streptogramin antibiotics and very important in treating infections of many multi-drug resistant microorganisms. Three transporter genes, sgvT1-T3 have been discovered within the 105 kb GV/VG BGC, but the function of these efflux transporters have not been identified. RESULTS: In the present study, we have identified the different roles of these three transporters, SgvT1, SgvT2 and SgvT3. SgvT1 is a major facilitator superfamily (MFS) transporter whereas SgvT2 appears to serve as the sole ATP-binding cassette (ABC) transporter within the GV/VG BGC. Both proteins are necessary for efficient GV/VG biosynthesis although SgvT1 plays an especially critical role by averting undesired intracellular GV/VG accumulation during biosynthesis. SgvT3 is an alternative MFS-based transporter that appears to serve as a compensatory transporter in GV/VG biosynthesis. We also have identified the γ-butyrolactone (GBL) signaling pathway as a central regulator of sgvT1-T3 expression. Above all, overexpression of sgvT1 and sgvT2 enhances transmembrane transport leading to steady production of GV/VG in titers ≈ 3-fold greater than seen for the wild-type producer and without any notable disturbances to GV/VG biosynthetic gene expression or antibiotic control. CONCLUSIONS: Our results shows that SgvT1-T2 are essential and useful in GV/VG biosynthesis and our effort highlight a new and effective strategy by which to better exploit streptogramin-based natural products of which GV and VG are prime examples with clinical potential.


Subject(s)
Anti-Bacterial Agents/metabolism , Macrolides/metabolism , Membrane Transport Proteins/genetics , Peptides/metabolism , Streptomyces/metabolism , ATP-Binding Cassette Transporters/genetics , Biosynthetic Pathways/genetics , Gene Expression Regulation, Bacterial , Membrane Transport Proteins/isolation & purification , Multigene Family
13.
J Biol Inorg Chem ; 21(5-6): 589-603, 2016 09.
Article in English | MEDLINE | ID: mdl-27229511

ABSTRACT

The diiron cluster-containing oxygenase CmlI catalyzes the conversion of the aromatic amine precursor of chloramphenicol to the nitroaromatic moiety of the active antibiotic. The X-ray crystal structures of the fully active, N-terminally truncated CmlIΔ33 in the chemically reduced Fe(2+)/Fe(2+) state and a cis µ-1,2(η (1):η (1))-peroxo complex are presented. These structures allow comparison with the homologous arylamine oxygenase AurF as well as other types of diiron cluster-containing oxygenases. The structural model of CmlIΔ33 crystallized at pH 6.8 lacks the oxo-bridge apparent from the enzyme optical spectrum in solution at higher pH. In its place, residue E236 forms a µ-1,3(η (1):η (2)) bridge between the irons in both models. This orientation of E236 stabilizes a helical region near the cluster which closes the active site to substrate binding in contrast to the open site found for AurF. A very similar closed structure was observed for the inactive dimanganese form of AurF. The observation of this same structure in different arylamine oxygenases may indicate that there are two structural states that are involved in regulation of the catalytic cycle. Both the structural studies and single crystal optical spectra indicate that the observed cis µ-1,2(η (1):η (1))-peroxo complex differs from the µ-η (1):η (2)-peroxo proposed from spectroscopic studies of a reactive intermediate formed in solution by addition of O2 to diferrous CmlI. It is proposed that the structural changes required to open the active site also drive conversion of the µ-1,2-peroxo species to the reactive form.


Subject(s)
Chloramphenicol/biosynthesis , Oxygenases/metabolism , Chloramphenicol/chemistry , Crystallography, X-Ray , Models, Molecular , Molecular Conformation , Oxygenases/chemistry , Oxygenases/genetics
14.
Microb Cell Fact ; 15: 85, 2016 May 20.
Article in English | MEDLINE | ID: mdl-27206520

ABSTRACT

BACKGROUND: Streptomyces venezuelae ATCC 10712 produces antibiotics chloramphenicol (Cml) and jadomycin (Jad) in response to nutrient limitation and ethanol shock (ES), respectively. Biosynthesis of Cml and Jad was shown to be reciprocally regulated via the action of regulatory proteins JadR1 and JadR2 encoded by the jad cluster, and mechanism of such regulation has been characterized. However, detailed analysis of the regulatory mechanism controlling Cml biosynthesis is still lacking. RESULTS: In the present study, several promoters from the cml cluster were fused to the reporter gene gusA. Reporter protein activity and Cml production were assayed in the wild-type strain with and without ES, followed by similar experiments with the jadR1 deletion mutant. The latter gene was earlier reported to negatively control Cml biosynthesis, while serving as a positive regulator for the jad cluster. A double deletion mutant deficient in both jadR1 and the cml cluster was also constructed and used in promoter fusion studies. Analyses of the results revealed that ES activates Cml biosynthesis in both wild-type and jadR1 deletion mutant, while Cml production by the latter was ca 80% lower. CONCLUSIONS: These results contradict earlier reports regarding the function of JadR1, but correlate well with the reporter activity data for some promoters, while reaction of others to the ES is genotype-dependent. Remarkably, the absence of Cml production in the double mutant has a profound effect on the way certain cml promoters react to ES. The latter suggests direct involvement of Cml in this complex regulatory mechanism.


Subject(s)
Chloramphenicol/biosynthesis , Ethanol/pharmacology , Gene Expression Regulation, Bacterial/drug effects , Promoter Regions, Genetic/genetics , Streptomyces/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chloramphenicol/chemistry , Genes, Reporter , Genotype , Multigene Family , Plasmids/genetics , Plasmids/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Streptomyces/genetics , Streptomyces/growth & development
15.
Appl Microbiol Biotechnol ; 100(12): 5215-29, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27115756

ABSTRACT

Burkholderia is an incredibly diverse and versatile Gram-negative genus, within which over 80 species have been formally named and multiple other genotypic groups likely represent new species. Phylogenetic analysis based on the 16S rRNA gene sequence and core genome ribosomal multilocus sequence typing analysis indicates the presence of at least three major clades within the genus. Biotechnologically, Burkholderia are well-known for their bioremediation and biopesticidal properties. Within this review, we explore the ability of Burkholderia to synthesise a wide range of antimicrobial compounds ranging from historically characterised antifungals to recently described antibacterial antibiotics with activity against multiresistant clinical pathogens. The production of multiple Burkholderia antibiotics is controlled by quorum sensing and examples of quorum sensing pathways found across the genus are discussed. The capacity for antibiotic biosynthesis and secondary metabolism encoded within Burkholderia genomes is also evaluated. Overall, Burkholderia demonstrate significant biotechnological potential as a source of novel antibiotics and bioactive secondary metabolites.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Antifungal Agents/metabolism , Burkholderia/classification , Burkholderia/metabolism , Secondary Metabolism , Bacterial Typing Techniques/methods , Biodegradation, Environmental , Biotechnology/methods , Burkholderia/genetics , DNA, Bacterial/genetics , Genes, rRNA , Genotype , Humans , Multilocus Sequence Typing , Phylogeny , Quorum Sensing , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
16.
Proteins ; 83(4): 711-21, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25586301

ABSTRACT

The biosynthesis of the glycopeptide antibiotics, of which teicoplanin and vancomycin are representative members, relies on the combination of non-ribosomal peptide synthesis and modification of the peptide by cytochrome P450 (Oxy) enzymes while the peptide remains bound to the peptide synthesis machinery. We have structurally characterized the final peptidyl carrier protein domain of the teicoplanin non-ribosomal peptide synthetase machinery: this domain is believed to mediate the interactions with tailoring Oxy enzymes in addition to its function as a shuttle for intermediates between multiple non-ribosomal peptide synthetase domains. Using solution state NMR, we have determined structures of this PCP domain in two states, the apo and the post-translationally modified holo state, both of which conform to a four-helix bundle assembly. The structures exhibit the same general fold as the majority of known carrier protein structures, in spite of the complex biosynthetic role that PCP domains from the final non-ribosomal peptide synthetase module must play in glycopeptide antibiotic biosynthesis. These structures thus support the hypothesis that it is subtle rearrangements, rather than dramatic conformational changes, which govern carrier protein interactions and selectivity during non-ribosomal peptide synthesis.


Subject(s)
Peptide Synthases/chemistry , Teicoplanin/metabolism , Amino Acid Sequence , Models, Molecular , Molecular Sequence Data , Peptide Synthases/metabolism , Protein Structure, Tertiary , Teicoplanin/chemistry
17.
Biosci Biotechnol Biochem ; 78(3): 394-9, 2014.
Article in English | MEDLINE | ID: mdl-25036825

ABSTRACT

Improving the productivity of secondary metabolites is highly beneficial for the utilization of natural products. Here, we found that gene duplication of the goadsporin biosynthetic gene locus resulted in hyper-production. Goadsporin is a linear azole containing peptide that is biosynthesized via a ribosome-mediated pathway in Streptomyces sp. TP-A0584. Recombinant strains containing duplicated or triplicated goadsporin biosynthetic gene clusters produced 1.46- and 2.25-fold more goadsporin than the wild-type strain. In a surrogate host, Streptomyces lividans, chromosomal integration of one or two copies of the gene cluster led to 342.7 and 593.5 mg/L of goadsporin production. Expression of godI, a self-resistance gene, and of godR, a pathway-specific transcriptional regulator, under a constitutive promoter gave 0.79- and 2.12-fold higher goadsporin production than the wild-type strain. Our experiments indicated that a proportional relationship exists between goadsporin production per culture volume and the copy number of the biosynthetic gene cluster.


Subject(s)
Peptide Biosynthesis/genetics , Peptides/genetics , Secondary Metabolism/genetics , Streptomyces/metabolism , Amino Acid Sequence , Gene Duplication , Gene Expression Regulation, Bacterial , Intercellular Signaling Peptides and Proteins , Peptides/metabolism , Streptomyces/genetics
18.
Environ Int ; 190: 108917, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39089094

ABSTRACT

Antibiotic resistance crisis dictates the need for resistance monitoring and the search for new antibiotics. The development of monitoring protocols is hindered by the great diversity of resistance factors, while the "streetlight effect" denies the possibility of discovering novel drugs based on existing databases. In this study, we address these challenges using high-throughput environmental screening viewed from a trait-based ecological perspective. Through an in-depth analysis of the metagenomes of 658 topsoil samples spanning Europe, we explored the distribution of 241 prokaryotic and fungal genes responsible for producing metabolites with antibiotic properties and 485 antibiotic resistance genes. We analyzed the diversity of these gene collections at different levels and modeled the distribution of each gene across environmental gradients. Our analyses revealed several nonparallel distribution patterns of the genes encoding sequential steps of enzymatic pathways synthesizing large antibiotic groups, pointing to gaps in existing databases and suggesting potential for discovering new analogues of known antibiotics. We show that agricultural activity caused a continental-scale homogenization of microbial antibiotic-related machinery, emphasizing the importance of maintaining indigenous ecosystems within the landscape mosaic. Based on the relationships between the proportion of the genes in the metagenomes with the main predictors (soil pH, land cover type, climate temperature and humidity), we illustrate how the properties of chemical structures dictate the distribution of the genes responsible for their synthesis across environments. With this understanding, we propose general principles to facilitate the discovery of antibiotics, including principally new ones, establish abundance baselines for antibiotic resistance genes, and predict their dissemination.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Microbial , Soil Microbiology , Drug Resistance, Microbial/genetics , Metagenome , Soil/chemistry , Europe , Bacteria/genetics , Ecosystem
19.
Res Microbiol ; 175(4): 104177, 2024.
Article in English | MEDLINE | ID: mdl-38159786

ABSTRACT

S. lividans and S. coelicolor are phylogenetically closely related strains with different abilities to produce the same specialized metabolites. Previous studies revealed that the strong antibiotic producer, S. coelicolor, had a lower ability to assimilate nitrogen and phosphate than the weak producer, Streptomyces lividans, and this resulted into a lower growth rate. A comparative proteomic dataset was used to establish the consequences of these nutritional stresses on the abundance of proteins of the translational apparatus of these strains, grown in low and high phosphate availability. Our study revealed that most proteins of the translational apparatus were less abundant in S. coelicolor than in S. lividans whereas it was the opposite for ET-Tu 3 and a TrmA-like methyltransferase. The expression of the latter being known to be under the positive control of the stringent response whereas that of the other ribosomal proteins is under its negative control, this indicated the occurrence of a strong activation of the stringent response in S. coelicolor. Furthermore, in S. lividans, ribosomal proteins were more abundant in phosphate proficiency than in phosphate limitation suggesting that a limitation in phosphate, that was also shown to trigger RelA expression, contributes to the induction of the stringent response.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Gene Expression Regulation, Bacterial , Phosphates , Streptomyces coelicolor , Streptomyces coelicolor/metabolism , Streptomyces coelicolor/genetics , Streptomyces coelicolor/growth & development , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Phosphates/metabolism , Streptomyces lividans/metabolism , Streptomyces lividans/genetics , Proteome , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics , Protein Biosynthesis , Nitrogen/metabolism , Proteomics , Stress, Physiological
20.
mSystems ; 9(5): e0025024, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38564716

ABSTRACT

Most biosynthetic gene clusters (BGC) encoding the synthesis of important microbial secondary metabolites, such as antibiotics, are either silent or poorly expressed; therefore, to ensure a strong pipeline of novel antibiotics, there is a need to develop rapid and efficient strain development approaches. This study uses comparative genome analysis to instruct rational strain improvement, using Streptomyces rimosus, the producer of the important antibiotic oxytetracycline (OTC) as a model system. Sequencing of the genomes of two industrial strains M4018 and R6-500, developed independently from a common ancestor, identified large DNA rearrangements located at the chromosome end. We evaluated the effect of these genome deletions on the parental S. rimosus Type Strain (ATCC 10970) genome where introduction of a 145 kb deletion close to the OTC BGC in the Type Strain resulted in massive OTC overproduction, achieving titers that were equivalent to M4018 and R6-500. Transcriptome data supported the hypothesis that the reason for such an increase in OTC biosynthesis was due to enhanced transcription of the OTC BGC and not due to enhanced substrate supply. We also observed changes in the expression of other cryptic BGCs; some metabolites, undetectable in ATCC 10970, were now produced at high titers. This study demonstrated for the first time that the main force behind BGC overexpression is genome rearrangement. This new approach demonstrates great potential to activate cryptic gene clusters of yet unexplored natural products of medical and industrial value.IMPORTANCEThere is a critical need to develop novel antibiotics to combat antimicrobial resistance. Streptomyces species are very rich source of antibiotics, typically encoding 20-60 biosynthetic gene clusters (BGCs). However, under laboratory conditions, most are either silent or poorly expressed so that their products are only detectable at nanogram quantities, which hampers drug development efforts. To address this subject, we used comparative genome analysis of industrial Streptomyces rimosus strains producing high titers of a broad spectrum antibiotic oxytetracycline (OTC), developed during decades of industrial strain improvement. Interestingly, large-scale chromosomal deletions were observed. Based on this information, we carried out targeted genome deletions in the native strain S. rimosus ATCC 10970, and we show that a targeted deletion in the vicinity of the OTC BGC significantly induced expression of the OTC BGC, as well as some other silent BGCs, thus suggesting that this approach may be a useful way to identify new natural products.


Subject(s)
Anti-Bacterial Agents , Genome, Bacterial , Multigene Family , Oxytetracycline , Streptomyces rimosus , Oxytetracycline/biosynthesis , Streptomyces rimosus/genetics , Streptomyces rimosus/metabolism , Anti-Bacterial Agents/biosynthesis , Multigene Family/genetics , Streptomyces/genetics , Streptomyces/metabolism , Streptomyces/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL